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Grey-body radio-emission

The purpose of this chapter is to consider the basic characteristics of the radiation
field of one of the most important and widely used physical models of natural
objects, namely, the grey half-space with a smooth boundary. Definitions of the
reflective and polarization properties of such media are introduced. The physical
features of polarized radiation reception by microwave complexes are analysed.
Using the impedance forms of boundary conditions of the Maxwellian equations,
the model for calculating the plane-parallel layered media is formulated. This model
is widely used in the theory and practice of passive microwave remote sensing. On
the basis of the plane-parallel layered media method the electrodynamic problem of
radio-emission of inhomogeneous non-isothermal media is analysed in detail. The
results and limitations of the quasi-monochromatic approach to calculating the
radiation characteristics of layered media are considered, in particular, the quasi-
coherency properties of a noise signal with a limited spectrum as applied to the
problem of emission of a two-layered medium.

7.1 SURFACE REFLECTIVITY

Before proceeding to the basic subject of this chapter, we note that by grey physical
bodies we shall mean physical objects whose radiation properties differ from the
radiation of ideal black bodies in the wavelength band under consideration. Or, in
other words, physical objects, whose emissivity differs from unity (and whose wave-
length (frequency) dependence can be rather intricate, generally speaking), can serve
as a source of quite valuable remote information. The physical reasons for this can
be quite diverse: the physical-chemical properties of a medium, the degree of a
surface roughness, the temperature properties, the subsurface structures (inhomo-
geneities) and others. Note that in the other wavelength bands (for example, in the
IR band) by the ‘grey’ term are meant, generally speaking, the other features of
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radiation, for example, the independence of the spectral emissivity from the wave-
length (Siegel and Howell, 1972).

It is much more complicated to determine the reflective properties of a surface
element than the emissivity or absorbing ability (see section 6.3). This is explained by
the fact that the reflectivity of a surface depends not only on its physical properties
and on the physical body’s temperature, but also on the directions of incident and
reflected radiation. In general, the study of the reflective properties of surfaces is a
very complex problem. Various definitions and approaches are used in the science
and science-technological literature for the description and investigation of radiation
reflection from a surface element. In the physics literature the whole of the class of
these definitions is sometimes defined as scattering indicatrix (Prochorov, 1984). The
discussion of various concepts accepted in optics and radiophysics can be found in
books by Peake (1959); Siegel and Howell (1972); Ozisik (1973); Skolnik (1980);
Ishimaru (1978, 1991). We have no scope to analyse in detail these concepts and
the relationships between them within the framework of this book. Here we shall
consider only those concepts that concern radiation reflection from surfaces and that
we will need later.

7.1.1 Reflection distribution function

Consider a monochromatic radiation beam of intensity 7, (r, Q") dQ2’, which falls on
the surface element d4. Let 6’ be the angle between the incident beam and the
normal to the surface (Figure 7.1). The quantity of energy of radiation, falling on
a unit area of the surface element per unit of time in a unit range of frequencies, is
equal to

L(r,Q")cos§'dQ'. (7.1)
L,(r, Q)
A
dr,(r,Q)
4 o ; e
dQ

Figure 7.1. Schematic beam representation of the incident and reflected radiations for the
determination of bidirectional reflectivity.
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Some part of this radiation will be reflected by the surface in all directions within the
limits of a hemispherical solid angle. Let d7,(r, Q") be the intensity of radiation
reflected in the direction of observation Q. The reflected radiation intensity is
related to the incident radiation energy by the spectral distribution function (or by
the bidirectional reflectivity) of the reflected radiation (the reflection indicatrix)
£, (r, Q' Q) defined as follows:

dz,(r, Q)
L,(r, Q") cos ' dQ""

L, @, Q) = (7.2)
The quantity so defined can be either greater or less than unity, depending on the
surface structure. For example, for mirror-reflecting surfaces the total incident
radiation comprised within the limits of solid angle dQ’, is reflected within the
limits of solid angle d2 = dQ}’, whose axis is the direction determined by angles
0=0"and p = ¢’ + .

Using the generalized reciprocity theorem, which was first formulated by
Helmholtz, it can be shown (Siegel and Howell, 1972), that the reflection indicatrix
is symmetric with respect to incidence and reflection directions:

.fy(rﬁﬂ/’g) :4f;/(r7 979/)' (7'3)

The reflective properties of the surface are completely defined, if the reflection
indicatrix is known for all directions of a hemispherical space. However, it is
extremely difficult to obtain such information experimentally; for this reason the
total reflection indicatrix is not used, as a rule, in remote sensing practice. The
integral (averaged over angles) reflective characteristics are widely used in IR
sensing practice. In its turn, the integrally angular approach is seldom applied in
microwave sensing.

7.1.2 Directional-hemispherical reflectivity

In the case where the surface is rather rough with respect to the electromagnetic field
wavelength, the situation can arise in which the surface is irradiated by the radiation
beam from a given direction, and the reflected radiation is scattered within the limits
of a hemispherical solid angle (over the surface). A similar scattering regime is
characteristic of terrestrial surfaces when they are irradiated by sunlight as well as
by IR radiation sources. In this case the spectral directional-hemispherical reflectiv-
ity p,(r, Q" — 27) is determined as follows:

J drZ,(r, Q) cos 6dQ
Q=2r

Q' - 271) =
pu(r, ) I,(r, Q") cos0dQ’

(7.4)

Using the definition of the reflection indicatrix, we can relate p, (r, Q" — 27) with
£, (r, Q' Q) as follows:
21

1
py(r, Q" — 27) =J J Ofy(";u’,w’;u, p)udpde. (7.5)
.

©=0
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The case is often considered, which is opposite to that described above, when the
radiation falls on the surface element from all directions within the limits of a
hemispherical solid angle (over the surface), and the reflected radiation intensity is
measured only in the given direction Q. In such a case the hemispherically directional
reflectivity p, (r,2m — Q) can be presented (provided that the incident radiation does
not depend on the direction) in the form:

27 1
pu(r,2m — Q) = J J foen @5 o)’ dp’ de’. (7.6)
(p/:() NIZO
Using the reciprocity theorem, it can easily be seen that in the case where ¢ = " and
6 = 6, the following equality is met:
0, (r, Q" — 27) = p,(r, 21 — Q). (7.7)

7.1.3 Hemispherical reflectivity

Consider the situation where radiation falls on a surface from all directions within
the limits of a hemisphere (above the surface) and is reflected in all directions as well.
This situation is typical of the case where terrestrial surfaces are irradiated by solar
radiation scattered by dense cloudiness (diffuse illumination). With allowance for the
definition of a directional-hemispherical reflectivity (7.4) the spectral hemispherical
reflectivity p,(r) is determined as follows:

” o, (1, Q" — 2m)L,(r, Q") cos 6’ dQ’
py(r) = ===

(7.8)
“ 1,(r,Q")cos ' dQ’
Q'=2r

If the incident radiation does not depend on the direction, then, with allowance for
(7.5), we obtain the relation between the reflection indicatrix and p,(r)

1
p,(r) = —J U f,(r, Q' Q) cos §dQ| cos ' dQ’. (7.9)
T J)o'=2r lJQ=2r
If £,(r,Q',Q) does not depend on directions (or, in other words, has diffuse
character of scattering), expression (7.9) is simplified and takes the form:

pu(r) = 7f, (r). (7.10)

7.1.4 Diffuse and specular reflection

The surface is called a diffuse reflector if the intensity of reflected radiation is the
same over all angles of reflection within the limits of a hemisphere and does not
depend on the angle of incidence. The surface is called a specular or mirror reflector
if the incident and reflected beams are symmetrical with respect to the normal at
the point of incidence, and the reflected beam is concluded inside the solid angle
dQ) equal to a solid angle containing the incident beam dQ’ (i.e. dQ = dQ’). The
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assumption on diffuse and specular reflections is often used in the theory and
practice of remote sensing, of heat transfer, since it results in considerable simplifica-
tions; the real surfaces, however, are neither ideally diffuse, nor ideally specular. We
should note here, that, depending on the wavelength used and on the degree of
surface roughness, the contributions of specular and diffuse components in the
process of full scattering by a studied medium can drastically differ. So, in the
optical and IR bands the majority of solid terrestrial media (including vegetation)
represent diffuse reflectors. At the same time, the disturbed sea surface represents the
most complicated (and dynamical) combination of diffuse and quasi-specular reflec-
tors (the field of patches of sunlight) (Figure 2.1). In the microwave band the
specular component plays a noticeable part, both for electromagnetic waves scatter-
ing on the sea surface and for scattering on the land surface. In its turn, the vegeta-
tion can be presented, depending on the wavelength, either as a highly diffuse
(scattering) object, or as an ideal black body (an ideal absorber), or as their com-
plicated scattering—absorbing combination of fractal type (see, for example, Peake,
1959; Fung and Chen, 1981; Franceschetti et al., 1999a,b; Chauhan, 2002; Wu and
Liu, 2002; Miesch et al., 2002). Generally speaking, it is the choice of the most
adequate scattering model of a studied surface which represents, to a considerable
degree, the modern problem of microwave radiation of rough terrestrial covers (such
as the disturbed sea surface, vegetation, the processed surface of soils and grounds)
(see Chapter 12 for more details).

7.2 EFFECTIVE RADIATION OF REFLECTING SURFACE

Let us consider a beam of monochromatic radiation of intensity 7,(r, Q") dQ’, which
falls on the surface element d4 (Figure 7.1). The quantity of the energy of radiation,
falling on the surface area unit per unit time, within a unit frequency band, is equal
to 7,(r, Q") cos 0’ dQ’, where 6’ is the angle between the incident beam direction and
the normal to the surface. In accordance with the definition of spectral directional
absorbing ability (see equation (6.26)), the quantity of radiation energy absorbed by
the surface area unit per unit time, within a unit frequency band, can be presented as
follows:

dE, = a,(r,v, T,Q’ .. )1, (r,Q ) cos ' dQ’. (7.11)

If the surface is supposed to be opaque, i.e. it absorbs and reflects the radiation, then
the energy of absorbed radiation will be equal to the difference between the incident
radiation energy and reflected radiation energy

dE, = I,(r, Q") cos ' dQ' — p, (r,Q" — 27),(r,Q") cos §' dQ'. (7.12)

Substituting (7.11) into (7.12), we obtain the relation between the directional
absorbing ability and the directional-hemispherical reflectivity as:

a,(r, T,v, Q") =1-p,(r,Q" — 27). (7.13)
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Figure 7.2. Schematic beam representation of the emitted, incident and reflected radiations for
the determination of effective emission.

The latter characteristic is related, in its turn, in an integral manner with the reflec-
tion indicatrix (7.5).

If the investigated medium is at a state of local thermodynamic equilibrium (see
section 4.4), and the Kirchhoff law (6.28) is satisfied, then the latter expression can be
written in the following form:

K, (0, T,v,Q) =1 — p(r,Q — 2m). (7.14)

Here it should be emphasized that the directional-hemispherical reflectivity should
be considered from that direction where the observation with an instrument is
carried out (in accordance with the Kirchhoff law).

The intensity of monochromatic effective radiation I,(r,Q) of an opaque
surface element in the observation direction € will be equal to the sum of intensities
of thermal and reflected radiation (Figure 7.2). This is due to the fact that stochastic
processes are independent, and their intensities can be summed. If the surface is at
temperature 7 and has spectral emissivity x(r,€), then the intensity of thermal
radiation will be determined by expression (6.30). As to the external radiation, it
should be noted generally that the surface element is irradiated from all directions
within the limits of a hemisphere, and the intensity of radiation, reflected by this
element in the observation direction €, can be obtained according to relation (7.2).
Thus, the total effective radiation from the surface element can be written as follows:

Le(r, Q) =k, (r,Q)Lg(T,v) + J f,(r, Q, Q1 (r, Q") cos ' dQ'. (7.15)
Q'=2r
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The formula obtained is very widely used in remote microwave sensing practice, in
quite different modifications, by the way. Here, as we have already noted, a serious
problem is the adequate choice of a surface scattering model, i.e. the choice of
function £, (r, Q', Q).

Now we consider two important cases, which are often used in microwave
sensing practice: a surface with specular reflection and a surface with diffuse reflec-
tion. For a mirror surface the reflection indicatrix can formally be presented as a
product of delta-function §(€ — Q'), that expresses the mirroring property of a
surface, and the spectral power reflectivity from the direction Q' — R,p(Q'). The
value of this reflectivity can be determined on the basis of the wave electromagnetic
theory. Besides, we note, that the mirror surfaces possess the property of isotropy in
the azimuthal direction. In this case the effective radiation of a unit surface can be
written as a dependence on the polar angle (observation angle) 6 only:

L(r,0) = k,(r,0)Lg(T,v) + R,p(0)1,(0"). (7.16)

A similar procedure, performed for the relation between the emissivity and reflectiv-
ity (7.14), makes it possible to obtain the following important expression:

Ky (r,0) =1 — R,p(r,0). (7.17)

Comparing this expression with the electrodynamic solutions of the fluctuation—
dissipation theorem (see section 4.3), we can easily see a complete analogy
between expression (7.17), obtained from the energy conservation law, and the
electrodynamic solution (4.20) for radiation of a semi-infinite space with a smooth
boundary.

For diffusively emitting and reflecting surfaces quantities x, and f, weakly
depend on angles; as a result, the expression for effective radiation can be
presented in a slightly different form (provided that the incident radiation does
not depend on the direction):

IuE(rv Q) = KJVIVB(T’ V) + Iupu(zﬂ - Q) (718)

Here it is important to note that the external radiation will appear in a resulting
radiation in a rather complicated manner. Whereas in the case of mirror surfaces,
under conditions of real observations, there exist experimental techniques for
separating out the information radiation component, which directly depends on
the medium’s properties, this procedure is much more difficult to perform for
diffuse surfaces.

In the microwave band the relations presented above have usually been used in
the terms of spectral brightness temperature of an investigated object 7,5(r, L),
which, with regard to the Kirchhoff law (equation (6.30)) and relation (5.27), can
be presented as

TI/B(r7 Q) = Hu(rv Q)TO> (719)
where T, is the thermodynamic temperature of the investigated medium.

And, considering media with mirror boundaries possessing azimuthal isotropy
properties, we can obtain the expression for effective spectral brightness temperature
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Figure 7.3. Schematic beam presentation of remote sensing measuring procedure. See
explanations of notation in the text.

T,se(0) with regard to the external brightness spectral integral illumination T,;(6)
(sometimes called the firmament illumination)

Tope(0) = £, (0)To + Rup(0) Ty (6). (7.20)

The observational situation is illustrated schematically in Figure 7.3.

It should be noted that, unlike the IR band, in the microwave band the external
brightness illumination varies in intensity within very wide limits — from 20-30 K up
to 300K — depending on the microwave working subrange and the state of
cloudiness, and it also strongly varies depending on the observation angle (see
Chapters 9 and 10).

In relation (7.20) the question is about spectral and differential (in angle)
radiation characteristics of a medium. However, the total signal received by a radio-
metric system will depend both on the relationship between the angular character-
istics of a studied object and the antenna system of a receiving device (see equation
(5.28)), and on the amplitude-frequency characteristic of a receiving device (see
equation (5.29)). We shall still be interested in the properties of physical media
particularly; therefore, we shall further use relation (7.20), omitting for simplicity
subscript v. However, we shall always remember, that the question is about spectral
characteristics.

Some important conclusions follow from relation (7.20). First, the brightness
temperature of a physical medium, recorded by a remote instrument, is directly
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related to the physical-chemical properties of a medium (via the emissive ability) and
with its thermodynamic temperature. The spectral properties of a medium (for
example, the dependence of its dielectric properties and, accordingly, of physical-
chemical properties, on the working frequency) will also be displayed directly in
spectral properties of the field of brightness temperature. Of importance here are
the state and characteristics of the medium’s boundary which, in their turn, have
intrinsic and rather complicated spectral properties. The separation of volume and
surface effects in a compound radiothermal signal is one of complicated problems of
remote microwave sensing.

Second, since the emissivity of media, being under the conditions of local
thermodynamic equilibrium, is less than unity (as a consequence of Kirchhoff’s
law), the brightness temperature of such media will always be lower, than the
value of thermodynamic temperature of a medium (certainly, disregarding the
firmament illumination). To restore the component, caused by physical-chemical
properties, from the compound radiothermal signal, IR thermal remote measure-
ments (along with radiothermal ones) of physical objects are usually applied. As a
result, the information on a purely temperature field is obtained, and, then, the
medium emissivity is restored. If it is indicated in such a manner that the medium
emissivity exceeds unity, then, to a high probability, the radiation of a medium can
be supposed to have a clearly non-thermal character (see section 4.4).

Third, to demonstrate the important role of brightness illumination, let us
imagine mentally the following experiment. The investigated medium with an instru-
ment are placed in a thermostat with emitting blackbody walls. In this case the
brightness illumination temperature will not depend on the direction and will be
equal to T7(6) = T,. Substituting this value into (7.20) and making some transforma-
tions, we obtain that the effective brightness temperature will be equal to 7, and will
not depend on the physical properties of the medium. In other words, remote
measurements, carried out under thermostatic control conditions, will not bear
any information substance.

This can easily be confirmed by some other relationships as well. If we investi-
gate two media with different emissivities (but with equal physical temperatures),
then it follows from (7.20), that in observing these two media the radiobrightness
contrast ATy will be:

ATB:(T()*T])AK,. (721)

It can be seen from this relation that, in spite of distinctions in physical properties of
the media, determined as Ax = Kk — k,, the measured radiobrightness contrast tends
to zero as Ty — T,. Under terrestrial atmosphere conditions such a situation takes
place, for example, in the wavelength band of about Smm. Similar thermostated
situations take place also in closed laboratory rooms, which makes it difficult to
perform fine radiothermal measurements in such rooms.

Even earlier detailed onboard radiothermal experiments (1975-1979) have
shown that the mirror component plays an essential part in forming the
microwave effective radiation, even if the surface is optically rough. As an
example, Figure 7.4 shows the fragments of radiothermal signal reception
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Figure 7.4. Remote microwave results of the specialized nadir-zenithal airborne (Russian
IL-14) instruments (radiometer RNZ 0.8). The working area is the north part of the
Caspian Sea on 22 April 1979. (a) Schematic presentation of measuring procedure. ZCh
and NCh are the zenithal and nadir channels respectively. (b) and (c) are fragments of the
radiometer output signal for zenithal channel T7 and nadir channel Txyn. Moscow time,
spatial scale and indoor temperature calibration are shown on abscissa and on ordinate.
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registrograms, obtained by means of a specialized onboard radiothermal device,
which receives radiations simultaneously in the nadir mode (with respect to a
flight vehicle) and in the zenith mode by two identical radiometers — zenithal instru-
ments and nadir instruments. Specialized nadir-zenithal instruments of §-mm band
were manufactured and installed on the Russian IL-14 aircraft-laboratory by co-
workers of the Space Research Institute of the Russian Academy of Sciences. The
onboard experiments were carried out in the Caspian Sea area of water under
complicated meteorological conditions, at strong sea surface disturbance and at
low altitude of flight (200400 m) (Figure 7.4(a)). The analysis of registrograms of
nadir and zenithal channels (Figure 7.4(b), (c)) showed their virtually full identity
from the viewpoint of variations of radiothermal peculiarities. Depending on pre-
cipitation intensity, the external illumination varies within very wide limits — from
40-50K for a cloudy atmosphere up to 70-80 K — for precipitation of average
intensity, and up to 100-110K for hail showers. Accordingly, in the nadir channel
the signal intensity varies from 170K to 200-210 K. It should be noted, that it is
virtually impossible to obtain such a detailed spatial structure of precipitation of
various intensity by other techniques.

Proceeding from relation (7.20) and using the data of nadir Ty and zenithal 7,
channels, the first (and rather rough) estimation of sea surface emissivity can be
given as:

In—Ty
To - TZ '

14

K (7.22)
Substituting the values for various illumination intensities, we obtain the emissivity
value for the disturbed sea surface as 0.51-0.53. This can also be done in another
way, by considering the contrasts in the nadir (A7) and zenithal (AT;) channels’
intensity from the same spatial peculiarity. In this case we have:

ATy
AT,
Substituting corresponding values of contrasts from the two channels (they
are marked in Figure 7.4(b), (c)) for the same radiothermal peculiarity, we obtain
the emissivity value as 0.51-0.52. It can be seen from this result that the
estimates obtained by two methods — from the ‘absolute’ values and from
contrasts — are very close. Thus, we can conclude that the use of a mirror
model in interpreting radiothermal observations is quite justified, in the first
approximation at least.

l—-k= (7.23)

7.3 REFLECTION AND TRANSMISSION OF PLANE WAVES AT THE
PLANE INTERFACE BOUNDARY

In the overwhelming majority of cases remote sensing practice deals with inhomo-
geneous media having rough boundaries. The full solution of the problem of
radiation of such media is rather complicated. We shall consider some of the
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problems in this book. For constructing complex models it is very useful to know the
solutions of some simple problems, which, nevertheless, play a fundamental part.
The simplest problem on wave propagation in the inhomogeneous medium is the
problem of a plane monochromatic wave falling on a plane interface boundary of
two media with different dielectric properties (the specular model of reflection). As is
known, refracted (transmitted) and reflected waves arise in this case. Of importance
here are the boundary conditions of the Maxwellian equations, which are presented
not in the form of relation between the amplitudes of fields at the boundary (see
equation (1.6)), but in the form of complex field reflectivities and transmissivities and
(real) power reflectivities and transmissivities (Brekhovskikh, 1957; Veremey et al.,
1978; Finkelstein and Mendelson, 1980; Wilheit, 1978).

Let the interface boundary between two semi-infinite homogeneous media
coincide with the plane z=0 of the Cartesian coordinate system. The media
disposed above (z > 0) and below (z < 0) the boundary are characterized by param-
eters £, and &,, respectively (u; = uy = 1) (see section 1.6). To this boundary from
the first medium falls a plane wave at angle 6, to axis z with circular frequency
w = 27v and wave vector kg = kymy(k; = (w/c)v/€,, where my is the unit vector of
the normal to the incident wave front) (see section 1.6). Then we make the plane of
incidence that contains vector k, and axis z, coincident with the plane xz. We denote
the wave vector of the reflected wave by k; = kym; and the wave vector of the
transmitted wave by k, = k,m,; n is the unit vector of the normal to the interface
boundary, directed from medium 2 to medium 1. According to (1.29) and (1.11), the
electric and magnetic fields can be written as follows. For the incident wave:

E; = Ejexp [jk; (mgr) — jwi]

myE . . (7.24)
H; = [g—O]exp [jk1 (mgr) — jwt]
1
for the reflected wave:
Er = E; exp [jk; (mr) — jwi]
E (7.25)
Hy = [mé—l]exp [jky (myr) — jwt]
1
and for the transmitted wave:
Er = E; exp [jky (myr) — jwi]
(7.26)

mE . .
tr = "2 exp o mor) ]

Here Z, and Z, are the complex impedances of the first and second media (see
equation (1.30)). To simplify the recording, we shall assume in this paragraph
€9 = o = 1. This condition will in no way influence the final result. At z =0 the
boundary conditions should be satisfied, which are reduced to the requirement of
continuity of tangential components of vectors E and H of the total wave field
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(see equation (1.6)). Hence, at z = 0 the fields should satisfy the equations

(noEo] exp [j(kor)] + [moE, ] exp [j(k;r)] = [moEy] exp [j(k,r)],
| | 2 | (7.27)
[ [moEo]] exp [j(kor)] + [mo[m, E;]] exp [j(kr)] = Z (o [myEs ] exp [j(kor)].
Since relations (7.27) should be satisfied at all points of the plane z =0 (the
condition of homogeneity of the plane boundary), this gives rise to the requirement
of identical dependence of the fields of all three waves on coordinates x and y at
z = 0. Therefore, the phase multipliers in the exponents should be identical and,

hence,
kl sin90 :kl Sin01 :kz Sin92. (728)

This results in the well-known law of reflection for specular boundaries:
0y = 04, (7.29)
and in Snell’s law for angles of incidence and transmission:
kysinfy = k, sin 6,. (7.30)

Note that here the question is about the complex values of both angles and ampli-
tudes of wave vectors.

To determine the amplitudes of reflected and transmitted waves and, accord-
ingly, the complex reflectivities and transmissivities, we turn to the system of
equations (7.27). In this case we shall consider the waves of two different linear
polarizations: the horizontally polarized wave with vector E perpendicular to the
plane of incidence (E, =E, =0,E, #0), and the vertically polarized wave with
vector E lying in the plane of incidence (E,=0,E, #0,E. #0). A wave with
arbitrary elliptical polarization can be obtained as a linear combination of these
two solutions. In the first case, for the wave with horizontal polarization, we
obtain from (7.27) the equations for unknown amplitudes E; and E,

Ey+ E = E,,

1 1 (7.31)
Z (EO CcoS 90 — El CcoS 90) = ZCOS 92.

Solving (7.31), we find the complex Fresnel coefficients, which relate the
amplitudes of reflected and transmitted waves to the amplitude of an incident
wave, i.e. the reflectivity and transmissivity:

. E, Z,cosby— Z,cosb, . .
Ryp=—-= = |Ry2| e 7.32
H12 Ey  Z,c0s0y + Z, cos b, |Rui2| exp (J¢ru); ( )
E, 27, cos b,
E, Z,cosby+ Z,cosb,

= |iH12|€XP (j‘PrH)~ (7-33)

T =

For the vertically polarized wave the calculation is more convenient to perform for
vector H, which is perpendicular to the plane of incidence in the given case. The
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calculations, completely similar to those made above, lead to the expressions:

H, Z,costy— Z,cos0,

Rvie =35, = = |R j 7.34
V2T Hy — Z, cos Oy + Z, cos b, |[Rvial exp (jorv), (7.34)

H2 222 COS 92

Hy, Z cosf, + Z,cosb, |tvialexp (iew) ( )

tvip =

Some more important conclusions follow from relations (7.32)—(7.33) and (7.34)-
(7.35), namely: by using the method of permutation of indices and summation, we
obtain the relations between the reflectivities above R;, and below R,; the boundary
and the reflectivities and transmissivities (for any polarization):

Riy = =Ry, (7.36)
1+ Ryy = i, (7.37)
1 — Ry = iy (7.38)

These relations are sometimes called the impedance form of boundary conditions.

In microwave sensing theory and practice the power reflectivities and trans-
missivities (or the coefficients in power) are often used. Their physical meaning is
related to the active energy transfer by the electromagnetic field in media and
between the media (through the boundary). The power reflectivities and trans-
missivities of the boundary of two media are defined as corresponding ratios of
averaged values of the Poynting vector (see equation (1.20)):

S . S, Rey/¢
Rpiy = ST:) =Rl tp1 = STi = Re\/é
The formulas are presented here for the condition of normal incidence of a plane
wave on the interface boundary. The energy conservation law for the boundary of
transparent (loss-free) media is usually formulated (Stratton, 1941) as a continuity of
normal components of the total energy flux above the boundary and below the
boundary:

il (7.39)

no(SO + Sl) = nosz (740)
and this directly results in the relation we have repeatedly used before, namely,
Rppp +1pp = 1. (7.41)

However, more detailed investigations, carried out more recently (Veremey et al.,
1978; Finkelstein and Mendelson, 1980), have shown that for absorbing media the
total energy flux is not generally equal to the sum of energy fluxes of partial waves.
So, in determination of the energy conservation law we should use the energy flux of
the total field (above the boundary), rather than the sum of components of energy
fluxes. In such a statement (for the horizontal polarization) the energy conservation
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law (the continuity of normal components of the flux of energy of the total field) can
be written as follows:

Re[(Ey + E|){(Hycosb6y)" + (H; cos )"} = Re [E,y(H, cos 6,)7]. (7.42)
Here the power transmissivity at oblique incidence is equal to
(nS;) _ Re[Ey(Hycos6,)"]  Re(vEycosby) .
Ipp=7——2~ = "= : =il (7.43)
(noSp)  Re[Eg(Hpcosy)’]  Re (v cosbh)

After some transformations we obtain from (7.39) the relations between power
coefficients in the following form:

;24\/\/; sin ¢,
where Rj, = |Ry5|exp (—jgi,). Such a relation takes place for the vertical polariza-
tion as well.

The above relation does not contradict the energy conservation law, since the
additional term in the right-hand side is the result of superposition of incident and
reflected fluxes and arising from the directional interference flux (the normal
incidence) in the absorbing medium (Veremey et al., 1978). If the medium from
which the observation is performed is transparent (i.e. Im /¢, = 0), then we arrive
at the former treatment of the energy conservation law (7.41), which shall be used
hereafter.

Rppy + tpia = 1 + 2[Ry (7.44)

7.4 POLARIZATION FEATURES OF RADIATION OF A GREY
HALF-SPACE WITH A SMOOTH BOUNDARY

We shall use the results obtained above for considering the important problem of the
radiation characteristics of a grey half-space with a smooth boundary. The simplified
geometry of the problem is presented in Figure 7.5(a). The flight vehicle is in the
medium | and observes the smooth surface at the polar angle of incidence . This
angle is sometimes called a zenithal angle. In virtue of the properties of azimuthal
isotropy of emission of smooth surfaces, all radiation characteristics do not depend
on the observation azimuth. Since we consider an extended source (i.e. the solid
angle of the antenna directivity pattern of an instrument is less than the solid
angle of a radiation object), the value of a signal does not depend on the distance
to an object (see equation (5.31), and, accordingly, the flight vehicle altitude over the
studied surface has no significance.

Of principal importance here are the polarization characteristics of the emitting
surface. The type of polarization of the received radiation will be determined by the
polarization properties of the receiving instrument’s antenna system. At present,
there exists a great diversity of technological implementations of polarization meas-
urements — from the reception of a purely linear polarization up to reception of
polarizations rotating clockwise and counterclockwise. The appearance of complex
types of polarizations is associated with the electromagnetic field interaction with
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Figure 7.5. Schematic presentation of the remote sensing polarization procedure. (a) Cross-
section in the plane of incident. (b) The reception of signal with vertical polarization by a
waveguide horn-type antenna. (c) The reception of signal with horizontal polarization.

charged particles (the magnetosphere, the ionosphere). In our fairly simple case, of
great significance is also the linear polarization of radiation, geometrically bound to
the plane of interface. In this case the electromagnetic waves of two orthogonal
polarizations can be distinguished: the horizontally polarized wave with vector E
perpendicular to the plane of incidence and the vertically polarized wave with vector
E lying in the plane of incidence.

With respect to the instruments this can be done rather simply — it is known that
in the limited waveguides of transmission lines an infinite number of modes of
oscillation can propagate, except the TEM mode which propagates in free space
(see section 1.6). If, however, the relations between the values of geometric width
(a) and height (b) of a waveguide (Figure 7.5(b), (c)) and the working wavelength are
strictly fixed, the situation can be achieved where only one mode of oscillations
propagates in the waveguide, this mode having the strictly defined direction of
vector E, perpendicular to the wide wall of a waveguide. In this case the
waveguide device plays the part of some kind of polarization filter, thus ensuring
the reception of an electromagnetic wave of only one polarization. It can easily be
seen that, when the long wall of a waveguide is parallel to the studied surface
(Figure 7.5(b)), the reception of a vertically polarized electromagnetic wave will be
accomplished. If the waveguide is turned through 90 degrees, when its narrow wall
will be parallel to the studied surface, the mode of reception of a horizontally
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polarized wave will be accomplished (Figure 7.5(c)). Certainly, it is important to take
into account all these features when an antenna system is being installed on a flight
vehicle. It is also important to take this into account when interpreting the observa-
tional data in the case of flight vehicle manoeuvring; for example, airplane pitch and
roll manoeuvres can lead to significantly different results.

If we hypothetically imagine that a vehicle with an instrument is inside a semi-
infinite isothermal medium, then in this case the instrument can be considered to be
under conditions of thermostatic equilibrium. Thus, its readings will correspond to
the value of thermodynamic temperature of the medium regardless of the direction
of observation and of the polarization type.

Let us return to the values of Fresnel’s coefficients (in the field) for two polariza-
tions (equations (7.32)—(7.34)) and write them down in a simpler and more accessible
form, which is often used in microwave sensing practice:

for horizontal polarization

. cos — \Vé—sin’ 6
Ry = (7.45)
cosf + Ve —sin’ 6
and for vertical polarization
Rv _€cosf— Ve~ sin” 0 (7.46)

écosH—i—\/é—sinzH’

In these expressions 6 is the angle of observation in the external medium, and
€ =¢1+je, =¢€(1 +1tgd) is the complex dielectric permeability of the medium
studied and ¢ is the dielectric loss angle.

Since the boundary between media is smooth, then, using the model of specular
boundary (see equation (7.17)), we can obtain the values of the medium’s emissivity
for two polarizations:

ki(r,0,€) =1 — |Ri(r,0,8))%, (7.47)
where i = h, v.

Expressions (7.47) are very widely used in microwave sensing theory and
practice, since they determine the fundamental basis in calculations and inter-
pretation of more complicated models.

The full expressions for horizontal and vertical components of emissivity for a
medium with arbitrary losses can be written as:

4,/e1 cosf Acos (1p/2)

0) = 7.48
i (9) cos? + e, 4% + 2,/z, cos§ Acos (¢/2)’ (7.48)

o) 4,/z1cos 0/ 1 + tg?§ Acos (6 — ¥/2) (7.49)
K = , :

v e1cos? O(1 +tg?6) + A% + 2, /21 cos 04/ 1 + tg>§ Acos (6 — /2)
.2 2 .2 -1
where 4 = (1 — SH; 9) +tg?6 and v = arctg ll — SH; o tgd.
I 1
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7.4.1 Nadir measurements

In measurements at observation angles equal to zero (nadir measurements) the
distinction between the vertical and horizontal polarizations disappears. The
medium emissivity (with arbitrary losses) can be rewritten in a more compact
form:

B 4\/e  cosbcos (6/2) (7.50)
£ 4 2y/z 1 cosbeos (6/2) +cosd )

For media with small losses (transparent media), i.e. for which tgdé — 0,
expression (7.50) can be even more simplified:

x(0)

G
K(0) = il (7.51)

From this simple expression, nevertheless, follows a rather important conclusion:
virtually all natural substances on the Earth possess emissivities whose values lie
within some restricted region. So, it follows from consideration of Figure 7.6, which
shows the dependences of emissivity on dielectric properties, that for transparent
media the emissivity is limited to values ranging from 1, for media with ¢; — 1, to
the value of 0.36, for media of fresh water type (for decimetre and metre wavelength
bands; see Chapter 8). For transparent media with nonzero values of tgd expression

1.0
0.8 0.6
1
K 0.6 0.4 |
| 2
3
04 02
4
0.2 L1 \ \ L
1 3 5 7 9 74 76 78 80

Figure 7.6. Emissivity of dielectric medium with smooth surface at nadir observation as a
function of real relative dielectric constant (e1) at four values of loss angle tangent.
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(7.50) can be expanded in a power series of §, and we obtain the analytical form of
dependence of emissivity on parameter ¢:

k= ko[l — 367 (7.52)

It is interesting to note here, that the increase of losses in a medium (the
increase of parameter 6) results in decreasing the value of the medium’s emissivity.
This dependence is not so strong, generally speaking. So, it can be seen from
relation (7.52) that, for the emissivity to change (decrease) by 5%, the angle of
losses should increase considerably — from nearly zero up to values of 0.13-0.15.
This implies that the change of losses in a medium influences the value of
emissive properties much less than the variations of the real value of dielectric
constant. Note that the above conclusions concern the physical models of solid
and liquid media exclusively. For gases the situation is radically different (see
Chapter 11).

The set of dielectric characteristics illustrated in Figure 7.6 is, of course,
for demonstration only, since the real and imaginary parts of dielectric
permeability of real substances are rigidly interrelated by fundamental Kronig—
Kramers relations, and they should not be selected completely arbitrarily, of
course.

The revealed decrease in the value of emissivity of a semi-infinite medium with
increasing losses seems, at first sight, a paradoxical violation of Kirchhoff’s law. This
is not the case, however. As we have seen in section 4.3, the radiation emitted from
the medium is caused by that part of the equilibrium thermal energy of a semi-
infinite space which did not undergo reflection (see equation (4.20)). Its intensity is
associated with the reflective properties of the medium, which increase (though
insignificantly) with increasing losses in the medium and, thereby, lower the value
of emissivity.

7.4.2 Angular measurements

Historically, the first microwave instruments were of purely nadir type (Basharinov
et al., 1969, 1974; Bespalova et al., 1976a; Amirkhanyn et al., 1975). However, it
became clear fairly quickly, that the polarization properties (i.e. the properties
which are revealed in observation at angles which differ from the nadir) of
composite surfaces play an important part (see, for instance, Ulaby et al., 1981,
1982, 1986; Fung and Chen, 1981; Paloscia and Pampaloni, 1988). They make it
possible to determine the type of a surface and its state, to distinguish the
signals from the surface and from vegetation, and to determine the properties of
dynamic surfaces (such as the disturbed sea surface, for example). Virtually all
modern radiothermal (both aircraft- and space-based) instruments operate under
conditions which make it possible to record the radiation of a studied surface at
fixed angles and at two polarizations (or at their combination) simultaneously (see
Chapter 14).
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For transparent media (at tgé < 1) the emissivities for the modes of horizontal
and vertical polarizations can be written in a fairly symmetrical form:

[ . 2
4,/e 1 cos b l—SH; i
1

ra0) = — —, %)
00529+51<1—Sm )—l—%/ﬁcos&“l—sm
€1 €
)
4,/e;cosby |1 — sin” 6
\/ €
Ky (6) = 1 (7.54)

.2 c 2,

0 0
g1 cos2 6 + <1 - SH; ) +2,/z1cosfy/1 — Sl:
1 \ 1

Figure 7.7 presents the calculated values of emissivities for water surface and
dielectric media, which are used for modelling fertile soils with different moisture
content.

Since our original model of a specular surface was based on the solutions of
Maxwellian equations in the plane waves mode, all polarization features, known
from Maxwellian theory, will be equally reflected in the solutions obtained for the
emissive characteristics of media with smooth boundaries (Stratton, 1941; Alpert
et al., 1953). Here we note, first of all, the principal difference in the behaviour of
an angular dependence for horizontal and vertical polarization. Whereas the
behaviour of the horizontally polarized emissivity does not have any features,
emission with vertical polarization has a prominent maximum. From the Maxwell
electrodynamics viewpoint, its origin can be explained simply enough: this is a zero
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Figure 7.7. Polarization properties of emissivities of water surface and dielectric media. (a)
Emissivity of water surface at 19°C as a function of the incident angle (zenith angle) for
horizontal (H) and vertical (V) polarization at 10.5 GHz. (b) Emissivity of two dielectric
media calculated with € = 3.5+ ;0.1 (upper curve) and € = 20 + j10 (lower curve).
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value of the Fresnel coeflicient for vertical polarization at the Brewster angle (6gR ).
Equating the Fresnel coefficient value to zero (7.34), we obtain:

Z, cosbpr = Z,cosb,. (7.55)

Taking the square of both parts of the equality and taking into account Snell’s law
for transparent media (tgd = 0), we shall have, after some transformations:

tghpr = V/<1- (7.56)

It is seen from this relation, that for pure dielectrics there exists the angle of
incidence, called the Brewster angle, at which the incident wave passes to the
second medium entirely (without reflections). From the thermal radiation
viewpoint, the appearance of the Brewster angle can be interpreted as follows.
When the Brewster angle appears, the wave resistance of an emitting medium
becomes equal to the wave resistance of a vacuum, and the wave energy entirely
escapes the medium where it was formed. In other words, at these angles and at
vertical polarization the medium behaves as an ideal black body. It follows from
(7.56) that for media with high values of diclectric properties (‘cold’ media in the
radiothermal sense) the Brewster angle tends to 90° (for water, to 87-88°), whereas
for media with a small dielectric constant value (‘warm’ media) the Brewster angle
tends to 45° (Figure 7.7(b)).

Now we shall consider the variations of emissivity which can be related to a
small deviation of angles at nadir investigations. These variations of angles are
usually determined by features of a flight vehicle’s manoeuvres. Expanding
relations (7.53)—(7.54) into the Taylor series at § = 0 for small values of observation
angles, we obtain:

\VEl — 1 92
= l+r— — .
KVH(Q) Ko \/a+2 7| (7 57)

where the plus sign relates to vertical polarization, and the minus sign to horizontal
polarization. This fact suggests that the sensitive radiometric complex can behave as
a device designed for detecting quite small inclines on a smooth surface. So, a surface
incline of only 2° will result in quite a noticeable change of a radiothermal signal — by
2.5-3 K. The sign of the signal changing will be determined by the relation between
the polarization plane of the instrument and the vector normal to the surface.

Now we shall consider the opposite situation: when the observation angle tends
to 90°. For this purpose we introduce the complementary angle § = 90° — a.. This
angle is sometimes called the grazing angle. Expanding relations (7.53)—(7.54) into
the Taylor series of «, we obtain

~4 ; ~ . 7.58
ry(a) Ve a; ry(a) \/504 ( )
It can be seen from this relation that for natural media the vertical polarization value
will always exceed the horizontal polarization values.
To understand the situation more clearly, we shall consider the following
qualitative example (Figure 7.8). A flight vehicle with a radiometric receiver that
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Figure 7.8. Schematic presentation of airborne remote sensing measuring procedure for the
incline of a smooth surface with 6 angle slope. 1, the reception of horizontal polarization;
2, vertical polarization. (a) Cross-section in the plane of incident. (b) Radiothermal signal
registrations for horizontal (1) and vertical (2) polarizations.

measures two orthogonal polarizations approaches the incline of a smooth surface
with slope 6 (the cross-section is presented in Figure 7.8). When the vehicle is above
the main surface, the observation is carried out in the nadir mode, and there is no
distinction between two signals. When the vehicle reaches point x;, the polarization
geometry of observation sharply changes, because there arises the finite observation
angle between the normal to the surface incline and the line-of-sight of the instru-
ment’s antenna, and, therefore, the difference in the signals of the polarization
channels appears. Channel 1 will receive the horizontal polarization of radiation
of the surface incline, and channel 2 the vertical one. Since the surface incline’s
slope is small, the variations of signals will be equal in magnitude and will differ
in sign (equation (7.57)). As the vehicle turns through 90° around its axis, it is as if
the channels change their places: channel 1 will receive the vertical polarization and
channel 2 the horizontal one. When the vehicle escapes the incline observation zone
at point x,, the signals of the channels become equal again.

It can also easily be understood from the given geometry that in the case of flight
vehicle manoeuvring (for example, when the aircraft engages in roll manoeuvres over
a plane surface) the channels will give different results, i.e. channel 1 will receive the
vertical polarization and channel 2 the horizontal one. When the aircraft performs
pitching manoeuvres the channels will exchange places in their attribution to polar-
ization measurements. Since the polarization sensitivity of a plane surface’s emission
to terrain the incline of which is quite high, this circumstance must be taken into
account when interpreting observational data from flight vehicles performing
various manoeuvres. So, a similar situation arises when observing the large-scale
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surfaces of planets from spacecraft, which are in the permanent solar—stellar orienta-
tion mode (as, for example, the Russian automatic interplanetary station ‘Mars-3’
studying the large-scale surfaces of Mars). In such a case, during the orbital motion
of the satellite the surface observation angle varies from 90° down to 10-15°. And,
moreover, the roll angle v between the plane of observation and the plane of vertical
antenna polarization varies within the limit of 180°. It is clear that such mixed
polarization regimes seriously hamper the interpretation of measurement results
(Shapirovskaya, 1973).

Of interest is the fact that the first scanning radiothermal space instruments (for
example, the ESMR instrument onboard ‘Nimbus-5" (Allison et al., 1974)) were
designed in such a manner that the scanning mode be performed across the
vehicle’s route. As a result, each pixel (IFOV) in the scanning line was at its own
observation angle, and, moreover, the spatial resolution varied 3-5 times. Under
such conditions various zones of obtained radiothermal image have appeared in
different polarization situations, which seriously hampered the interpretation of
observations. This fact was quite quickly understood, and it was found inexpedient
to use such a (transversal) scanning mode. Virtually all modern onboard radio-
thermal instruments apply a conical scanning mode, where each IFOV of the
image is considered at a constant (and fixed) observation angle and in the fixed
polarization mode (Chapter 14).

7.5 FEATURES OF EMISSION OF A TWO-LAYER STRUCTURE IN
THE MONOCHROMATIC APPROXIMATION

Important special cases of layered media in the ‘ocean—atmosphere’ system
are inhomogeneous structures of the ‘film—water’ type. They include such
inhomogeneities on the ocean surface as disperse foam structures, layers of oil
products on the sea surface, water—ice complexes (ice-water and water—ice), etc.
Let us consider in more detail the features of emission of such a structure, which
consists of the plane-layered medium 2 on the backing produced from the semi-
infinite medium 3. The observation is carried out from a vacuum — medium 1 with
dielectric permeability | = 1. The expression for the monochromatic (i.e. considered
under the assumption of an infinitely narrow passband of the receiving device)
emissivity of a two-layered structure k53 can be presented, using Kirchhoff’s law,
as follows:
ki = 1 — | Ryl (7.59)

where Rj,; is the complex Fresnel coefficient a the two-layered medium when
observing it from medium 1.

The calculation of this monochromatic Fresnel coefficient for a two-layered
medium will be carried out using the method of summation of coherent partial
beams, in just the same manner as is done in optics (Born and Wolf, 1999).
Certainly, the use of such a monochromatic approach to thermal radiation
problems (or, in other words, to noise radiation) requires theoretical and
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experimental confirmation, which will be given in section 7.6. It is interesting
to mention that, when earlier (at the beginning of the 1960s) experimenters
made use of such an approach for interpreting the results of radiothermal
measurements of the ice—water system (Tuchkov, 1968), this brought a sharply
negative response from theorists. Nevertheless, the interference patterns in the
thermal emitted radiation are a well-substantiated experimental fact now and have
been actively used for solving a series of practical problems (Blinn et al. 1972; Glotov
et al., 1975; Bespalova et al., 1978, 1983).

The geometry of the method of summation of partial beams is as follows
(Figure 7.9): the plane wave falls on a two-layer structure with smooth boundaries
at angle 6;, is refracted in medium 2, passes through it and is reflected from the
boundary with medium 3. Then this wave passes again through medium 2 and, being
refracted at the upper boundary, escapes medium 2 at the same angle 6. By virtue of
coherence with the basic primary wave, the escaping wave does have an impact.
Since a part of energy will reflect from the upper boundary downwards to the
boundary with medium 3, the whole cycle will be repeated again. The total
retarding phase ) in a medium with complex refraction index 7 is equal (see
section 1.6) to:

Y ="nz/cg = 211&2. (7.60)
Ao

Thus, the total retarding phase between the reflected primary beam and the beam
that escaped medium 2, will be:

2 2
(AB + BC)iy == — AD=". (7.61)
Ao Ao
The following relations can easily be obtained from trigonometric considerations:
2h
AB+ BC)=—+;AD =2 i . .62
(AB+ BC) cost;’ htgb, sin 6, (7.62)

Taking account of Snell’s law in the form of 7, sinf, =sinf; and after some
transformations the total retarding complex phase ¢ can be presented as

. 4mh 4 . .
b= incosy = /e —sin®0y = a3 (7.63)

The total signal, obtained as a sum of interfered beams (this procedure is conven-
tionally shown in Figure 7.9 as a collecting optical lens effect), represents an infinite
series of relative complex amplitudes of partial beams:

R123 = Rlz + i12R23 eXp (J%/J) + i12i21R23R21R23 eXp (j2¢) +oe=
= Riy + f1nby Ros exp (j¥)[1 + Ros Roy exp (jib) + -] (7.64)

Since the magnitude of product |Ry;Ry;| is less than unity, the expression in square
brackets is none other than the geometrical progression. Using the well-known
expression for the sum of geometrical progression, as well as the impedance
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Figure 7.9. Reflections and transmissions of plane waves at the smooth boundaries of a two-
layered structure. See the explanations of notation in text.

boundary conditions, we obtain the expression for the total coefficient of reflection
from the two-layered medium:

_ Ry + Ry exp (j)
1+ Ry3Rypexp (o)

Note that relation (7.65) can easily be generalized to the case of an isothermal
multilayer structure, either by means of the impedance method (see section 7.7),
or by means of the method of oriented graphs (Raev et al., 1975). The study of
prominently non-isothermal structures (i.e. structures with distinct gradients in the
temperature field) was essentially more complicated for natural reasons (Klepikov
and Sharkov, 1983, 1993; and see section 7.7).

Now we shall remain with the isothermal case and consider the situation where
the film medium possesses small losses (the transparent medium with tgd — 0). This
situation is fairly frequently encountered in sensing practice. In this case the
emissivity of a two-layered medium can be written as:

23 (7.65)

o — (1 - R)(1 - R33)
1+ R},R3; 4+ 2R3 R3 08 (¥ + 023)

(7.66)

where Ry; = Ry3 exp (jgas)-
A new feature in emission of two-layered media consists in the presence
of interference effects, which are related to the multiple reflection of plane
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electromagnetic waves from the boundaries of media. The monochromatic emissivity
of the total structure oscillates depending on the film depth, the period of oscilla-
tions, H, in the case of transparent (lossless) dielectric film being determined from
(7.66) at 6, = 0:

Hee 2 (7.67)

2\/52—sin29-

The values of thicknesses for which the emission is maximum or minimum, are equal
to:

T — o3
hmax,min = . (768)
4mty[ ey — sin 0
Here m = 1,2,3,... are integers, the emissivity maximum corresponding to odd m

values and the emissivity minimum to even ones. It follows from (7.68) that for finite
film thicknesses # > 0 the first extreme value of emissivity is a maximum m = 1,
because, as can be shown for the oil-water system, the inequality m > 3
(¢23 < 1) takes place. In the case of other combinations of dielectric parameters
(for example, the ice—ground structure) the first extremum of the x(/) dependence
can be a minimum. This result is quantitatively confirmed by the (/) dependences
for ice—water and ice—ground structures (Figure 7.10). The electrophysical param-
eters of the media are indicated in Figure 7.10. Note that a thin film layer, some
millimetres (3—5mm) thick, can drastically change the emissive characteristics of a
medium; so, the contrast of temperatures for water can exceed 100 K, and for ground
30K. Note that the brightness temperatures of a structure are higher than the
brightness temperature of a water surface (the structure is ‘warmer’ than the
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Figure 7.10. Relationships of emissivity of two-layered structures as a function of the ice
depth. (a) Air—ice—soil structure; for ice £; = 3.2; for soil £; = 12.5 and tgd = 0.3 (at 3cm)
and £; = 15 and tgd = 0.07 (at 18 cm). (b) Air—ice-water structure; see explanation of water
data in Chapter 8.
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backing). At the same time, for the ice—ground (or water—ice) structure the minimum
temperature can be lower than the temperature of the ground (the structure is
‘colder’ than the backing).

The aforementioned effect with matching or mismatch influence of a film inter-
layer on the emission of a backing is similar, physically, to the antireflection effect or
darkening effect in optics (Born and Wolf, 1999).

For small film thicknesses the contrast ATg(4) can be approximated by the
quadratic dependence on /:

ATg(h) = F(\ &), (7.69)

where F(\,¢e,) essentially depend both on the wavelength, and on the dielectric
properties of a film. The detailed calculations are presented in paper by Raizer
et al. (1975b). The indicated dependence was experimentally confirmed in multi-
frequency remote studies of fields of thermal radiation of catastrophic oil spills in
the Caspian Sea (Bespalova et al., 1978).

It follows from the analysis of Figure 7.10 that the dielectric properties of a
backing have no effect, virtually, on the period of oscillations (/) (except a small
‘phase’ shift), which is determined by electrical properties of the film layer and
radiation wavelength (7.67).

As the film thickness increases with finite losses, the interference effects weaken,
and the contribution of natural thermal radiation of a layer is added. As a result, the
k(h) quantity asymptotically escapes the radiation level, which is determined by the
film’s dielectric properties only. For a crude oil film with dielectric parameters
e =2.2—j0.008, quantity ATg(h) will be constant only for & > 1.4 x 10>\. This
results, for example, at the wavelength A = 0.8 cm, in the layer thickness of about
one metre. For more considerable losses in the film material, of the order of
tgd ~ 0.1-0.2, the interference pattern ‘disappears’ just at (2/A) =~ 1-1.5. At the
same time, for natural media with the tangent of the dielectric loss angle
tgd ~ 1073 the influence of losses in a medium for the first 4-5 oscillations at
(h/X\) = 1.5 is virtually imperceptible.

Let us estimate the thickness of a film, for which it is possible to neglect the
influence of small losses of oil, tgd < 1, in determination of the radiobrightness
temperature of an emitting surface. Taking into consideration that for tgé < 1 and
emission into the nadir 3~ (27h/)),/€;tg6, we obtain addition to unity in the
expansion exp (+3) ~ 1 £ 3, which equals the value less than 0.01 and does not
cause more than a 1% change in the emissivity value x(%). It follows from this
result that for crude oils with characteristic dielectric parameters ¢, = 2.2 and
tgd = 3.6 x 10 the influence of such losses on the considered radio-emission can
be neglected (to an accuracy of 1%), provided that /A < 0.3.

The analysis of Figures 7.11 and 7.12, where the polarization dependences of the
film—water structure are presented, indicates that the presence of a film of substance
with other electrical parameters on the emitting surface drastically changes the
polarization properties of the system as a whole. First, we note that for /A > 1
both at the vertical and (which is interesting to note) at the horizontal polarization
‘pseudobrewster’ angles appear, whose values, as well as the emissivity value, are
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Figure 7.11. Polarization properties at 0.8 cm of oil sheet-water structure. For oil £, = 2.2;
tgd = 0. For curves 1-4 oil sheet thickness is 0, 0.04, 0.08, 0.12 cm respectively.
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Figure 7.12. Polarization properties of air-ice—water structure. For ice ¢; = 3.2, tgd = 0; for
fresh water ; = 44.78, tgd = 0.95. Ice sheet depths are shown by figures next to the curves.

rather sensitive to changes of the film thickness. So, when parameter /2/ A changes by
20-30%, a qualitative rearrangement of the type of polarization characteristics can
occur (Figure 7.12). The measurements of a horizontally polarized radio-emission
component possess greatest sensitivity to film thicknesses up to I mm at observation
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angles up to 40-50°. Second, in measurements of a vertically polarized radio-
emission component at the Brewster angle for a film medium (under assumption
of small losses, tgd < 1) the emissivity does not depend on the film thickness and is
determined by the emissivity of a clean surface of water.

Physically, this is related to a zero coeflicient of reflection from the boundary of
media 1-2 for a vertically polarized component of radiation at the Brewster angle
Ry1>(fgr) = 0. Indeed, from (7.65) at tgd < 1 and 6§ = fgg we have (superscript V’
is omitted hereafter):

Fi23(0 = Opr) = 1 — R33(Opg). (7.70)

And, on the other hand, we can obtain the following relation between reflectiv-
ities for any components of polarization of a two-layered medium

Ryy = Rz = Ris (7.71)
RipRy;3 — 1
From (7.71) for Rj»(fgr) =0 we have Ry;(fgr) = —R;3(fpr) and, further, with
regard to (7.70), we have:
K123(0BR) = K13(0BR)- (7.72)

Thus, the vertically polarized radiation of the surface with a film is equal to the
radiation of a clean surface at an angle which corresponds to the equality
R{>(6gr) = 0. This results in a curious experimental technique of determining the
dielectric properties of a film coating. So, measuring the angular dependence of the
brightness contrast between the clean surface and that covered with a film, ATg(60),
for a vertically polarized component of radio-emission, and determining angle 6, for
which ATg(6) =0, we can estimate the dielectric permeability of contamination as
tg290 = g, (the well-known Brewster relationship). It follows from this relationship
that in the region of ¢, = 1.78-2.55 (which corresponds to basic types of widely used
liquid oil products) the corresponding angle will be 6, = 54-58°. It is obvious that
the accuracy of determination of &, by the proposed technique will be £0.15 units at
an accuracy of the measured angle value of 41°.

The characteristic form of spectral dependences for the ‘matching’ (or the
‘antireflecting’ optics version) case (i.e. when &, < €3) is presented in Figure 7.13,
and that for the ‘mismatch’ case (¢, < e3) in Figure 7.14. The latter version is
interesting physically owing to the fact that the water film possesses wave resistance,
which ‘mismatches’ the system, and the part of thermal radiation energy of the
backing (the ice in the given case) is reflected ‘backwards’, which just explains the
abnormally low brightness temperature of the system as a whole (Figure 7.14). As it
would be expected, the dielectric properties of water play a decisive part in the given
case and change both the values of emissivities and the form of frequency depen-
dences; this influence becoming stronger with increasing wavelength (Figure 7.14).

Let us consider briefly the question of the solution of a reverse problem: the
determination of electrical parameters and thickness from the data of radio measure-
ments of thermal radiation of the film-backing system. Owing to the periodicity in
k(h) dependence it is impossible, strictly speaking, to measure the film thickness with
a one-frequency instrument. However, the use of n radio-frequency channels and the
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Figure 7.13. Spectral characteristics of the emission of an isothermal three-layered structure
with nadir observation. For the second layer ¢; = 10 and tgé = 0.04; its depth is 10cm. For
the third layer ¢; = 100 and tgé = 0.1.

presentation of emissivity in the » dimensional space (at various wavelengths) makes
it possible almost completely to avoid the uncertainty. Popov et al. (1976) have
shown theoretically that the use of a three-dimensional image of emissivity for
these purposes results, virtually, in a complete elimination of ambiguity. This has
been experimentally confirmed for the first time in multifrequency remote studying
of thermal emission fields of oil spreads in the Caspian Sea in 1976-1977 (Bespalova
et al., 1978). Detailed investigations (Raizer et al., 1975b; Glotov et al., 1975) of
radiobrightness temperature gradients ATy from parameters ¢, and in the region of
small thicknesses # have shown that in radiometric measurements of film thicknesses
there exists an ambiguity of the order of 40-50%, caused by the absence of informa-
tion on the true value of dielectric properties of a film. To estimate the latter value,
polarization measurements (near the Brewster angle in a film) can be used.
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Figure 7.14. Spectral characteristics of the emission of air—water—ice structure with nadir
observation. For ice ) = 3.2; tgd = 0. Spectral properties of water dielectric constants are
specified by the Debye relaxation model (Chapter 8). Water sheet depths (cm) are shown by
figures next to the curves.

7.6 PROPERTIES OF QUASI-COHERENCE IN THERMAL EMISSION
AND THE LIMITS OF ITS APPLICABILITY

The interference patterns in thermal emission, revealed in previous sections,
follow from the monochromatic approximation, i.e. they are obtained under
assumption of an infinitely narrow passband of the receiving device. This feature
of radiation represents, in essence, only an instrumental effect, since the
interference as such arises ‘inside’ the receiving device because of the limited-in-
frequency amplitude-frequency characteristic (AFC). This feature is not inherent
in natural radiation as such. In addition, we note that the interference effects are
most clearly revealed in the presence of pronounced dielectric boundaries in the
natural structure (for example, a film of oil on the water surface). In the presence
of smooth transition dielectric layers these effects are largely suppressed, however
(section 7.7).

This effect — interference patterns in thermal emission — is considered in the
present section, following Popov and Sharkov (1976), generally, for AFC of
arbitrary form, and in more detail for the three most widespread special cases.

For greater physical clarity we shall consider the radio-emission of a very simple
layered structure: the plane-parallel homogeneous layer 2, which covers a semi-
infinite homogeneous medium 3. For simplifying derivations we shall assume the
losses in media to be absent, that is, the dielectric permeabilities of considered media
to be real. With allowance for these assumptions, the monochromatic (i.e. considered
in the infinitely narrow frequency band) emissivity of a structure will take the form
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(section 7.5):
(1= R})(1 - R3y)

K = )
2 1 4 R}, R3; + 2R3 Ry3 cos (27if'T)

(7.73)

where 7 = (2h,/€;)/c is the delay time of a wave, reflected from the upper and lower
boundary of a layer, with respect to the wave passed into a layer; R,; and Rs, are the
Fresnel coefficients for corresponding interface surfaces of media; / is the thickness
of layer 2; ¢ is the speed of light in vacuum; and f = v is the frequency. It follows
from (7.73) that the dependence of x on the frequency and on the layer thickness has
an oscillating character. It is important to note that the amplitude of oscillations is
constant in the absence of losses in a layer.

The thermal emission of heated bodies of arbitrary geometrical shape is a
random process with a virtually uniform ‘white’ spectrum of brightness temperature
in the radio-frequency band and delta-correlated values of intensity of electrical and
magnetic fields (Chapter 6).

The high-frequency channel (ahead of a square-law detector) of a receiving
radiometric system restricts the spectrum as a result of received noise radiation of
an intrinsic (power) AFC G(f'), thus establishing correlation link between instanta-
neous values of a noise output signal with nonzero correlation time 75 = 1/Af,
where

1

A =
f Gmax

|, anar

is the effective passband width of the microwave channel of the radiometer
(Chapter 3).

The radiobrightness temperature of an isothermal two-layered structure,
measured by a radiometer that is medium 1 (in the absence of external illumination
of the atmosphere and firmament), is equal to

TB = lﬁ}zTo, (774)

where T is the thermodynamic temperature of the total structure and ky, is the
emissivity averaged over the effective band of transmitted frequencies of a radio-
meter:

1

HZ(T):W

| e, (1.75)
Af

It can be seen from this relation that the monochromatic approximation (7.73) quite
well describes the measured emissivity of a layered structure only in the presence of a
narrowband radiometric device. It is clear that the narrowband condition has the
form of Af <« 1/7, where 7 is the delay time between plane waves in a two-layered
system (see section 7.5). Or, in other words, the delay time between plane waves is
much less than the correlation time of a receiving system 7 < 7. One of the methods
for increasing the sensitivity of radiometric systems consists in extending the band of
transmitted frequencies (Chapter 3). But, in this case, the greater the Af the smaller
the layer thicknesses for which the monochromatic approximation is valid. The
violation of the band-narrowness condition results in decreasing the amplitude of
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interference oscillations (which bear the useful information) down to their complete
vanishing at 7 > 7. Therefore, for high values of Af and 7 the calculation of the
emissivity of a layered structure should be carried out by formula (7.75). However,
the direct integration of (7.75) results in quite cumbersome expressions, even in the
case of the simplest form of AFC functions. And for complicated AFC forms it even
becomes impossible to derive accurate analytical expressions for emissivity xy. In
this connection, it is of interest to derive simple approximate formulas for perform-
ing analytical consideration.

The mathematical approach described below, which was offered by Popov and
Sharkov (1976), can be useful not just in considering thermal radio-emission of
layered structures. This is because physically similar effects of interference of noise
signals with a limited spectrum take place in optical systems and in transmission lines
as well (Born and Wolf, 1999; Bulatov et al., 1980).

The function of frequency xx(f, ), appearing in expression (7.75), is an even,
periodic and differentiable function of delay time 7 and can be expanded in the
Fourier series in cosines:

w(f,7) = % + f: a, cos (2xfn). (7.76)
n=1

Substituting expansion (7.76) into formula (7.75) and interchanging summation
and integration, we obtain:
1 oo

pe(r) =04 g Ec Go(f) cos (2finr) df . (7.77)

The integrals in the right-hand side of (7.77) present the Fourier transforms for
AFC of a radiometer’s Go(f); Go(f) = G(f)/Gmax- Since the spectrum of received
radiation is supposed to be ‘white’, function Gy(f) is the spectrum of power of an
output (after the high-frequency part of a radiometer) signal, and its Fourier
transform, according to the Wiener—Khinchin theorem, is equal to the autocorrela-
tion function of an output signal. That is, (7.77) can be written as:

1 00
ru(r) =3+ A7 @), (7.78)
n=1

where Q(n7) are the values of the autocorrelation function of a noise output signal of
a radiometer, corresponding to the shift in time by n7. Accordingly, the nth term of
series (7.78), as well as of series (7.76), relates to the nth beam, which issues from the
structure after n reflections from the lower boundary of layer 2. Therefore, the
argument of the autocorrelation function in the nth term of series (7.78) is equal
to nt, the delay time of the nth beam. As n grows, the Fourier coefficients @, and the
values of the autocorrelation function Q(n7) tend to zero, owing to which series
(7.78) rapidly converges for not too small 7 values.

Let us estimate the behaviour of ky(7) dependences for three AFCs of various
form, which are most widespread in the practice of radiometric receiving systems
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(see Chapter 3):

(a) rectangular type

: L fi<f<h
Gy (f) = { * 7.79
"0 r<sir<h 77)
(b) of resonance circuit type (sometimes called Lorentz’s; see Chapter 2)
1
G(f)=——mm——, 7.80
Af
(c) Gaussian
GG(f):exp{—Z 773<ff°>2} (7.81)
0 . Af ) .

where Af is the bandwidth at the level of 3dB and f; is the central frequency of
the system’s passband.

For the rectangular AFC, expression (7.78) is transformed to the form

1 o0
H%(T) = % + TAfT ; %COS (2nfonT); sin (wAfnt), (7.82)
for Lorentz’s AFC, to the form
KE(r) = % +3 " a, exp (~wAfirr) cos (2fonr), (7.83)

n=1

and for the Gaussian AFC, to the form

0 A 2
KS(T) = % + ) a,exp { ;r 7-5 3 nzfz} cos (2nfont). (7.84)

n=

And also, in all formulas:
a (11— Rb)(1 = R3;)
2 1 - RLRS,

(7.85)

Owing to rapid convergence of the series (7.75) for not too small 7 values in formulas
(7.79)—(7.81), only the first two terms can be retained in a series. Then we obtain
(after calculating coefficient «;):

a sin (TAfT .
K,% = 70 |:1 — 2R12R23 %COS (277)(07-):| )
a
ﬁ;]i = ?O [1 — 2R12R23 eXp (_WAfT) Cos (Zﬂ-fOT)]a (786)
2 2
a A .
Ky = 70 1 — 2R3 Ry3 exp {— 2.7{3 7'2} cos (27‘7(07')] :
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Figure 7.15. Relationships of two-layered medium (ice-water) emissivity averaged over the
amplitude—frequency characteristic (AFC) versus ice depth with nadir observation at
Ty =273K; f, = 10 GHz, Af = 1GHz; for ice ¢y = 3.2 and tgd = 0; for water ¢, = 44.8
and tgd = 0.95. Continuous curve corresponds to a rectangular AFC; and dotted curve
corresponds to a Lorentz-type AFC.

The formulas obtained indicate that the emissivity xx(7) of a layered structure,
averaged over AFC, oscillates with increasing layer thickness at the same period
as the monochromatic one. However, unlike the monochromatic approximation, the
oscillations attenuate in the given case, the attenuation being the faster the wider the
frequency band. The envelope of oscillations is determined by the AFC form and
represents, for the rectangular AFC, the function of type sinx/x, for Lorentz’s,
exp (—x) and for the Gaussian exp (—x*). The limit, to which the ¢(¢) dependence
tends for 7 — oo, does not depend either on the width or on the form of AFC, and
coincides with the average-over-a-period value of the monochromatic dependence
(7.73).

To estimate the accuracy of the approximate formulas obtained, numerical
integration was carried out by computer, using accurate relations for the ice—water
structure. Figure 7.15 presents the calculated dependences for the rectangular and
Lorentz’s AFCs. A similar curve for the Gaussian AFC differs from Lorentz’s in one
respect only: the amplitude of oscillations decreases more rapidly in this case.
Formulas (7.86) qualitatively well describe the behaviour of these dependences;
the maximum error, corresponding to the layer thickness & ~ 0, is less than 5%
and rapidly decreases as /1 grows.

Let us compare the emissivity values of a layered structure, calculated by
numerical integration, with the results of experiments (Blinn et al., 1972).
Figure 7.16 shows the dependences of the Tg(%)/T(c0) on the thickness of a layer
of sand on a metal backing. The form of AFC of the radiometric device used is not
indicated in the authors’ paper; however, the calculation shows that, among all AFC
forms considered above, the rectangular one provides best agreement with the
experiment. For comparison, Figure 7.16. gives the same dependence for the mono-
chromatic approximation.
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Figure 7.16. The ratio T'(h)/T(oo) versus a layer depth for sand-metal plate structure with
nadir observation, at fy = 1.42GHz, Af =0.15GHz; for sand £, =2.95 and tgé = 0.05.
Continuous curve corresponds to monochromatic approximation; dotted curve corresponds
to signal averaged over a rectangular AFC; circles correspond to experimental data by Blinn et
al. (1972).

Note that similar complicated interference patterns usually accompany labora-
tory measurements of electromagnetic wave transmission through plane-layered
objects (see, for example, Kohn, 1997).

The special analysis of dissipation in a film medium has shown (Raizer et al.,
1975b), that the presence of losses in a layer makes attenuating of oscillations
faster and slightly shifts them in phase, not involving any qualitative changes.
Thus, the form and width of AFC of a radiometric system essentially influence
the character of interference dependences at reception of thermal radio-emission
of layered media and, therefore, the ultimate information capacity of microwave
passive systems.

7.7 THERMAL EMISSION OF MULTI-LAYERED
NON-ISOTHERMAL MEDIA

One major feature of radiothermal sensing methods is they may be used to obtain
physical information about the internal structure of the medium studied. A whole
class of boundaries between media (ice—water surface, dry and moist soil, soil-
groundwater etc.) are classified, firstly by strong, non-uniform absorption
(including in the vertical direction) and secondly by smooth variation of the
physical characteristics in the media together with discontinuities and jumps in the
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dielectric and thermal vertical profiles — in other words, situations where the scale of
dielectric (or thermal) non-uniformity is comparable with the wavelength \:

Ae

Az

>
A

Problems of the electrodynamics of sharp non-uniform, strongly absorptive
media are known to be very complicated, since they cannot be described adequately
either in the framework of theory of radiative transfer or by classical approxima-
tions, for example, the WKB (Wentzel, Kramers, Brillouin) method (Levin and
Rytov, 1967; Stogryn, 1970; Shulgina, 1975; Tsang et al., 1975).

Over a prolonged period a large variety of modifications of the plane-parallel
model of microwave emission has been utilized without detailed analysis of the
ranges of their feasibility (see, for instance, Tuchkov, 1968; Basharinov et al.,
1968; Tsang and Kong, 1976; Wilheit, 1978; Bardati and Solimini, 1984).

In its fully completed form microwave emission theory was formulated by
Klepikov and Sharkov in 1983 and developed in 1993 (Klepikov and Sharkov,
1983, 1993). The theory may be applied when describing emission in any irregular
non-isothermic multi-layered media without restrictions, which are typical for
previous modifications.

Klepikov and Sharkov performed a detailed theoretical study of the processes
leading to the development of the natural radiation of highly non-uniform, non-
isothermal, plane-stratified media with arbitrary variations of the dielectric and
temperature-related parameters.

7.7.1 Physical substance of the problem

Kirchhoff’s law, which relates the intensity of the radiation from a real medium to
the radiation from an absolutely black body, may be used to determine the emissivity
of a semi-infinite sphere using the energetic coefficient of reflection of an auxiliary
plane wave from the interface between media (see Chapter 4 and section 7.4). This
approach can only be applied correctly to isothermal media. On the other hand, use
of the phenomenological radiation transfer equation (which describes the energy
balance in a section of the medium) to calculate the thermal radiation of non-
isothermal media is limited to cases of media with small losses and fairly smooth
variations of the complex dielectric constant (see Chapter 9). In this case, all waves
multiply-reflected in the medium, together with the corresponding interference
effects, are neglected.

First attempts to consider thermal emission for the comparatively simple cases
of two- and three-layered media with different temperatures were performed by
Tuchkov (1968) and Basharinov et al. (1968). They used the method where direct
and reflected energy fluxes are summed to obtain the expressions for brightness
temperature that define the emission of a complete structure. Such a method did
not take account of phase relationships for multiply-reflected waves and, hence, a
number of important effects were neglected.
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A rigorous solution to the problem of the thermal radiation of a non-uniform,
non-isothermal medium may be obtained using electrodynamics fluctuation theory
for thermal radiation, in which the relationship between the correlations of the
external fluctuating fluxes and the thermodynamic temperature of the medium in
equilibrium is determined by the fluctuation/dissipation theorem (FDT) (see
Chapter 4). In the work of Stogryn (1970) the FDT and the solution of the wave
equation for the propagation of waves in a non-uniform medium were used to obtain
a second-order differential equation with two boundary conditions for the intensity
of thermal radiation, and a quasi-classical approximation (WKB) was used to
compute the brightness temperature for weakly non-uniform media. This solution
actually takes account of the variation of the thermal radiation of individual areas of
the medium with variations of the real part of their dielectric constant, but ignores
interference effects. This process was developed in a paper by Shulgina (1975), where,
in particular, it was shown that the solution obtained by the WKB method is a well-
defined generalization of the phenomenological radiation transfer equation to the
case of arbitrary absorption, since it takes account of the refraction of rays in an
absorbing medium. The same paper also determined a condition for the applicability
of the WKB method to non-uniform media in the form of an inequality
de 27

E <<T€

(A is the wavelength of radiation in free space, ¢ is the dielectric constant of the
medium), which implies that the scale of the non-uniformity is large in comparison
with the wavelength. For media with sharp variations of the dielectric parameters at
distances comparable with the radiation wavelength, known solutions using the
WKB method were not suitable.

An accurate closed-form solution of the problem of the thermal radiation from
non-uniform, non-isothermal media has only been found for a number of smooth
profiles of dielectric parameters and temperature. An example of such a solution for
exponential profiles was given in work by Tsang et al. (1975). Because of the variety
of possible types of vertical profiles of the parameters of media, including sharp
changes of the latter, approximation methods are particularly important.

One such approach involves studying the radiation from a half-space with
arbitrary vertical profiles of the complex dielectric constant and the temperature,
in the framework of a model of a stratified medium. Based on the results of Stogryn
(1970), the wave equation for waves in a stratified medium was solved in a paper by
Tsang et al. (1975) using a Green function for a multilayered structure, and the
intensity of the radiation for the whole medium was computed in the form of a
sum of terms for each layer. The amplitudes of the direct and reflected waves
from each layer were found, independently from the radiation problem, using a
matrix method for the whole structure; this complicates physical interpretation
and comparison with solutions obtained using other methods. An analogous
problem in the work of Wilheit (1978) was solved by computing the energy
functions for wave transmission from each layer to the surface, using an iterative
method to satisfy the boundary conditions in each layer. However, here, interference
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effects were calculated for the subcase in which the electric field vectors of the back
waves are collinear, which only arises for radiation with a horizontal polarization.

In this section, we describe (following Klepikov and Sharkov, 1983, 1993) a
method for analysing the thermal radiation from stratified, non-uniform, non-
isothermal media for an arbitrary angle of observation and an arbitrary polarization
type; this differs from previous work in that the expressions for the brightness
temperature are derived in a sequence of stages, being deduced initially for a
single layer bounded on both sides and then generalized to all the layers of the
structure as a whole. In this approach, the closed-form nature of the final result
provides for more complete identification of both the physical characteristics of the
method used and the constraints on its applicability to the problem of the emission
of non-uniform, non-isothermal media.

7.7.2 Thermal emission of non-isothermal media with arbitrary parameters

Let us consider a time-stationary, non-uniform, vertically non-isothermal, non-
magnetic medium bounded by the plane xy and occupying the region z < 0. We
shall assume that the medium is in local thermodynamic equilibrium, whence the
scale of non-uniformities of the parameters of the medium is considerably greater
than the radius of correlation of the fluctuating fluxes, and the radiation at each
point of space is described by Planck’s law. From physical considerations, it is clear
that, for arbitrary constraints on the value of the profiles of the complex dielectric
constant £(z) and the temperature 7'(z), for computation of the brightness tempera-
ture Ty, with an arbitrary given accuracy, it is sufficient to consider a layer of finite
thickness D, outside which the medium is assumed to be uniform and isothermal. In
accordance with the model of a stratified medium, the layer D is divided into N
planar layers of thickness d; (not generally equal). In each layer, the dielectric
constant ¢; and the temperdture T; are assumed to be constant and equal to the
average values of £(z) and 7T'(z) in the jth layer. Thus, the continuous profiles of the
parameters of the medium are replaced by step functions. The legitimacy of this
substitution and the consequent computational errors will be considered below
(section 7.7.4).

Suppose that an auxiliary planar monochromatic wave E = FEjexp (ikor) with
wave vector k, propagates from the upper half-space € = 1 to the plan xy at an angle
0y to the normal to the medium interface, where X is the wavelength in free space and

ko = 2; {sin 6,0, cos by} (7.87)

The above assumption that the parameters of the medium are constant in each
layer enables us, when computing the radiation intensity, to apply Kirchhoff’s law to
each layer individually. In this case, this reduces to determining the full absorption of
the wave power by the planar layer, which is bounded on both sides, taking into
account interference due to reflection from the boundaries.

Let us consider a wave propagating at an angle 6; (in a medium with absorption,
the angle of refraction is complex) in the layer of thickness d; with given wave
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reflection (Fresnel) coefficients (in terms of the amplitude of the electric field) Rf and
R;" within the layer from the upper and lower boundaries respectively, where E; is
the amplitude of the electric field at the (internal) upper boundary of the layer and

the wave vector k; is:

k; = 2Tw{sin 6;,0,cos0;}4/¢;, (7.88)
where €; is the complex dielectric constant. In what follows, when we are considering
an individual layer, we shall omit the index.

The full field of the wave layer, taking into account multiple reflection, consists
of the sum of two infinite series of direct and multiply-reflected, non-uniform planar
waves with amplitudes decaying in a geometrical progression; thus, this may be
written in the form
h* exp (ik.,z) + h~ Re (=9

1 — R*R™ exp (-2ik.d)

En(z) = E (7.89)
where h* and h™ are unit vectors corresponding to the direction of the vector of the
electric field of the wave in the layer (with horizontal and vertical polarizations).

The density of full losses of the wave in the layer in the direction normal to the
boundary is equal to the integral of the imaginary part of the complex Poynting
vector over the whole thickness (Stratton, 1941):

2Imkzr

M=""3"| |Eyf dz,k, = kcos®. (7.90)
EO

0

In accordance with the generalized law of Kirchhoff for the theory of radiation
(with the condition v < kT, where / and k are the Planck and Boltzmann constants
(respectively) and v is the radiation frequency, which is usually in the microwave
band), the brightness temperature T, at boundary of the layer (on the internal side)
has the form

Ty, =1IT, (7.91)

where T is the temperature of the layer.

By virtue of the statistical independence of the radiation of different layers, the
brightness temperature on the surface of the medium is the sum of the brightness
temperature of all the layers with weight coefficients M; = |E0j/E0|2, which
characterize the attenuation of the power of the wave as it propagates from the
corresponding layer to the surface, taking into account multiple reflection in all
overlying layers

N N
Ty =Y ToM;=> ILT;M,. (7.92)
J=1 j=1

Thus, the problem of determining the thermal radiation reduces to determining the
transmission and reflection coefficients for a plane wave in a stratified medium. The
wave characteristics of a multi-layered medium may be successfully determined using
the tried and tested method of impedance characteristics, whereby the main
equations may be written in the compact form of iterative equations. A detailed
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description of the method, as applied to a stratified medium, was given by Klepikov
and Sharkov (1983).

For the calculation of the brightness temperature from formula (7.92), taking
into account (7.90), for a horizontally polarized wave, we have

=3 (e (11— exp (211 + 1R exp 95
= - — €Xp (—<21my; - exp (1v;
o ‘= 11— R R exp (2i@/;j)|2 P @i i EXP 1Y)
Tmy); Re Z; ReZ
4 J Re (R TIANE! i) J Nl
+ Rev), e (R; exp (ir);))(Imexp (np/))} ReZ, ReZ,
(7.93)
Similarly, for the vertical polarization, we have
. 7w,
Tipy = ST [l—exp —21m ;) (1 + |R; exp (it; 2
o ; [l — R R exp (2iz/1_,»)|2 ( ( L+ |R; (i)l
Im 4 — . ) | —K\| ReZz
T4 Rey, Re R exp (i) Im (exp (lw./))( o ) ReZ,
ReZ
+ Tyl Wi \2Tgo+l- (7.94)

Both formulas implicitly involve the wave parameters and Z; R,*, R; and W,
depending on the polarization. The formulas are summed over all layers
j=1,....,N. The index j = N + 1 describes the parameters of the uniform iso-
thermal medium outside the layer D. W; denotes the transmission coefficient (in
terms of amplitude) from the internal side of the upper boundary of the layer j to

the boundary of the medium, expressed in terms of input impedances Z;, as follows:

Z
W H mm 1+ m— 1. (795)
mm 1 + Zm

Since the component of the power of the total field of the wave normal to the
boundary is conserved (see section 7.3), it is possible to determine the relationship
between W; and the coefficients M; namely the attenuation of the wave power on
transmlssmn from the upper boundary of layer j to the surface of the medium:

M — |W|2— Re Z;
J J _RCZO.

(7.96)

The index ‘0’ relates to the region observed, namely the free space. Since the
conversion to the energy characteristics of the propagation of waves in stratified
media only takes place after the amplitude of the field in free space has been
found, the calculation is not complicated by effects such as interference from
waves reflected by the boundary division of the absorbing media.
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When analysing the expressions (7.93) and (7.94) it is easy to see that the first
terms in the square brackets characterize the absorption and the natural radiation
of direct and back waves in each layer individually, while the second terms
denote the change in the absorption of waves due to their interaction (interference).
This fact does not contradict the law of conservation of energy since it implies that
spatial redistribution of the heat release takes place within the medium with the
interaction of back waves, but the general energy balance (incident, reflected, trans-
mitting and absorbing) is preserved, as shown for a single boundary between two
absorbing media (Veremey et al., 1978). Thus, in the presence of wave interference,
neighbouring areas of the spectrum (even with equal parameters) may contribute
different values to the resulting radiation. It is a basic fact that the value of the
radiation of each layer is affected by the dielectric characteristics of the medium
not only between the layer and the surface but also as a whole. Strictly speaking,
it is impossible to determine the true contribution of an individual layer to the
resulting radiation without knowing the full dielectric characteristics of all its
surroundings.

We note that the method studied is a monochromatic approximation. It remains
valid for a narrow spectral interval such that the phase difference between the
harmonic components at the length of the scale of the non-uniformity is small (see
section 7.6 and Popov and Sharkov, 1976).

7.7.3 Limiting cases of general theory

We would naturally expect the above general solution of the thermal radiation
problem for a stratified non-uniform isothermal medium to include, in the limit,
all known approximation methods for similar problems. It is not difficult to check
this directly.

We assume that the medium is weakly non-uniform so that it is possible to
neglect multiply-reflected waves except those at the boundary of the medium R,.
In this case, R, = 0.

J
H eXp (ikzmdm)

m=1

2

(WP /Re Z) = (1 - [Ro*)/Re 2, (7.97)

We denote the impedance of the layer at the boundary of the medium by Z;.
Under these conditions, equations (7.93) and (7.94) take the form

N
i 2 ReZ;
Ty = Z T;(1 - |R0|2)(1 —exp(—2Imk »d,))‘exp (12{,1:1kz,,1d,,1)| Re Zjl

z]%
Jj=1
2 Re ZN+1

2 NV
+ TN+1(1 - |R0| )‘exp (12] kzmdm)‘ Re Z1

m=1

(7.98)

Letting the value of d; tend to zero and the area of the summation tend to infinity,
and representing the exponent in the first factor as a series, we convert from
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summation to integration

Ty = (1= [Rif) | 72 21m (k(2) cos ()

OC / ! / Re Z(Z)
X exp{ 2L Imk(z") cosf(z") dz ReZ(0) dz. (7.99)
The last expression agrees, within the accuracy of the notation, with the solution by
WKB-method (Shulgina, 1975), which is a subcase of the general solution for the
given conditions. With the additional assumptions that the variations of the dielec-
tric constant of the medium Ree(z) = const, Z(z) = Z(0) are small and that the
absorption by the medium Reé(z) > Imé(z) is insignificant, and transferring to
the real angle of refraction 6'(z) = Re#(z), where k(z)cosf(z) = k(z)/cosb'(z),
we obtain the well-known solution of the phenomenological equation of radiation
transfer (ETR) (see Chapter 9)

N 2Im k(z) 2
Ty, = (1 —|R] )JO T(z)m exp [ —2 Jo Imk(z')/cos6'(z')dz" | dz. (7.100)
The physical difference between (7.99) and the solution of the ERT is the
calculation of the refraction-related perturbations of the outgoing thermal flux
from the absorbing medium (imaginary term). Since 2 Im k(z) = (z) is the absorp-
tion in the medium, expression (7.99) for a uniform absorbing medium may be
written in the form obtained by Shulgina (1975):
Tiy = K(6, A)j A(2)S(O)T(2) exp (—(z))S(6) d=') dz, (7.101)
0
where 6 is the angle of observation outside the medium measured from the nadir, and
S(0) is the refraction coefficient

in2o \ [ 226 v
g, — sin ettg
S(0) = l+—————1 . 7.102
© (51(\/1+tg25—1)> [ (e, — sin® 6) ] ( )

Here, ¢ = ¢/(1 +itgé) is the complex dielectric constant of the medium.

A special calculation of the refraction coefficient for a broad range of wave-
lengths (from 0.33 to 75cm) and values of the angles of observation (from 0 to 89°)
performed by Sharkov (1978), showed that the contribution of refraction to the
polarization characteristics of the absorbing media (seawater and freshwater) is
quite small: S differs from the value of this coefficient calculated for a medium
with low losses by <4%, which amounts to a corresponding change in the brightness
temperature of <0.004 K.

Whence, it follows that the results of the phenomenological theory of radiative
transfer hold for weakly absorbing media (tgé < 1) and are also applicable to media
with strong absorption (tg6 > 1, for example, seawater) provided the real part of the
complex dielectric constant (¢; > 1) is sufficiently high; thus, the difference between
the refraction coefficient and the value determined by Snell’s law is small. It is for this
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physical reason that methods developed for the calculation of the radio-emission of
pure transparent media in due course (Troitskii, 1954, 1967; Chandrasekhar, 1960)
describe the absorbing media emission adequately.

The derivation of equations (7.93)—(7.94) was based on the computation of the
full losses of waves (in terms of amplitude) in the whole multi-layered structure,
which is equivalent to determination of the difference in power of the incident and
reflected waves and corresponds to Kirchhoff’s law for stratified isothermal media,

where T; = const,

Ty, = (1 - |RZ‘2)T7 (7103)

where Ry is the reflection coefficient of water on the free-space side, taking into
account all multiple reflections in the multi-layered medium. We have already
used this result in section 7.5.

The comparatively simple subcase of a three-layered medium with different
temperature layers was considered in due course in work by Tuchkov (1968) and
Basharinov et al. (1968), where the direct and multiply-reflected fluxes of thermal
radiation from different layers were summed to obtain the expression for the average
brightness temperature (Basharinov et al., 1968):

[T5(1 — R3) exp (—7) + Tr(lexp (—72))(1 + Ry exp (—m))](1 —R%z).

Ty =
' 1— 12R32 exp (—27)

(7.104)

The value of the index 1 relates to the free space, the coefficients R;; are the moduli of
the Fresnel coefficients for the two media, and 7, is the optical depth of the inter-
mediate layer 2.

Comparing with (7.93)—(7.94), we note that equation (7.104) involves a number
of simplifications which limit its area of applicability. Firstly, it does not take
account of phase relationships for multiply-reflected waves and interference effects
are not considered. Instead of this, it describes their power characteristics, which is
to some extent justified for a brightness temperature averaged over a sufficiently
broad range of frequencies, where the term ‘sufficiently’ remains undetermined.
For example, the sign in the denominator of (7.104) depends on the phase of the
Fresnel coefficients at the two boundaries, which in turn depends on the equations
for g, and &3.

Secondly, on passing the boundaries of absorbing medium, it is not the sum of
the normal components of the fluxes of wave energy which is continuous, but the
normal component of the energetic flux of the field as a whole (see section 7.3). Thus,
strictly speaking, the power of the passing wave 7, is not equal to the difference
between the incident and the reflected waves 7,1, # 1 — |R12| Thirdly, as previously
shown for interfering waves in an absorbing medium, there occurs a redistribution of
absorption of the wave energy in space, which was described in (7.93)-(7.94) by an
interference term.
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For the brightness temperature of temperature of a three-layered medium with
equal temperatures in the layers, (7.93)—(7.94) provides an accurate expression

T,[(1 —exp (28))[1 — Rip[*(1 + |Ry |  exp (—28)) + 48/ Re (R, exp (j1))|Re Z,
ReZ|1 — RjyRy; exp (2“/})‘2

Tbr =

+ T5|(1 — Ryy)(1 — Ryy)[* exp (—23) Re Zs, (7.105)

where ¢ = a +i8 = k.d, 7, in (7.104) corresponds to 23, Z; are the impedances of
the media and R; are the complex (unlike (7.104)) Fresnel reﬂectlon coefficients. In
this expression, 1t is not difficult to observe all the differences from (7.104) listed
above.

7.7.4 Conditions for the method’s feasibility

The method described above for analysing thermal radiation is accurate for stratified
non-uniform media; in other words, it assumes strictly constant parameters of the
medium and equilibrium in each layer. Let us consider in more detail the restriction
of the applicability of the method to the problem of thermal radiation from real
media with arbitrary parameter profiles. Firstly, at each point of space, the con-
ditions for the applicability of the FDT should be satisfied, which implies the
equilibrium of the energy distribution (in terms of degrees of freedom) and small
radii of correlation 7, of the outside fluctuating fluxes in relation to the scales of the
non-uniform and non-isothermal anomalies of the medium d; > 7. Secondly, the
legitimacy of the representation of the continuous parameters of the medium in
the form of a stratified structure must be verified. This is not difficult, assuming
relatively small errors in the computation of the characteristics of the propagation
(phase and amplitude) |Av;/1;| < 1 and the radiation ATy, /Ty, < 1 in each layer
due to the replacement of the real parameter profiles by average values (for
simplicity, the values of the parameters in the centre of the layer):

4/6¢)] 6N;

d < ——,d < R B —
L og; /02| 0T, /02

(7.106)

The second condition was based on the assumption that the attenuation of radiation
in a layer is small. Here, d; does not depend on the first derivative of the temperature
profile.

The given estimates do not take into account wave interference within a layer,
since this is impossible without using additional information about its surroundings.
However, it is possible to estimate the maximum effect of interference, assuming the
boundary layer is an absolute reflector. Here, condition (7.106) does not depend on
the wavelength of the radiation:

5 BIm(y5 37, Im (/&)

d; < —
\361/5‘Z| (0°T;/02%)| /5]

(7.107)
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For a fixed thickness of the layers, in general, the number of layers is given by
N = D/min (d)).

Naturally, the radiation of layers far from the external boundary of the medium
is attenuated and the contribution of their errors to the total brightness temperature
is less than that of neighbouring layers. Thus, as the distance from the boundary of
the medium increases, the stringency of the conditions on the thickness of the layers
decreases. Consequently, in order to decrease the overall volume of the actual
calculation, it is convenient to use (other conditions remaining the same) a
variable step for the subdivision of the layer, which increases with the distance
from the boundary of the medium.

The previous conditions were found independently for variations of the profiles
of the dielectric constants and temperature of individual layers, since joint estimation
of the computational error due to their variations is very complicated. Thus, finally,
the number of sublayers into which it is sufficient to divide media with complicated
parameter profiles may be simply determined as a function of the convergence of
numerical computations of T}, for a sequentially increasing number of subdivisions.

7.7.5 Spectral characteristics of thermal emission for some stratified media

The goal of this subsection is to identify the main characteristics of the field of
radiation of non-isothermal, non-uniform media. These may be identified most
clearly by analysis of the spectral characteristics of the thermal radiation of a
series of model media, obtained by numerical modelling (relevant algorithms were
described in work by Klepikov and Sharkov (1983)). Let us compare the results of
applying the method described in the second section (7.7.2) with other methods,
based on the example of a three-layered, non-isothermal medium (observation of
a medium with £; = 1) and the model A:

e, =10+il; T, =200K 0<z<l0cm
e3=100+i10; T3 =300K 10cm < z.

Figure 7.17 shows graphs of the brightness temperature against wavelength for
observations in the nadir. Curves 1-5 were calculated using the accurate formulae
(7.105), the WK B method (7.99), the radiation transfer equation (7.100), Kirchhoff’s
method (7.103) with average temperature 300K, and formula (7.104) for an
average temperature of the three-layered medium (by summing the thermal
fluxes), respectively.

In the short-wave area of the frequency band, where the wavelength of the
radiation is far less than the characteristic size of the non-uniformities of the
medium and the radiation is largely determined by the thin surface layer, approx-
imation methods give a good approximation to the graph of T}, calculated using the
accurate formula. The differences in the values of T3, for Kirchhoff’s method (curve
4) are associated with chosen value 7' = 300K, for which the emissivity of the
medium « = 1 — |R|* corresponds accurately to the value obtained by the accurate
formula (k = 0.7272).
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Figure 7.17. Spectral characteristics of the natural radiation of a three-layered non-isothermal
medium (model A). 1-5, see explanation in text.

However, for the whole spectrum of frequencies, and particularly the long-wave
area, the errors of each of the approximation methods are very significant (up to
100 K). For example, the method of summing the thermal fluxes (curve 5) gives
‘clearly average’ spectral variations of T}, without interference features. In other
words, the spectral averaging built into the method is carried out over practically
the full range of frequencies used. Most striking (numerical) differences are observed
in the spectral variations of the curves 2 and 3 obtained by the WKB and ERT
method, which are apparently very similar to each other (see formulas (7.99) and
(7.100)).

Consideration of this model example shows that not one of the approximation
methods provides correct calculation of the emissivity of highly non-uniform, non-
isothermal media over a broad band of wavelengths.
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Very large numerical differences between the spectral graphs of T, for the
accurate method and for the approximation methods are found where relatively local
temperature jumps occur in an area of interfering waves, reflected by the dielectrical
non-uniformities of the medium. Figure 7.13 shows the spectral variation of the
radiation (# = 0) from an isothermal three-layered medium (model B) with profiles

ea=1=+4i04, 0<z< 10cm

€3 =100 +110, 10cm <z
calculated using Kirchhoff’s law for isothermal media. The spectral variation for this
medium, but with a sharp temperature anomaly 7' = 900K for 7.5 < z < 7.75cm in

the intermediate layer (model C), is shown in Figure 7.18. From a comparison of the
two graphs it is easy to see the change in the nature of the modulation of the spectral
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Figure 7.18. Spectral characteristics of the natural radiation of a three-layered medium
(model B) with a sharp ‘pulse-like’ temperature anomaly.
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curve of the radiation from the medium in the presence of the temperature anomaly.
In fact, as a result of reflection, a mixed wave occurs in the intermediate layer; in
other words, both travelling and standing waves occur. Thus, within the layer there
is a special redistribution of the energy losses and consequently the different areas of
the medium give different contributions to the resulting radiation. At frequencies
corresponding to the position of the bulge of the standing waves at the point of a
temperature jump, the contribution of the radiation of this layer to the total value
Ty, is a maximum. Conversely, when the position of the node of the standing waves
and the thermal anomaly coincide, the contribution to 7}, is a minimum. From these
considerations it is clear that the maximum value of the modulation coefficient (all
other conditions being equal) is attained for a temperature jump of much less than
half the wavelength of the radiation. Consequently, the thinner the anomalous layer,
the broader the band of frequencies in which modulation is observed. Its frequency is
largely determined by the change in phase of waves from the anomalous layer to the
neighbouring dielectric non-uniformity of the medium. This modulation effect is
most clearly visible for a three-layered medium although it is also found in
perturbed form for more complicated profiles of the dielectric parameters. A suffi-
cient condition for modulation of the thermal radiation is the presence of a thin layer
with an anomalous temperature in an area of the medium where there exist inter-
fering waves.

Figure 7.19 and 7.20 illustrate the occurrence and relative positions of two types
of modulation of the spectrum of thermal radiation from a three-layered medium,
associated with the presence of a layer with anomalous values of the imaginary part
of the dielectric constant and the temperature. The first effect takes the form of
amplitude modulation and the second that of an additional sinusoidal component.
If effects of approximately equal value are collocated, the resulting shape of the
modulation will be almost one-sided (analogue of amplitude/phase modulation).

Thus, use of the accurate expressions (7.93)~(7.94) to calculate the thermal
radiation from non-uniform, non-isothermal media with local anomalies and with
arbitrary absorption leads to the occurrence of effects ignored by the calculations
of the approximation methods (WKB method, theory of radiative transfer,
Kirchhoff’s law etc.).

It is certainly interesting to analyse the errors in the calculations of the
spectral variations of the radiation from media with smoothly varying parameters
as a function of the number of subdivisions N of the layer. Figures 7.21(a) and
(b) show the results of numerical calculations of 7}, for two typical profiles of
the complex diclectric coefficients and the temperature, namely a linecar and an
exponential profile. In the calculations, we chose two ways of dividing the non-
uniform area of the medium of thickness D into layers: a linear method, in which
the thickness of all the layers was the same d; = D/N, and an exponential method in
which the thickness of the layers increased as the distance from the boundary of
the medium

dj = 2dj*h

N
J=

d; = D.
1
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Figure 7.19. Spectral characteristics of the natural radiation of a three-layered medium with a
‘pulse-like’ anomaly of dielectric losses (model C).

From the figure, it is easy to see that in the band of wavelengths from ~0.1 to 100 cm
there are considerable variations in the radiation spectra. For N = 128, for both
types of profiles of the parameters, the radiation spectra exhibit a stationary form,
and are practically unchanged for small variations of the number of subdivisions.
Thus, they may be assumed to be ‘true’ (in the asymptotic sense) and compared with
radiation spectra for other values of N. Maximum errors in the spectra as a function
of N are given in Table 7.1.

It is clear from the table that the exponential subdivision into layers provides for
faster and more uniform convergence of the results throughout the whole spectral
interval, this being more noticeable for the exponential profiles of the parameters.

In this way, based on the application of a generalization of Kirchhoff’s law to a
model of a stratified medium with a planar boundary, we have obtained a closed-
form for thermal radiation in a monochromatic approximation, taking into account
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Figure 7.20. Spectral characteristics of the natural radiation of a three-layered medium with
an anomalous value of the dielectric losses (model C) and with a sharp ‘pulse-like’ temperature

anomaly.
Table 7.1. Maximum errors in 7T, K
Parameter profile
Linear Exponential
Type of subdivision
Number
of layers Linear Exponential Linear Exponential
1 22 17
4 12 8 15
16 2 2 6 1
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Figure 7.21. Spectral characteristics of natural radiation as a function of the number of
subdivisions, N, of the layer in the medium, with linear (a) and exponential (b) stratifications
of the dielectric and thermal parameters: 1, a single layer; 2, 4 layers; 3, 16; 4, 128 (linear
subdivision); 5, 4; 6, 16 (exponential subdivision).

interference effects. The solution involves a dependence on the wavelength, the angle
of observation and the type of polarization of the radiation. It is shown that, for
specific conditions satisfied for most types of real media in the microwave and IR
band, this solution enables us to determine the spectral characteristics of the thermal
radiation from a vertically non-uniform, non-isothermal medium with arbitrary
absorption, with reasonable accuracy. The solution also includes known methods
of calculating the brightness temperature such as solution of the radiation transfer
equation, Kirchhoff’s law for isothermal media and solution by the WKB method,
and is a generalization of these.
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Figure 7.21 (b)

Using the method described we have developed a computer-based algorithm and
carried out numerical analysis of the thermal radiation spectra for a number of
characteristic cases of non-uniform, non-isothermal media. The greatest differences
between the spectral variations of the radiation for this method and those for
existing methods occur in the presence of relatively local temperature jumps of
width less than the wavelength. Here, in addition to the usual modulation of the
spectral characteristics of the radiation due to interfering waves reflected by the
dielectric non-uniformities of the medium, there is additional modulation in
the form of sinusoidal components which are damped as the wavelength of the
radiation decreases.

The method described in this section and the computational algorithm may be
used to solve more complicated problems of thermal radiation, for example, for
media with three-layered temperature and dielectric anomalies with rough
boundary divisions, and also for media with random parameter non-uniformities.






