3

Dielectric and emissive properties of
terrestrial surfaces

The purpose of this chapter is to consider the basic characteristics (the intensity and
spectral dependencies) of the radiation field of physical substances most widespread
on the surface and in the atmosphere of the Earth. The frequency properties of the
characteristics of dielectrics are considered from the viewpoint of the phenomeno-
logical approach to studying the relaxation mechanisms (the Debye model and
models with a multiplicity of relaxation times). The basic statements of dielectric
spectroscopy theory and practice are presented. The main attention in the chapter is
given to studying the dielectric and emissive properties of salt (seawater) and
freshwater and to the relation of these properties to the physicochemical structure
of these substances by determining the frequency dispersion of electromagnetic
properties of dielectrics. The dielectric and emissive properties of natural objects,
containing freshwater and aqueous electrolytic solutions at different phase states, are
considered. These states include: freshwater ice, sea ice, glacial ice, moist fertile soil,
salinas. The chapter presents a rich set of experimental findings on emissive
characteristics and dielectric properties of substances distributed both on the
Earth and on terrestrial planets.

8.1 FREQUENCY DISPERSION OF THE ELECTROMAGNETIC
PROPERTIES OF DIELECTRICS

Virtually all known natural substances and physical objects on our planet belong
(when considering their electromagnetic properties) to the class of dielectrics. This
class includes all atmospheric (non-ionized) gases, virtually all liquids (including
fresh and ocean water), solid bodies (soil, grounds, rocks), vegetation, artificial
(manufactured) materials and buildings, and also the objects of animate nature.
The basic mechanisms of interaction of such physical systems with the electro-
magnetic field are reduced to redistribution of the electronic density of internal
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electric charges in a medium and to polarization features arising in the distribution
of charges (see section 1.6).

8.1.1 Dispersive properties

The polarization of a dielectric when an electric field is applied takes place, not
instantaneously, but over a certain time called the relaxation time. The temporary
character of the relaxation process is rigidly bound to the physicochemical properties
and structure of the substance and is clearly exhibited in studying frequency char-
acteristics of electromagnetic properties — the so-called dispersive properties. The
range of frequencies in which the expressed changes of dielectric properties of sub-
stances mostly take place is called the dispersion region. Investigation of the dis-
persive properties of substances can provide very important information on the
structure of physical objects and on their physicochemical composition. Investiga-
tions can be carried out both directly, by laboratory study of the dielectric properties
of substances, and remotely, by studying the spectral properties of thermal radiation.
The microwave band of electromagnetic waves represents just that range of frequen-
cies where dispersive phenomena become essential for the overwhelming majority of
earth covers, and, on the other hand, where macroscopic description by means of
classic Maxwellian electrodynamics is possible (see section 1.6). Thus, the electrical
polarization of a dielectric can be described within the framework of Maxwellian
electrodynamics, taking into account the principal circumstance that the unambig-
uous time-dependence of values of the electrical and magnetic induction fields with
the instantaneous values of electric and magnetic fields is violated. In other words,
the physical system will possess a certain inertia when the external electrical field is
applied, or some kind of memory when the external field is removed and the system
tends to the equilibrium state. Since in remote sensing tasks fairly weak values of
electric fields are applied, the relationship between the induction and electrical field
remains linear.

Under the physical limitations indicated the most general form of relation
between the induction and electrical field at all previous time instants can be
written in the form of the following integral relationship (Landau and Lifshitz,
1957):

o0
D(1) = e E(1) + J F(DE(t —7)dr, (8.1)
0
where /(1) is the function of time which characterizes the process of relaxation of the
electrical polarization at the application or removal of the external electrical field and
depends on the physical and physicochemical properties of the medium, e, is the
dielectric permittivity of a medium at high frequencies, i.e. at frequencies lying
outside the active relaxation region of the given relaxation mechanism.
Transferring to a set of monochromatic components (by using the Fourier
expansion), in which the time-dependence is given by multiplier exp (—jwt), we
obtain the relation between D and E (in the SI system) as follows:

D = EOVE + P = E(u])EOVE, (82)
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where ¢, is the permittivity constant of vacuum* (see section 1.6), P is the polariza-
tion vector, and ¢(w) is the relative complex permittivity unambiguously bound with
the process of establishing the balance in a dielectric and defined as:

Ew) =€y + J f (1) exp (jwr) dr. (8.3)
0
The frequency-dependence of £(w) is said to be the law of its dispersion, or its
dispersive properties.
Function é(w) is complex, generally speaking. From the definition of (8.3) it
directly follows, that

é(—w) = & (w). (8.4)
Separating in this relation the real and imaginary parts, we obtain
e1(-w) = g1 (w); e2(—w) = —&2(w). (8.5)

Thus, € (w) is an even, and &, (w) an odd function of frequency. For low frequencies
(as compared to the active relaxation zone) the function ¢(w) can be expanded in a
series in powers of w. The expansion of the even function € (w) contains the terms of
even powers only, and the expansion of the odd function &,(w) the terms of odd
powers. In the limit w — 0 function £(w) in dielectrics tends, certainly, to the relative
permittivity, which is usually designated as g, (this designation should not be
confused with the permittivity of vacuum (see section 1.6)). Therefore, in dielectrics
the expansion of £(w) begins with the constant term ¢y; the expansion of &;(w),
however, begins, generally speaking, with a term proportional to w. This is especially
clearly seen in the analysis of the Maxwell equations for dielectrics in the presence of
noticeable direct current conductivity (perfect conductors). Using equations (1.1a)
and (1.3), we obtain the following limiting expression for e(w) for low frequencies
(Landau and Lifshitz, 1957):

éw) = jw;V. (8.6)

Thus, in dielectrics with a noticeable direct current conductivity the expansion of
function e(w) begins with the imaginary term proportional to 1/w, which is expressed
in terms of conventional direct current conductivity. As the frequency further
increases, the value of this term sharply decreases, and the relaxation mechanisms
come into effect. They are manifested as specific (and sometimes rather complicated)
frequency dependencies, including electromagnetic energy dissipation. Thus, for
dielectrics with internal relaxation mechanisms of external energy transformation
and in the presence of finite direct current conductivity in them the complete expres-
sion for the complex dielectric constant £,(w) can be written as:

o
3 =¢ j——, 8.7
£oll) = () +1 2 (87)
where £g (w) is the relaxation part of the permittivity.

*This quantity is redesignated in this chapter (with respect to section 1.6) to avoid confusion
into designations.
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Such dielectrics are called ‘poor’ conductors of electricity in physics (Landau
and Lifshitz, 1957).

In practical applications this form of dielectric constant is written using the
numerical expression for the permittivity constant of vacuum (see section 1.6 and
Appendix A, Table A.4) in a somewhat different, but, certainly, fully equivalent form

£,(N) = £x(N) + 600N, (8.8)

where the wavelength is taken in metres, and the dimension of electrical conductivity
n (Qm)~' (see Appendix A, Table A.2).

In practical applications no distinction is usually made between these two
parts of the expressions presented above, putting the term caused by the direct
current conductivity directly into the expression for an imaginary part of the
dielectric constant caused by a pure relaxation mechanism. In studying liquid
electrolytes, the relaxation part of a dielectric constant ér(w) is called the
‘adjusted’ part, which means the value of ¢(w) with subtraction of the correction
for the ‘through’ (ionic in solutions) component of conductivity. Hereafter we shall
use, for simplicity, the full expression for a dielectric constant, not using the
subscript in (8.7) or (8.8).

The presence of full dielectric losses, as follows from (8.2), results in the appear-
ance of a phase shift between instantaneous values of the induction and electric field
vectors. Physically, this is equivalent to the appearance of the effects of time delay of
polarization in a medium with respect to the external field. The spectral (wavelength)
dependence of the tangent of the angle of losses can be written in this case as

g2(A\) 4+ 600X
e1(N) .

In the optical and IR wavelength bands the frequency properties of relaxation
mechanisms of dielectrics are often presented and studied in the form of spectral
(frequency or wavelength) dependencies of real and imaginary parts of the
complex index of refraction. The transition to a complex dielectric constant can be
accomplished according to well-known rules (see section 1.6, equations (1.26)—
(1.28)).

In the limit w — oo function é(w) tends to unity. This is already clear from
simple physical considerations: if the field changes rapidly enough, the polarization
processes, resulting in establishing induction D differing from E, have no time to
occur at all. So, it becomes possible to find (Landau and Lifshitz, 1957) the limiting
form of function £(w) at high frequencies, which is valid for any body — metal or
dielectric — indifferently. That is to say, the frequency of a field must be high as
compared to the frequencies of motion of all (or, at least, of the majority of)
electrons in atoms of the given substance. If this condition is met, we can, in
calculating the polarization of the substance, consider the electrons to be free,
neglecting their interaction among themselves and with the nuclei of atoms (the
so-called electronic polarization). Actually, the field of applicability of such an
approach begins from the far ultraviolet (UV) band for the lightest elements, or
from X-ray frequencies for heavier elements.

tgd(\) = (8.9)
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The majority of substances which are of interest for remote sensing activity (such
as water vapour, water, ice and soil) possess a lot of relaxation mechanisms whose
active zones (the dispersion regions) stretch from virtually zero frequencies (tens and
hundreds of hertz) up to the optical and UV bands. Because of the drastic distinction
in the values of frequencies, relaxation mechanisms in natural substances are usually
analysed completely independently for various frequency bands of electromagnetic
radiation. Therefore, to avoid confusion, one should have in mind that quantity e
in one relaxation mechanism can serve as g, in another (the next on the frequency
axis) mechanism. Moreover, cases of ‘superposition’ of various mechanisms are
possible. It is just such a situation we shall soon encounter in studying relaxation
mechanisms in water.

8.1.2 The Kronig—Kramers relations

Since function ¢(w) was determined in a fairly general form (8.2), it has turned out
that some quite general and important properties of this function can be established
by considering w as a complex variable (w = w’ + jw"). Since function f(7) in (8.3) is,
by its physical sense, finite for all values of its argument, it follows from the
definition of (8.3) that in the whole upper half plane of ¢(w) there exists an unambig-
uous function which does not turn to infinity anywhere. In other words, it does not
have any singular points. One should pay attention to the fact that the conclusion on
the absence of singular points in the £(w) function in the upper half plane is, from the
physical point of view, a consequence of the causality principle. This principle
consists in the fact that the integration in (8.3) is carried out only over the time
preceding the given instant ¢, as a result of which the range of integration in formula
(8.3) extends from 0 to oo (but not from —oo to +o0). The use of well-known
theorems from the theory of complex variable functions makes it possible to
obtain the important relations between the imaginary and real parts of function
¢(w). If we are dealing with a pure dielectric, the aforementioned relations state
(Landau and Lifshitz, 1957), that:

al(w)q:%f i{xzj dx, (8.10)
sz(w)z—%fo %dx, (8.11)

where the crossed sign of integral implies that the integral is understood in the sense
of its major value. Relations (8.10)—(8.11) are called the Kronig—Kramers relations.
Remember that the only essential property of the £(w) function used in deriving these
formulas is the absence of singular points in the upper half-plane. Therefore, we can
say that the Kronig—Kramers formulas are a direct consequence of the physical
causality principle.
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Making use of odd function é(w), formula (8.10) can be reduced to the form

T 2 2

El(u}) -1 = EJ: ;CEz_(Xw) dx. (812)

If the conductor is considered, then at point w = 0 function £(w) has a pole, near
which é(w) = j(o/weqy) (see (8.6)). This results in the appearance of the additional
term in formula (8.12):

(o)
e (x) = —lJ £1(v) dx + —2 (8.13)
T) o X —W Wey -

The principal physical significance of the Kronig—Kramers relations consists in the
fact that they stipulate the strict and unambiguous analytical dependence between
frequency properties of real and imaginary parts of the dielectric constant (or the
complex index of refraction). The frequency dielectric properties of natural media
cannot change in an arbitrary (not mutually interrelated) manner. They allow
researchers to reconstruct the frequency characteristic of one of the parts of a
dielectric constant if the other one is measured (or obtained empirically) well
enough. For example, the measured frequency-dependence of dielectric losses in a
medium unambiguously determines the frequency characteristic of the dielectric
permittivity (and vice versa). The strict and unambiguous relationship (8.12)
enables us to find the frequency characteristic of the dielectric permittivity, even
from the approximately measured experimental function e,(w). The considered
relations are often also used for correlating the measurements of the frequency
characteristic of dielectric parameters in the case of these measurements being
carried out with serious errors (for whatever technical reason). The techniques of
application of the Kronig—Kramers relations are diverse and many-faceted.

Since, as we have already noted, in the natural media we encounter, in a series of
cases, the superposition of various relaxation mechanisms (see section 8.2), the direct
use of the Kronig—Kramers relations for particular applications within limited
frequency bands requires a thorough and detailed approach and analysis. In
addition, for poor dielectrics there exist frequency bands where function é(w) loses
its physical sense in connection with the effects of spatial inhomogeneity of the field.
In such cases the use of specific formal procedures is necessary.

8.2 PHYSICAL MECHANISMS OF THE POLARIZATION
OF DIELECTRICS

The mechanisms of polarization of dielectrics are diverse and depend on the
structure of the substance and on the character of the physicochemical bonds. For
example, in ionic crystals (NaCl and others) the polarization is a result of shifting the
ions relative to each other (ionic polarization) and of the deformation of electronic
shells of individual ions (electronic polarization). In crystals with a covalent bond
(the diamond, for instance) the polarization is mainly caused by displacement of
electrons giving rise to chemical bonds. In so-called polar dielectrics the molecules
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(or the radical groups) represent electric dipoles, which are chaotically oriented in
space in the absence of the external electrical field and acquire a predominant
orientation in the presence of the external field. Such an ‘orientational” polarization
is typical for many liquids (such as freshwater) and gases. A similar polarization
mechanism is related to a ‘jump’ of individual ions from one equilibrium position
into another under the electrical field effect. Such a mechanism is observed most
frequently in electrolytes (salt water and seawater) and in substances with a
hydrogen bond, for example in ice, where the hydrogen ions have several equilibrium
positions.

In the electronic polarization mechanism the maximum of losses (the
dispersion region) falls in the optical frequencies (~10'° Hz) and in the near-IR
band. In the polarization caused by displacement of ions, the maximum of dielectric
losses shifts to the IR band (1012 to 10" Hz). The lower frequencies (in the radio-
frequency band) correspond to the maximum of losses at orientational polarization
of individual molecules (freshwater, water vapour) or of clusters of molecules
(salt water).

In low-molecular organic compounds each molecule has a single dipole and its
rotational dynamics is weakly associated with adjacent dipoles. Polar polymeric
compounds consist of a great number of dipoles of polar links bound by chemical
bonds. Their rotational dynamics depend on each other. The maxima of dielectric
losses for such media lie within a wide range of frequencies (10* to 10® Hz). The
forces of intermolecular dipole—dipole interaction between molecules and side groups
of adjacent links preclude the turning of links (around simple bonds). As a result, the
links undergo only rotational oscillatory motions, rather than full rotation.
However, in the absence of freedom of rotation there are some sections in a
polymeric chain, called segments, which are capable of changing their form indepen-
dently of each other. The smaller the segment, the greater the flexibility of molecules
and the higher the polymer’s capability to be oriented in the electrical field.
Depending on the temperature range, the dipole-group and dipole-segmental polar-
izations are revealed in polar polymers, the dipole-group polarization being typical
for polymers.

In some cases it becomes possible to obtain very rigid chemical bonds in
polymers. Owing to the low mobility of the basic polymeric chain and limited
capability of motion of individual groups and links, the dipole-group polarization
is insignificant, and in the glassy state the dielectric permittivity of polymers is at a
minimum. And also at a minimum are the dielectric losses and losses for pure
conductivity. Such polymers are widely used in technological applications as
polymeric and composite insulating materials (rubbers, plastics, glasses). A similar
situation arises in some widely used building materials (such as asphalt, cement,
concrete and some modern synthetic materials).

In electrically inhomogeneous media the intersurface polarization can take
place, which is caused by the motion of free carriers of charges, which are accumu-
lated near the interface boundaries of regions with heightened specific resistance
(intercrystalline sheets, microcracks, fluctuations of physicochemical composition,
etc.). The maxima of dielectric losses for such media lie within a wide range of
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Figure 8.1. Schematic presentation of the effect on polarization properties in the case of the
resonance mechanism. (a) Polarization variation in time in cases where the external electric
field is switched on. (b) Frequency characteristics of ¢ (w) and tgd(w).

frequencies (10° to 10° Hz). Bright natural examples of such media are various
modifications of seawater and freshwater ice, wet soil with bound water electrolytes
inside the soil, as well as the water—ice system and snow cover at the phase transition
instant.

The frequency character of £(w) and tgd(w) dependencies in the dispersion
region is determined by the polarization mechanism. In the case of ionic and elec-
tronic polarization on applying the external field E the variation in time ¢ has a
character of attenuating oscillations (Figure 8.1(a)). Accordingly, the frequency
dependencies of ¢;(w) and tgd(w) are called resonance dependencies (Figure
8.1(b)). This is due to the fact that, since the polarization of a dielectric is mainly
caused by small displacements of electrons and ions, the dielectric can be considered
as a set of harmonic oscillators which experience forced oscillations with attenuation
in the alternating field. This type of polarization is sometimes called the deformation
polarizability of dielectrics.

In orientational (dipolar) polarization the latter one has a relaxation character
(Figure 8.2(a)), and then the frequency dependencies of ¢;(w) and tgé(w) are called
relaxation dependencies (or Debye-type relaxations) (Figure 8.2(b)). The times of
polarization establishment or disappearance depend in this case on the intensity of
the thermal motion of atoms, molecules (or ions), i.e. on the physicochemical
structure of the substance and on the physical temperature. In orientational polar-
ization the characteristic relaxation time is determined by the time of orientation of
individual molecules in the direction of the external field E. It depends on the value
of dipole moments of molecules, on the viscosity of a medium, on the dipole—dipole
interaction energy and on the other physicochemical parameters. At room tempera-
ture the characteristic time varies within very wide limits, from 1073 to 10795, for
gases and fluids, this time being, as a rule, lower than for solid bodies. In solid
dielectrics the dipole polarization is often caused by weakly bound ions, which can
have several equilibrium positions. Under the effect of an external field and thermal
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Figure 8.2. Schematic presentation of the effect on polarization properties in the case of the
relaxation mechanism. (a) Polarization variation in time in cases where the electric field is
switched on. (b) Frequency characteristics of &, (w) and tgé(w).

motion the ions can transfer from one equilibrium position to another, while over-
coming potential barriers. In this case the characteristic times vary within a wide
range, occupying large time domains.

In electrically inhomogeneous media an intersurface polarization is observed
that is caused by the motion of free carriers of charge accumulating near the
boundaries of regions with sharply distinguished electrical properties. In these
media processes of a complicated percolation type take place, as well as the
processes of propagation of the charge-density wave state (Pinteric et al., 2001;
Bordonskii and Filipova, 2002). These effects are related to the multi-scale structural
features and to the hierarchic, fractal-type structure of current-conducting
admixtures (Park, 2001). The issues of finding the characteristic time domains in
such systems are fairly complicated and ambiguous. Studies in this direction are
being efficiently developed now.

In real dielectrics several polarization mechanisms with different characteristic
times can often take place simultaneously, which results in a more complicated
character of frequency dependencies of £(w) and tgé(w). In this case in some
frequency bands the mechanisms of pure Debye type and of resonance type can
merge with relaxation systems that have a wide spectrum of dielectric relaxation
times. For these reasons the separation and fixation of various mechanisms from
the real experimental data represents a complicated experimental problem.

As an important example, we shall consider the frequency features of the
complex index of refraction for liquid water in a very wide wavelength band —
from 107* to 10" cm, i.e. ranging over eight orders of magnitude (see Figure 8.3).
The analysis of an imaginary part of the index of refraction indicates that some kind
of basic pattern (designated as KDC in Figure 8.3) of the frequency-dependence of
X () is the characteristic form of the pure Debye-type relaxation mechanism. It has a
maximum at a wavelength of about 1cm and then the characteristic drops in the
direction of increasing values of wavelengths as A~' and in the directin of decreasing
values of wavelengths as A\™'. The total band of frequencies included in this
mechanism are called the Debye absorption band. The index of refraction (its real
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Figure 8.3. The semi-quantitative presentation of a complex index of refraction for liquid
water. The temperature is 25°C. KDC is the key Debye contribution. DM is the maximum
of the Debye absorption band. HDM is the maximum of the hyper-Debye absorption band.
FW is freshwater. SW is salt (sea) water. Graphs are by E. Sharkov using data from work by
Ray (1972); Afsar and Hasted, 1977; Sharkov (1983, 1984); Liebe et al. (1991).

part) is characterized by the rapid drop (decrease) of its value at the absorption
maximum frequency (Figure 8.2(b)). Beginning with the wavelengths of about
I mm another relaxation mechanism comes into effect. It is called the hyper-
Debye-type mechanism, though it is, in general, very close to the pure Debye-type
mechanism with an absorption maximum near 0.06 mm. This circumstance sharply
distorts the characteristic Debye-type drop in absorption in the direction of short
wavelengths (Figure 8.3). The next (in the direction of shorter wavelengths) absorp-
tion maximum, also of the Debye type, falls in the wavelength of about 0.02 mm. The
next two absorption bands with maxima at wavelengths of 6 x 10~* and 3 x 10™*cm
are already determined by resonance types of polarization, which have a typical
frequency form both in absorption and in the real index of refraction (Figure 8.1(b)).

As far as salt water (electrolyte) is concerned, for a long time (more than 50
years) there had existed a naive knowledge about the pure Debye-type relaxation
mechanism in the polarization properties of electrolytes, in which only one known
component, caused by ionic conductivity, was taken into account (see equations
(8.7)(8.8)). Strictly speaking, this knowledge is reflected in Figure 8.3 in the
frequency dependencies of the imaginary part of the index of refraction at long
wavelengths for fresh water (with low conductivity) and for salt water (with high
conductivity). However, the critical insight into the problem, undertaken by
E. Sharkov (1984), has demonstrated the complete groundlessness of this point of
view. The relaxation mechanism of electrolytes was found to significantly differ from
the Debye-type, both in the type of absorption band, and in a sharp (and rather
surprising) dependence of electrostatic permittivity on the salt concentration of a
solution. We shall analyse this problem in more detail in section 8.
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Figure 8.4. The semi-quantitative presentation of a complex index of reflection for ice
samples. The temperature range is 0-20°C. Graphs are by E. Sharkov using an interpolation
between microwave data and infrared data (Ray, 1972; Fujita et al., 2000; Matsuoka et al.,
1996). See notation in Figure 8.3.

The phase transition of liquid water into the solid state is characterized by a
basic change of its polarization properties. The frequency characteristics of the
complex index of refraction for water in a solid state (ice) are presented in Figure
8.4 within a very wide wavelength band — from 10™* to 10"’ cm (or thirteen orders of
magnitude (!)). A key feature of the polarization properties of ice is the fantastic
‘jump’ in the numerical value of relaxation wavelength from 1cm to 10-100 km
(depending on the temperature), i.e. 67 orders of magnitude. Such a grand recon-
struction in the polarization mode of the most widespread substance on our planet
(water) nonplussed researchers for a long period of time. It was believed that for the
solid phase of water (freshwater ice) the pure Debye relaxation model remained valid
with changing the value of the time relaxation constant only.

Modern investigations have shown that for the microwave band (1-100 GHz)
the real part of the relative dielectric permittivity of freshwater ice (for homogeneous
samples) still remained a fairly definite and stable quantity that is almost
independent of frequency e;(w) = 3.15 (Matzler, 2000; Fujita et al., 2000). It was
found that the imaginary part can be presented in this band as an articulation of two
branches — the high-frequency tail of the Debye dispersion and the low-frequency tail
of lattice vibration in the far-infrared region. In this connection, it emerges that the
imaginary part depends critically on weak mineralization (which is always present in
natural freshwaters), on the presence of organic substance and admixtures of gas
bubble type, and to the thermodynamic temperature. But, in general, modern
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authors adhere to the Debye relaxation spectrum e,(w) ~ w™ ! (Bordonskii, 1990;
Fujita et al., 2000; Bordonskii et al., 2002). In the low-frequency (kilohertz and
hertz) band the chief effect is the structural (possibly, of Debye-type) polarization
of fractal and percolation type, as well as the presence of mineral admixtures (the
chemical purity of a sample). Here we are dealing, apparently, with a complicated,
complex mode of polarization. The researchers began to fix their attention on this
wavelength band in connection with two issues: (1) studying the depth distribution of
moisture in soils and grounds (Stoffregen et al., 2002); and (2) the attempts of active
electromagnetic sensing the surface covers of Mars with the purpose of detecting
subsurface water, water-ice and rock—ice—water mixtures in them (Grimm, 2002).

The solid phase, formed from seawater, turned out to be so complicated (in the
electrodynamic sense) and diverse that it is difficult now to compose a generalized
picture of dielectric properties. This is because of the fact that they were found to be
strongly dependent on the mineral composition of seawater in a particular area, on
the temperature and on the meteorological history of the solid phase formation. This
results, in its turn, in the formation of a variety of types of sea-ice with sharply
distinctive dielectric properties. The strong spatial-temporal variability of sea-ice
fields and their hierarchic structure highly complicate the pattern-recognition pro-
cedures in remote microwave observations (Bespalova et al., 1976b; Comiso and
Kwok, 1996; Belchansky and Alpatsky, 2000; Comiso, 2000).

Because glacial ice (in the Antarctic, Greenland, mountain glaciers) is formed via
the morphological ice formation from precipitated snow, rather than from a liquid
phase, then, obviously, the internal geometrical structure in three-dimensional
mesoscales has a strong effect on the dielectric and emissive properties of the
glacial ice fields. This has been clearly exhibited even in the first radiothermal
investigations of the Antarctic ice cover — the so-called ‘Antarctica puzzle’
(Basharinov et al., 1971; Gurvich et al., 1973; Gloersen et al., 1974). In glacial ice
samples, taken for laboratory investigation, the dielectric properties (in ‘micro-
scales’) were found to be close to those of freshwater ice, but with strong temperature
effects and dielectric anisotropy (Matsuoka et al., 1996, 1997). However, the overall
pattern (in the wide wavelength band) of glacial ice’s dielectric properties has not
been developed yet.

The judgements have already repeatedly been stated that, in spite of having
identical names, all these substances — freshwater ice, sea-ice and glacial ice, as
well as freshwater and seawater — are significantly different in the electrodynamic
sense, if they are qualified by class of dielectric and, accordingly, by emissive
characteristics.

8.3 RELAXATION POLARIZATION MODELS

Many substances on our planet belong to the class of polar dielectrics whose
overall polarization is made up from deformational and orientational polarizations.
In this case, however, the prevailing type of polarization in these substances is
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the orientational one. Therefore, below we shall consider in more detail the
basic types of models of orientational (relaxation) polarization and, first of all,
the Debye-type models (with a single relaxation time), as well as relaxation
models with a wide spectrum of relaxation times (the concept of a multiplicity of
relaxation times).

8.3.1 The Debye model

The formulas for the description of frequency dependencies of the simplest-type
relaxation polarization and the simplest hydrodynamic model of such a relaxation
were established by P. Debye (Debye, 1929). The processing methodology, developed
in this work, was widely disseminated afterwards in processing the experimental
results obtained from studying a vast class of dielectrics, as well as systems of a
different physical nature. This circumstance is physically associated with the fact that
here is considered the simplest and, as it turned out later, a completely fundamental
model, where the polarization dependence f(7) (see equations (8.1) and (8.3)) is
exponential:
f(7) = constexp (~7/r) = —exp =7/, (8.14)
0

where 7, is some characteristic quantity having the dimension of time and
indicating that during the time 7, the polarization will change (increase and
decrease) e times.

The substitution of (8.14) into (8.3) and appropriate integration results in the
expression:
_ €0 — €

= - . 8.15
1 + jwry ( )

£(w) — €no

Separating the real and imaginary parts of the complex dielectric permittivity, we
obtain the well-known Debye formulas:

€0 — €
= — 8.16
El(w) €0 1 +w27_37 ( )
WT
52((4)) = (50 — EOO)TQ?Z’]J (817)
0

These formulas have been widely used in various areas of natural science (not only
in dielectric relaxation theory), since the exponential system’s response to the
external (stepwise) effect is characteristic of a very wide class of physical systems —
radio-engineering and radiophysical systems for instance (see Chapters 2 and 3).
The spectral behaviour of quantities €1 (w) and e,(w) as a function of Ig (w?) is
presented in Figure 8.5 in the dimensionless form. As the figure shows, in the low-
frequency lg (wt) < —3 and high-frequency 1g (wr) > 3 ranges no variation of the
complex permittivity with Ig(wf) is observed. For intermediate values
—3 <lg(wt) < 3 the appearance of dispersion e(w) is typical. From Figure 8.5 it
directly follows that the relaxation maximum frequency is related to the relaxation
time as follows: fg = (271"7')71. In some cases the notion of the relaxation maximum
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Figure 8.5. Frequency properties of ¢(w) and &,(w) for Debye type dielectric media: (a) in
semi-logarithmic coordinates in normalized dimensionless form, 1, (¢;(w) — e4)/(g0 — €55 2,
er(w)/ (g9 — €5 ); (b) in bi-logarithmic coordinates for single Debye relaxation between ¢y = 1
and ¢, = 0.1.

wavelength is used, whose value is equal to A\g = C(27TT)71. The analysis of an
imaginary part of the index of refraction of real media (water) indicates that in
exactly this part of the frequency band the Debye mechanism forms some kind of
pattern (designated as KDC in Figure 8.3) of the frequency dependence &,()\)
(Figure 8.5(b)). This pattern represents the characteristic form of the pure Debye-
type relaxation mechanism, which has a maximum at the wavelength \g and then the
characteristic drops in the direction of long wavelengths as A~! and in the direction
of shorter wavelengths as A™' (Figure 8.5(b)). This frequency peculiarity is quite
typical for the pure Debye-type mechanism only, and we shall use it in analysing
the experimental data and in revealing the Debye type of relaxation.

It follows from the equation, that for w =0, £; = ¢;, where ¢, is (as we have
already noted) the static dielectric constant. At very low frequencies the dipoles have
time enough to synchronously follow the variation of the external electric field, and
the polarization reveals itself completely. The value of the factor of losses &;(w) is
insignificant in this case. At very high frequencies the dipoles have no time to be
oriented; they can be considered as motionless, and the orientational polarization is
absent in this case. Therefore, for w — 0o £, = 0 as well. Note that the frequency
tending to infinity is certainly a purely formal procedure. Really, here we deal with
the region lying outside the sphere of influence of the given relaxation mechanism.
However, as we have already shown for the example of the dielectric properties of
water, the merging of effects of various mechanisms is possible in some frequency
bands (see Figure 8.3 and section 8.2). The prominent dispersion of quantity e(w) is
characteristic for the intermediate range of frequencies.

The relaxation time 7 was introduced for the first time as a parameter into the
relaxation Debye theory (Debye, 1929). The substance response to the effect of the
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external electromagnetic field, varying in time according to the harmonic law, is
described by the phenomenological equation (8.3). The response function depends
on the character of thermal motion of polar molecules. It is the dynamics of
molecules which is usually associated with the relaxation time. The given
parameter characterizes, in the general case, the process of spontaneous transition
of a nonequilibrium macroscopic system into the state of thermodynamic equilib-
rium. The relaxation time depends on the temperature and on the intermolecular
interaction potential. This quantity is determined directly from the experiment and
corresponds, in the general case, to the frequency at which the maximum of dielectric
losses is achieved. The reverse relaxation time 1/7, characterizes the rate of dipoles’
polarization establishment during the field action time. The use of the ‘relaxation’
term is most justified in describing the dynamics of molecular processes as the rate of
equilibrium state establishment after removing the external effect. Exactly such a
sense is given to the relaxation parameter that appeared in equations (8.15)—(8.17) in
the Debye relaxation theory.

The simplest of existing ideas on the character of relaxation processes in polar
liquids are based either on the hydrodynamic (and phenomenological) Debye model
(Debye, 1929), or on the Frenkel model (Frenkel, 1975). In the Debye model the
process of molecules reorientation in the liquid phase is considered to be the result of
rotational diffusion of a solid sphere in the continuous viscous medium. According
to Frenkel, on the other hand, the reorientation of molecules in the liquid phase is
accomplished by jumps, by overcoming some potential barrier. Both models, in spite
of their great difference, result in the simplest type of relaxation process, which can
be characterized by a single relaxation time 7. In other words, the spectrum G(7) of
relaxation times (if it does really exist) can be presented in the form of delta-function
G(1)=6(Tr — 7).

It was shown in some papers that a single relaxation time will always be
observed in a liquid, if the following conditions are satisfied:

(1) the orienting interactions between molecules are absent;

(2) the molecules’ reorientation process (when applying or removing the external
electric field) takes place as the rotation with friction or as the transition over the
potential barrier; and

(3) all dipoles are at equivalent positions.

If these conditions are met, the dielectric characteristics of a polar liquid as a
function of the external field frequency will correspond to the Debye model (with a
single relaxation time).

The following relation can easily be obtained from the Debye formulas (8.16)
and (8.17):

£ (w) —%}zﬁﬁ - (@)2 (8.18)

Expression (8.18) represents the equation of a circle with radius (gq — £4,)/2.
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Figure 8.6. Relationship of the imaginary part of complex permittivity as a function of the
real part (Cole—Cole diagram) for dielectric medium with various polarization mechanisms. (a)
Debye model, (b) Cole—Cole model, (c) Davidson—Cole model, (d) Havriliak—Negami model.
Experimental data are marked by black dots. The arrow points to an increase in frequency.

Therefore, for performing the diagram technique on the experimental data
correspondence to the Debye model it is necessary to plot the values of ¢; along
the abscissa axis and the values of ¢,, found at various frequencies, at 7" = const,
along the ordinate axis. And if the Debye formulas are valid, we shall obtain a full
semicircle, whose centre lies on the abscissa axis at point (g — £,,)/2 (Figure 8.6(a)).
The position of the experimental data in the Cartesian coordinate system ¢; — £, was
called the Cole—Cole diagrams. The deviations in the experimental data position
from a semicircle will testify to the obvious deviation of relaxation properties of a
dielectric from the Debye model. Such a kind of presentation is used not only in
analysing the relaxation properties of dielectrics, but in studying the other physical
systems with the relaxation mechanism close to the Debye one.

The relaxation time value can be estimated by formulas which directly follow
from the Debye relations (8.16)—(8.17):

S — O (8.19)
W Eg (w) &
where the real and imaginary parts of the dielectric permittivity are taken from the
experimental data at the working (given) frequency of measurements.
The diagram technique is very convenient for estimating the values of ¢, and
€+, based on using strictly linear interpolation in the following relations being a
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consequence of the Debye formulas:

£ (0 1) = eo(r) = As() 20 (8.20)
a0 1) = e (f) + fi?(’t)’) (8.21)

The symmetry in the Debye formulas makes it possible to form one more series
of graphical techniques for experimental data processing; they are summarized in the
book by Akhadov (1977).

The deviations in using the Cole—Cole diagram and linear approximations are so
noticeable and impressive that they can serve as clear evidence of the deviation of a
dielectric’s polarization properties from the Debye model. Some indicative examples
of using these approaches in analysing the dielectric properties of fresh and salt water
are presented in papers by Sharkov (1983, 1984, 1996¢c) and Liebe et al. (1991)
(see also sections 8.4 and 8.5 below).

8.3.2 Models of multiplicity of relaxation times

The Debye model successfully describes the frequency dispersion of the complex
dielectric permittivity for some dielectrics (such as freshwater or alcohols).
However, many cases are known (and of importance for us is to mention, first of
all, solutions of salts: electrolytes and seawater), where the Debye formulas do not
describe the experimental frequency dependencies in principle. However, the success
of the Debye model was so great, that the further development of non-Debye
relaxation mechanisms has advanced mainly by way of using the concept of a
multiplicity of Debye relaxation times for non-Debye-type dielectrics. Certainly,
such an approach is only one of those possible; however, it dominates now in
dielectric relaxation theory. Its essence is as follows.

In liquids and solid substances (of polymer type), consisting of composite
clusters of molecules or of polyatomic molecules, a variety of diclectric Debye
relaxation times is observed where each dipole has its own polarization establishment
time. In other words, there exists some particular distribution of dielectric relaxation
times around its most probable value. The character of the distribution and its
parameters will be just those important physical characteristics that determine the
structure of the substance. And it can be supposed that for polar high-molecular
systems (including organic compounds) the existence of a variety of dielectric relaxa-
tion times should be observed all the more.

Thus, if the number of relaxation times is fairly high, their distribution can be
presented as a continuous set of times. And in this case we can use the methodology
of introducing the distribution density F(7) (or, as is sometimes said, the ‘spectrum’)
of Debye-type relaxation times in the field of their existence (see Chapter 2). In the
general case the complex dielectric permittivity is written as

é(w)—aoo_roF(T)dT
€0 —Ex  Jo 1 +ijwr’

(8.22)
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where F(7)dr is the fraction of the Debye relaxation processes with the relaxation
time falling in the range of 7 + d7. If we suppose the existence of a single relaxation
time in a system (or, in other words, F(7) = 6(t — 7y)), then expression (8.22)
automatically transfers into the Debye relationship (8.15). As usual, natural
normalization is introduced for function F(7), namely,

ro F(r)dr =1. (8.23)
0

Separating the real and imaginary parts of expression (8.22), we obtain:

e1(w) — e JOC F(r)dr
= 8.24
€0 — €00 o 1+w?r?’ (8.24)
& (w) JOC wrF(r)dr
= . 8.25
€0 — €0 Jo 14+ w?T? (8.25)

In view of the fact that the relaxation spectra, as experiments have shown,
overlap considerable spans of time, the distributions of dielectric relaxation times
are considered in the logarithmic coordinates. That is, with the replacement of
variables s = In(7y/7) the new function Z(s) of relaxation times distribution is
introduced, which follows from the normalization condition:

J:O F(r)dr = ro Z(s)ds = 1. (8.26)

—00

Then expressions (8.24) and (8.25) will take the form, respectively,

G e [F Z(Wds

R J_OC 1 +exp2(x —s)]’ (8.27)
e (w)  [* exp(x—s)Z(s)ds

€0~ J_oc 1 +exp2(x—s)]’ (8.28)

where x = In (wr).

Thus, the procedure of the experimental data analysis is reduced to searching for
function Z(s), since it is just an instantaneous frequency characteristic of molecular
mobility in a studied object and is determined by physicochemical properties of the
latter.

Strictly speaking, finding a true distribution function Z(s) is reduced to the
solution of so-called reverse problems of the dielectric spectrometry (Usmanov,
1996), namely, to the relations:

> Z(s)ds 7

Jfoo 1+exp2(x—s)] U(x), (8.29)
> exp(x—s5)Z(s)ds

Jfoo 1 4+ exp [2(x — S)} - V(x), (8.30)

where U(x) and V(x) designate quantities (¢ —&g)/(gg —€x) and e3/(g9 — €50),
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which were obtained experimentally with some measurement errors. The latter, in
their turn, represent an additive type of noise having a fluctuation character, with the
normal distribution law (see Chapter 2).

Indeed, the solution of integral equations (8.29) and (8.30) results in the well-
known reverse problem of restoring Z(s) from the approximate values of U(x) and
V(x), which is just an indicator of incorrectly stated problem (Tichonov and
Arsenin, 1979). The sought distribution function Z(s) is determined by solving the
first-order Fredholm equation of convolution type. Really, the integral equations
(8.29) and (8.30) can easily be rewritten in the form of the first-order Fredholm
equation of convolution type. For example, equation (8.30) can be written as

r K(x — $)Z(s)ds = V(x), (8.31)
where
exp (x — ) |

“TrepRi_y) 2hE) (8:32)

K(x —5)

(ch (x — ) is the hyperbolic cosine) is called the core of the integral equation. For
solution of the integral equations of convolution type some rather complicated
techniques of statistical regularization are applied, including Tichonov’s method of
regularization (Tichonov and Arsenin, 1979), which require serious mathematical
training and appropriate computer means (Usmanov, 1996).

Historically, however, the first graphical constructions applied in polarization
investigations of dielectrics were those of the Cole—Cole diagram type. Such
approaches were called the ‘traditional’ methods, applying the ‘matching’
empirical functions of distribution of dielectric relaxation times, offered by Cole
and Cole (1941), Davidson and Cole (1950), Havriliak and Negami (1967) as
well as the series of other functions. Such a graphical ‘traditional’ approach was
found to be, nevertheless, in many cases a rapid and rather reliable method for
studying the dielectrics. And for these reasons such an experimental technique is
actively applied now (we shall demonstrate this below in the analysis of dielectric
properties of freshwater and electrolytes). It should be emphasized that similar
graphical approaches are used not only in studying dielectrics, but also in
studying physical systems of a quite different nature which possess relaxation
properties at the same time.

Now we consider briefly the technique of graphical determination of limiting
values of dielectric permittivity for a given (single) relaxation mechanism. The values
of parameters ¢, and ¢, in the case of applying any of considered empirical dis-
tribution functions Z(s) are determined similarly. If wr — oo, then in all cases
e1(w) — €4 and &(w) — 0; therefore, e¢(w) — €. When wr — 0, £(w) — & and
g>(w) — 0; then e(w) — ¢y. For these reasons the dielectric parameters gy and e,
can be found as the points of intersection of experimental dependencies &, = f/(&1)
with the axis of real numbers at high and low frequencies for any polarization
mechanism. In the given context we mean, certainly, the frequency bands in which
the given (single) relaxation mechanism is actively manifested. The most probable
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dielectric relaxation time 7, (under the action of any mechanism) is determined from
the condition of maximum of the frequency dependence of the factor of losses:

2foro = 1, (8.33)

where f, is the frequency of a maximum of the factor of losses. As a rule, in the
region of active manifestation of polarization properties the experimental depen-
dence e, = f(w) has a prominent extremum (see examples in Figures 8.3 and 8.4),
and f is determined fairly reliably for the given mechanism. If, however, the inter-
relation between various mechanisms is complicated, the problem of determination
of the frequency of a maximum of losses and limiting values of dielectric permittivity
represents a fairly complicated problem (Sharkov, 1983, 1984, 1996¢; Liebe et al.,
1991). In this case it is necessary to use a priori data about possible relaxation
mechanisms.

8.3.3 The Cole—Cole model

As we have noted above, many experimental results are known where the Debye
formulas do not describe the frequency behaviour of diclectric properties of a
dielectric. In this case the experimental curve €, = f(¢;) is not a full arc of semicircle
with the centre lying on the abscissa axis. It represents either a non-full arc segment
of a circle, or ‘bevelled arcs’, composed as though of two semicircles with spaced
centres and with various values of radii. More complicated constructions are also
possible, such as the line segment transferring into the arc segment of a circle. It is
important to note that each of these geometrical constructions corresponds to some
particular feature of the relaxation mechanism.

If the experimental curve e, = f(¢) represents an arc of a semicircle with the
centre lying below the abscissa axis (Figure 8.6(b)), then in this case, as the special
investigations have shown (Cole and Cole, 1941), the dielectric permittivity can be
described by the following empirical equation called the Cole—Cole equation:

@) = e 4 (o) (8.34)
€0 — €
where 7 is some average (or effective) value of the relaxation time of the dielectric
polarization process, and « is some parameter describing the character of
distribution of relaxation times. All these considerations are valid, of course,
provided that the concept of multiplicity of relaxation times is accepted.

As the solution of integral equations (8.29)—(8.30) has shown, the Cole—Cole
equation corresponds to the symmetrical distribution of relaxation times, which is
close to the Gaussian distribution and is determined by the function:

1 sin (7e)
" 27 ch[(1 — @)s] + cos (7a)

Z(s) (8.35)
Investigation of the molecular mobility of dipoles of some polar substances has
shown that the use of a purely normal (Gaussian) distribution of relaxation times
is expedient. However, the direct use of the techniques of reverse spectrometry
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problems (8.29)—(8.30) is rather cumbersome in this case, which requires the devel-
opment of a series of approximate methods (Usmanov, 1996).

8.3.4 The Davidson—Cole model

Suppose the molecular structure of a dielectric is such that the distribution of
relaxation times has a sharply asymmetric form. So, for example, the dielectric
does not have any relaxators with a relaxation time lower than the specified one.
In this case the aforementioned circumstance is clearly exhibited on the graphical
presentation e, = f(¢;) as well — it becomes sharply asymmetric also. If the function
of distribution of relaxation times Z(s) is written in a sharply asymmetric form:
sin (G
Z(s) = 7? )(1 —exp(—=s)? > (8.36)

)

0 T< 7

then, as Davidson and Cole (1950) have shown, the complex dielectric permittivity
can be presented by the following semi-empirical Davidson—Cole equation:

6("‘)) — €

E—— (1 —jwry) ™. (8.37)

In the graphical form of the Cole—Cole diagram this model represents a ‘bevelled
arc’ composed as though of two non-full arcs with spaced centres and with various
values of radii (Figure 8.6(c)). Special graphical techniques were developed for the
determination of distribution parameters (Akhadov, 1977; Usmanov, 1996).

8.3.5 The Havriliak—-Negami model

Two various empirical expressions for the function of distribution of relaxation
times, used earlier for description of the ‘arc segment’ (8.34) and ‘bevelled arc’
(8.37), can be generalized in the form of the Havriliak—Negami distribution

(Havriliak and Negami, 1967):
) = oo 1y 4 (o) (8.38)

€0 — €x

If we assume that in equation (8.38) § = 1, we shall obtain the expression for the
Cole—Cole distribution function in the form of (8.34). For a =0 we obtain the
expression for the Davidson—Cole distribution function in the form of (8.37), and
at simultaneous equalities « =0 and § =1 formula (8.38) represents the Debye
function (8.15). Figure 8.6(d) represents the asymmetric arc function ¢, = f(g),
which corresponds to the Havriliak—Negami distribution function. As seen from
the figure, this theoretical curve e, = f(e;) is linear in the high-frequency band
and represents an arc segment in the low-frequency band. To check the possibility
of quantitative description of the experimental data of dielectric measurements by
the empirical Havriliak—Negami distribution function (8.38), it is necessary to
determine graphically the values of five dispersion parameters (g¢,¢&s, @, 5, Tp)-
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Parameter ¢ is obtained by extrapolation up to intersection of dielectric permittivity
e1(w) with the abscissa axis in the low-frequency band, and parameter ¢, is found by
linear extrapolation of experimental data points €, = f(g;) up to intersection with
the same axis in the high-frequency band (Figure 8.6(d)). The other parameters are
determined by the special graphical procedure (Usmanov, 1996).

Detailed dielectric investigations of complex polar dielectrics (of natural and
artificial origin) have indicated that in many natural substances there takes place
the superposition of both relaxation dipole processes and the phenomena of
resonance character, and this occurs in rather complicated combinations (the
simplest versions are demonstrated in Figures 8.3 and 8.4). For analysing such
complicated dipole-cluster dielectric processes, researchers have used, along with
the models listed above, some more complicated empirical functions of distribution
of relaxation times and, accordingly, more complicated graphical data processing
techniques.

As a whole, we note that the recognition of various polarization mechanisms
from the experimental data represents a quite specific problem, and its detailed
discussion is beyond the scope of this book. The appropriate useful information
can be drawn up from the original sources and the specialized literature (Cole and
Cole, 1941; Davidson and Cole, 1950; Havriliak and Negami, 1967; Akhadov, 1977;
Usmanov, 1996).

8.4 DIELECTRIC PROPERTIES OF FRESHWATER

The development and manufacturing of high-sensitivity microwave remote sensing
and scatterometric onboard systems in recent years (see Chapter 14) makes it
possible to investigate fine features of radiobrightness fields (of the order of 0.5—
0.1K and lower) and backscattering fields (0.5dB) of the Earth surfaces. This
circumstance necessitates, in its turn, the development and formation of a high-
precision relaxation model of the dielectric characteristics of liquid water, since in
the majority of problems of remote sensing the terrestrial surfaces and dispersive
atmospheric formations the relaxation model represents a fundamental basis for
theoretical and practical calculations (see Chapters 7, 11 and 12). Using known
microwave remote sensing and radiolocation relations, it can easily be shown
(Sharkov, 1983) that the relative dielectric constant variations of +5% may cause
radiobrightness contrasts of £(1.5-2) K (in the centimetre and millimetre bands) and
scattering cross-section variations of £(0.05-0.15)dB (for grazing angles in the
millimetre and centimetre bands). Therefore, the problem of developing such a
numerical relaxation model should be stated now. Such a model would allow us
to describe the experimental results to an accuracy not worse than +1% in a wide
range of temperatures and wavelengths (from 1 km to the submillimetre band). In
spite of the fact that the indicated problem was first formulated rather long ago
(Sharkov, 1983), recent investigations (Lipton et al., 1999) have shown, that its final
solution should not be expected soon. This is, first of all, due to the situation in
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studying the structural properties of liquid (fresh) water and the physicochemical
properties of supercooled water.

8.4.1 The structure of water

The structure of liquid water is the subject of intensive investigations and discussions
at present (see, for example, Sinyukov, 1976; Horne, 1969). The polar nature of a
water molecule and its ability to generate strong intermolecular hydrogen bonds
result in associating water molecules into the multi-molecular complex containing
a multitude of molecules. Liquid water represents a mixture of such sets, or ‘clusters’,
with more or less ‘free’, or monomeric, water molecules. As the temperature grows,
the clusters are ‘melted’, and, since their specific volume is greater than that of non-
associated water, the hydrostatic pressure results in the destruction of structured
sections existing in a liquid.

Our ideas on the shape of a water molecule are mainly based on studying its
gaseous state. However, there is no reason to believe that in water, or in any fluid,
the structure of a molecule is quite different.

According to modern notions, the electron cloud of a water molecule has the
shape of truncated four-bladed propeller, which can be placed in an irregular cube.
In this case the oxygen atom is at the centre, and the two hydrogen atoms are at
opposite corners of one of the cube’s faces (Figures 8.7(a) and (b)). The H-O-H
angle constitutes 104° 31’. Two of the eight electrons of an oxygen atom are situated
near its nucleon, another two electrons are associated with hydrogen atoms, and two
non-separated pairs of electrons form the branches, which extend up to opposite
corners of that cube’s face which is opposite to the face occupied by the hydrogen
atoms. These branches of an electron cloud are of special interest for us, because,
being the areas of concentration of negative charges, they attract positively charged
hydrogen atoms of adjacent molecules and provide the bond between water
molecules (the so-called hydrogen bond) (Figure 8.7(c)). The O—H distance for a
water molecule in the gaseous phase equals 0.9568 A and slightly increases in the
solid (ice) phase, reaching 0.99 A.

Although the problem of the precise distribution of a molecule charge has yet to
be finally solved, it is in any case of importance that the charge distribution causes a
large electrical dipole moment of a water molecule and a strong hydrogen bond
between the molecules. These quantum-mechanical characteristics are of principal
importance, because, if the water molecules did not have negatively charged electron
cloud branches and dipole moments, they would not be able to interact between each
other, and no liquid water would exist on the Earth’s surface. The World Ocean
would be gaseous and, accordingly, no evolved biological life would exist on the
Earth.

Water vapour does not have any structure. It consists of monomeric water
molecules, rarely encountered dimers of water. The first models of liquid water
structure are subdivided into two types: some theories consider the water structure
as a homogeneous continuum; in other models the existence of a mixture of various
structures is supposed. But in both cases the structure of a solid state (ice) is used as a
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Figure 8.7. Electronic and structural peculiarities of the water molecule. (a) Electronic
‘clouds’ of water molecule. (b) Molecular orbitals of water molecule. (c) Schematic presenta-
tion of structural properties of water molecule and hydrogen bond. The direction of the dipole
moment is marked by a white arrow. (d) The structure of liquid water in the Frank—Wen
model of ‘flickered’ clusters (Horne, 1969).

starting point. Further development has led to the cluster Frank—Wen model. Its
essence consists in the fact that liquid water is supposed to represent a conglomerate
of ‘flickered’ clusters composed of molecules associated by hydrogen bonds and
‘floating’ in a more or less ‘free’ water (Figure 8.7(d)). The theory does not
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postulate the existence of remainders of a crystal lattice of ice and does not explain in
detail either exactly how the water molecules are combined in clusters or whether the
quasi-crystalline structure exists inside the clusters at all. Of principal significance
here is the idea of the ‘flickering’ nature of clusters, which are constantly forming and
dissolving. Outside the clustered zones the hydrogen bonds are broken up, and the
water behaves as a ‘monomeric non-bonded water’ (Horne, 1969).

In the case of both quasi-crystalline and cluster models the presence of
monomeric water molecules in parcel of water is postulated and, accordingly,
there should exist a certain contribution of monomers to the relaxation properties.
Such ideas are very close to the original hydrodynamic Debye model (Debye, 1929),
namely, the idea of a solitary dipole in a viscous homogeneous medium. This model
leads to the well-known Debye relaxation mechanism (with a single relaxation time)
(section 8.3). It can easily be seen here that the presence of both quasi-crystalline
structures and flickering clusters should generate a variety of relaxators with various
relaxation times and, thereby, it should sharply transform the purely Debye model of
liquid water into one of versions of models with a multiplicity of relaxation times.
However surprising this idea may seem, the study of dielectric relaxation (see below)
indicates that in fresh water (unlike in electrolytes, e.g. salt water) there exists only
one type of rotating particle (relaxator), which is presumably supposed to be a
dipole-monomer with a single relaxation time.

Another complicated problem in this area is the structure of highly supercooled
(well below freezing point) water, whose presence is experimentally recorded in
convective cloudy systems (Rosenfeld and Woodley, 2000). The question is: does
the supercooled water keep the structure of so-called ‘warm’ water (with temperature
higher than 0°C), or is it significantly rearranged (Angell, 1982)? No unambiguous
answer to this question has yet been given.

However, in spite of certain successes in studying the physicochemical properties
of liquid water, no-one has managed to develop a strictly quantum (without
phenomenological enclosures in the form of structural models) theory of the electro-
dynamic properties of liquid water that allows one to obtain design values of the
dielectric parameters of water to a high degree of accuracy (~1%). Researchers have
for a long time been forced to follow the path of developing and modernizing semi-
empirical dependencies of appropriate parameters in the Debye (D) relaxation model
(equation (8.15)) or in the Cole—Cole (C-C) model (equation (8.34)), as new and new
experimental data have appeared (Saxton, 1952; Hasted, 1961, 1972; Ray, 1972;
Rozenberg, 1972; Mason et al., 1974; Mitnik, 1978; Kaatze and Giese,
1980;Zaghloul and Buckmaster, 1985; Sharkov, 1983, 1996¢; Liebe et al., 1991).

Whereas all these models are fairly close in respect of the qualitative character of
frequency dependencies of dielectric properties of water, they are quite contradictory
in their detail. This concerns, first of all, the values of the distribution parameter «
(i.e. the definition of the type of model, in essence) and of the ‘optical constant’, and
the dependencies of these parameters on temperature. So, in the generalized paper by
Mason et al. (1974) the proposed two versions of relaxation models for liquid fresh
water — the D model and the C-C model — were compared with the experimental data
available in 1974. This comparison has not shown any essential advantages in using
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the C-C model as compared to the Debye model. Both models, in general (for some
particular applications), to a low but satisfactory degree of accuracy (of 4-7%), are
supported by the experimental data on the complex permittivity (CP) in the metre,
decimetre and centimetre bands. Further advance into the millimetre and sub-
millimetre bands is characterized, however, by sharp distinctions between the
initial experimental data, reaching 25% or more, even within the narrow tempera-
ture range of 19-22°C (Sharkov, 1983). Data for a wider temperature range are
absent. This situation was also noticed later by Liebe et al. (1991). It can easily be
seen (Sharkov, 1983) that, in re-calculating for emissive characteristics (Chapter 7),
the uncertainty in values of radiobrightness temperature for the water surface
reaches 15-20K. And such an accuracy is already inadmissible when studying a
variety of modern remote sensing tasks (see Chapters 7 and 12).

Sharkov (1983) has shown that the main physical reason for discrepancy
between empirical models (in parameter .., first of all) is the illegitimate use of
experimental data obtained in the millimetre and submillimetre bands (i.e. outside
the sphere of influence of the purely Debye absorption band) for forming the
simplest emipirical models, for example, the D model. However, the question of
determining the high-frequency boundary of the Debye absorption band could not
be considered in detail because of the absence of experimental data within a wide
temperature range at that time. Liebe ez al. (1991) have since shown that in this range
the formation of the double Debye model with a double relaxation time value was
possible. In other words, the question can be raised here about using the Davidson—
Cole model (equation (8.34)) in this wavelength band. Strictly speaking, exactly this
possibility is demonstrated by the qualitative pattern of frequency characteristics of
the dielectric properties of water presented in Figure 8.3.

The purpose of this section is: (1) to compare, to a high degree of accuracy
(~1%), the parameters of existing empirical design models both among themselves
and with the D model parameters obtained by Sharkov (1983, 1996¢) and Liebe et al.
(1991) from CP experimental data processing in 1975-1991; and (2) to form the high-
precision numerical relaxation model of the dielectric properties of liquid water and
to consider the possibilities of its being applied to the solution of remote sensing
tasks.

In so doing, special attention is given to determining the type of relaxation
model that would adequately describe the dielectric parameters of liquid water in
the millimetre band, as well as for supercooled water (in the temperature range from
0° to —40°C).

8.4.2 The experimental data processing technique

The values for the parameters of model D were obtained by Sharkov (1983, 1996¢)
by means of the diagram technique, which is based on constructing the linear
approximation dependencies from the experimental data presented in the rectangular
coordinate system (8.20)—(8.21). It follows from these relations that the sought
values of the () and e, (¢) parameters are determined at the point of intersection
of linear approximations of data points on the ordinate axis. And the Ag(¢) values are
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Figure 8.8. Experimental diagrams for €;(\) as function €,(A)/X (a) and for £;()) as function
e2(A)+A: (1) evidence of work (Kaatze and Giese, 1980) at t = —4.1°C; (2) evidence of work
(Burdette et al., 1980) at 1 = 23°C; (3) evidence of work (Ho and Hall, 1973) at 1 = 30°C; (4)
evidence of work (Blue, 1980) at r = 20°C; and (5) evidence of work (Demyanov et al., 1974).
The solid lines show linear interpolations for equations (8.20) and (8.21). Experimental points
are marked with wavelengths (in centimetres), at which they are obtained. Values for tangents

of angles «, an, a3, and cotangents of angles ay, as are given in corresponding columns in
Table 8.1.

determined, accordingly, from the gradient of slope (the tangent or cotangent of the
angle of slope, respectively) of the indicated dependencies. Examples of such con-
structions are presented in Figure 8.8(a) for centimetre and decimetre bands, and in
Figure 8.8(b) for the millimetre band. The experimental data processing results are
presented in Table 8.1 and in Figures 8.9-8.11. The discussion of the values of the



Table 8.1. Parameters of the D relaxation model for freshwater from experimental evidence

No. t, °C €0 [ As, cm A, cm Reference
1 (2) 3) 4 (5) (6) @)
1 —4.1 89.1+0.3 3.76 £0.1 2.3;3.0; 3.4;4.1; 5; 7.5; 10; 16.7; 30 Kaatze and Giese, 1980
2 0 87.8+0.2 3.304+0.05 3.9; 4.57; 5.66 Pottel and Lossen, 1967
3 0 59+0.1 3.28+£0.05 0.82; 1.72; 1.18; 1.98 Pottel and Lossen, 1967
4 5 88.0+0.5 5.0+0.3 2.954+0.03 3.19; 2.14 Lyaschenko ez al., 1976
5 20 5.2+0.05 1.76 £0.05 0.163; 0.22; 0.29 Blue, 1980
6 20 59+0.1 1.68 £0.05 0.38; 0.4; 0.42; 0.45; 0.5; 0.65; 0.70; 0.818 Demyanov et al., 1974
7 23 79.0+0.3 1.604+0.03 3;5;,7.5;94; 143 Burdette et al., 1980
8 25 78.240.1 1.61 £0.02 5.66; 11.49 Pottel and Lossen, 1967
9 25 76.5+0.5 5.0+£0.3 1.44+£0.02 3.19; 2.14 Lyaschenko et al., 1976
10 25 78.9+0.3 52403 1.60 +0.05 0.88; 1.55; 3.12 Van Loon and Finsy, 1957
11 30 76.27£0.08 11.32; 20.98 Ho and Hall, 1973
12 35 75.2+0.3 1.27+£0.05 0.82; 1.12; 1.72; 2.41; 3.9 Pottel and Lossen, 1967
13 50 709+0.4 0.924+0.03 0.82; 1.12; 1.72; 2.41; 3.9 Pottel and Lossen, 1967
14 50 69.54+0.5 5.0+£0.3 0.77+£0.02 3.19; 2.14 Lyaschenko et al., 1976
15 60 66.8 0.1 17.24; 52.00 Pottel and Lossen, 1967
16 60 65+1 0.84; 0.63; 3.15 Asheko et al., 1989
17 80 60+ 1 0.63; 0.84; 3.15 Asheko et al., 1989

Note. Original experimental evidence for processing performed by Sharkov (1983) was carried over from literature references. A are operating wavelengths.
Errors indicated on parameters are determined from graphical processing.
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Figure 8.9. Temperature-dependence of static constant of liquid water. (a) Values ¢, of
models I-1V relative to model VI g5 (Mason et al., 1974). (1 is model I; 2 is model II; 3 is
model IIT; and 4 is model IV). (b) Absolute values of (). Dots present data of model IV with
90% confidence intervals. Squares present experimental evidence of work (Hasted and
Shahidi, 1976). Diamonds present results obtained by Sharkov (1983) with processing experi-
mental evidence available in literature (numerical values are given in Table 8.1). (§) Data of
model VII, interpolating with equation (8.44).

parameters of model D thus obtained is given below. The efficiency of the considered
technique (Sharkov, 1983, 1996¢) is demonstrated by the inset in Figure 8.8. It can be
seen here that the construction (8.20) enables us to obtain the value of parameter
go(?) (with regard to errors of both geometrical constructions and experiment
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Figure 8.10. Temperature-dependence of relaxation wavelength. (a) Values Ag of models I-II1
relative to model VI Ag (Mason et al., 1974) (1 is model I; 2 is model II; 3 is model III).
(b) Absolute values of Ag(¢). Solid dots present data of model VI with 90% confidence
intervals. Solid diamonds present result obtained by Sharkov (1983) with processing remote
sensing data of Akvilonova and Kutuza (1978). Open diamonds present results obtained by
Sharkov (1983) with processing laboratory evidence on dielectric properties of liquid water
(numerical values are given in Table 8.1).

(Ho and Hall, 1973)) to a record accuracy — better than 0.1%, in fact,
gy = 76.27 £0.08 (¢ =30°C). This result is virtually inaccessible using the other
graphical techniques, in particular, in constructing the standard C-C diagram
(using equation (8.18) and Figure 8.6(a)).
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Figure 8.11. Frequency dependence of the real part for the complex permittivity at tempera-
tures from —4.1°C to 80°C. 1 is at temperature —4.1°C (Kaatze and Giese, 1980). 2 is at
temperature 0°C (Hasted, 1972; Pottel and Lossen, 1967). 3 is at temperature 19-21°C (Blue,
1980; Demyanov et al., 1974; Apletalin et al., 1970; Meriakri et al., 1980; Volkov et al., 1980).
4, 5, 6 are at temperature 25°C, 35°C and 50°C (Pottel and Lossen, 1967). 7 and 8§ are at
temperatures 60°C and 80°C (Asheko ef al., 1989).

8.4.3 Empirical models

Consider the values of parameters €y(?), £, (¢) and Ag(¢) for some relaxation models
used now in practical calculations (in all formulas the temperature is expressed in
Celsius degrees and Ag(¢) in centimetres).

The Saxton—Hasted—Stogryn model, formed from the data obtained by Saxton
(1952), Hasted (1961) and Stogryn (1971) and called here model I conventionally, is
as follows:

o(1) = 87.74 — 0.40087 + 9.398 x 1072 + 1.4 x 107°°7,
As(1) = 3.0[1.11 —3.82 x 10721 + 6.938 x 107*> — 5.096 x 10°], (8.39)
en(f) = 4.9 40.98, '

a=0.

The working range of temperatures, over which, in this author’s opinion, this
approximation model is valid, is as follows: 0 < ¢ < 40°C.
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The Ray model (Ray, 1972), called here model II conventionally, is as follows:
go(1) = 78.54[1.0 — 4.579 x 107 (1 — 25.0) + 1.19
x 1073(1 — 25.0)* — 2.8 x 1078 (1 — 25.0)],

2513.18
_ —4
)\5([) =3.383 x 10 €Xp {[+273 }, (840)
0o (1) = 527 +2.164 x 10721 — 1.313 x 10772,
16.81

a(f) = 6.0926 x 1072 —

1+293°

The working range of temperatures, over which, in this author’s opinion, this
approximation model is valid, is as follows: —20°C < ¢ < 50°C.

The Rozenberg model (Rozenberg, 1972), called here model III conventionally,
is as follows:

eo(f) = 88.2 — 0.40887 + 0.000 817,

As(1) = 1.466 exp {—0.06341} + 1.36 x 1074 — 2.729 x 1021 + 1.873,

(8.41)
Eso(t) = 5.5,

a=0.

The working range of temperatures, over which, in this author’s opinion, this
approximation model is valid, is as follows: —40°C < ¢ < 75°C.

The other designed empirical models are to some extent a consequence of the
abovementioned models, but with some changes in the temperature dependencies of
parameters. For example, the models used by Rabinovich and Melentev (1970)
(called here model IV conventionally), differ from model I in the £, (¢) dependence,
in accordance with the data of Hasted and ElSabeh (1953), namely,

£ (1) = 5.0 + 0.0225¢ (8.42)

and model V, in a paper by Klein and Swift (1977), in the . () dependencies,
namely,
o(1) = 88.045 — 0.41471 4 6.295 x 1074 +1.075 x 107°F. (8.43)

Note that the authors, as a rule, have not studied in detail the validity of approxima-
tion models in the indicated temperature ranges.

Statistical processing of the experimental data obtained before 1974 has allowed
Mason et al. (1974) to formulate the model VI, which was presented in the original
paper in the form of tables of mean values and 90% confidence intervals
(0 < t < 75°C) and reproduced in Figures 8.9, 8.10 and 8.12. This model, having
been most justified experimentally for the year 1979, consists of two versions: the
purely Debye model and the C-C model, the distinctions between these versions in
their mean e, (¢) values not exceeding 0.05% and in their Ag(#) values, 1.5%. The
confidence intervals are for () less than 0.5%, and for Ag(#) about 3.5%. In other
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Figure 8.12. Temperature-dependent ‘optic’ constant in the Debye model. 1: model I with its
uncertainty range. 2: model II. 3: model III. 4: model IV. 5: model V with 90% confidence
intervals. 6: model VI with the standard confidence intervals. 7: Results obtained by E.
Sharkov (1983) with processing evidence of various authors (see Table 8.1).

words, according to the data of Mason et al. (1974), one can state that the distinc-
tions in €,,(z) and Ag(¢) parameters in both the models mentioned are essentially
lower than the 90% confidence intervals of each parameter value for a separately
taken model. Therefore, the introduction of the C-C model (which is more compli-
cated than the D model) for describing the dielectric properties of water (at least
from the viewpoint of the €., () and Ag(¢) parameters) is completely unjustified (see
Sharkov (1983) for more details). This circumstance is a major point, since it unam-
biguously indicates the prevalence of relaxators with a single (and strictly defined)
relaxation time in the structure of freshwater.

A similar processing, performed in 1981 by Kaatze and Uhlendorf (1981) on the
same basis material, but taking in some additional experimental data, allowed these
authors to formulate the numerical Debye relaxation model (called here model VII
conventionally), which is close to model VI with respect to e, () and Ag(7) para-
meters. The distinctions between these models in the mean e, (¢) values are less than
0.2% (¢t =0-60°C) and 1-0.2% for Ag(¢) values. In the same paper, Kaatze and
Uhlendorf proposed the following compact formula for e, (¢):

lgeo (1) = 1.94404 — 0.001991. (8.44)

The working range of temperatures, over which, in this author’s opinion, this
approximation is valid, is as follows: —4.1°C < 1 < 60°C.

It is important to note that Kaatze and Uhlendorf (1981) (as well as, by the
way, the authors of model VI (Mason et al., 1974)) have neither found a regular
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dependence for the optical constant £.,(¢), nor presented it in analytical form. The
reasons for this (strange at first sight) circumstance will be discussed below.

8.4.4 The analysis of the £,(7) and A\s(7) parameters

Proceeding from the above considerations, our further study (following Sharkov,
1983) will be as follows: (1) to analyse thoroughly the temperature dependencies of
£,(t) and Ag(?) in the numerical models I-V as compared to model VI (in the relative
ratio); (2) to compare the numerical calculations by models VI and the approxima-
tion (8.44) of model VII with the magnitudes of the e,,(r) and Ag(7) parameters
obtained by Sharkov (1983) from experimental data processing (Table 8.1) under
the assumption that the model D for fresh water is valid. The numerical values of
parameters are given in the table along with the values of working wavelengths, the
CP data of which were used in the graphical techniques of (8.20)—(8.21). The analysis
of Figure 8.9 indicates that the approximating formulas for the static constant e, (¢)
of models I-IV correspond well to each other and to models VI and VII: the
distinctions in the approximation expressions do not exceed 0.5%.

The numerical values obtained by Sharkov (1983) from the CP experimental
data processing by the technique of (8.20)—(8.21) (see Table 8.1), confirm to a fairly
high accuracy (better than 0.4%) the validity of numerical approximation models
(see Figure 8.9 (inset)). The analysis of the e, (¢) dependence indicates the pre-
dominantly linear decrease of static constant values with temperature with
gradient (Aey/At) = —0.37 per degree Celsius. Thus, in numerical calculations in
the temperature range of 0-60°C any of the aforementioned approximations can be
used to a degree of accuracy of the order of 0.5%.

It is of interest to note that attempts to find, by means of fine experiments
(Szwarnowski, 1982), any features in the frequency characteristic of the complex
dielectric constant in the decimetre and metre wavelength bands, which would
differ from the Debye model, have failed. This fact testifies once again to the
undoubted prevalence of solitary relaxators in the polarization properties of
water, as well as to a vanishing contribution of water clusters, which seems rather
strange by itself. As we shall show below, the real situation is significantly different
even for weak electrolytes.

Of special interest (see Sharkov, 1983, 1996c; Liebe et al., 1991; Lipton et al.,
1999) is the study of the dielectric properties of supercooled water (below 0°C) in
connection with suppositions on the rearrangement of an like-ice structure of ‘warm’
water at a temperature lower than 0°C into some kind of ferroelectric structure
(Angell, 1982), as well as in connection with the problems of remote sensing of
convective cloudy systems. However, because of natural difficulties, detailed experi-
mental data on measuring the CP of finite volumes of supercooled water are still
absent. So, in 1976, Hasted and Shahidi (1976) presented the results of some fine
laboratory experiments (at a frequency of 1652 Hz) on measuring the CP for super-
cooled water in the form of microdrop emulsion dispersed in an organic solution.
The results of these experiments on measuring, in essence, the static constant
(=35 <1< —-5.0°C) are shown in the inset in Figure 8.9 along with the fitting
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formula (8.44). From comparison of these data it can be concluded, that the dielec-
tric properties of supercooled water (at least from the viewpoint of parameter €. (7))
can be satisfactorily described within the framework of the relaxation model of
‘warm’ water (model VII). And, apparently, no sharp transformation of the relaxa-
tion mechanism in liquid water at negative temperatures does occur.

As far as the fitting dependencies of the relaxation wavelength are concerned,
Figure 8.10 illustrates particular quantitative conformities in the approximations of
various models in the range of ¢t = 0-40°C. The best conformity is observed between
models I and VI, namely, the differences in Ag values do not exceed 1%
(t = 0-50°C). For models IIT and VI the differences are of the order of 2-3%; the
worst situation occurs for model II, where the distinctions exceed 5-10%. The
numerical values of Ag, obtained by Sharkov (1983) in experimental data processing
(see Table 8.1), show that for the range of 20-25°C the approximation of model I
(inset in Figure 8.10) is most suitable. Thus, for numerical calculations in the
temperature range of 0 to —40°C the A\g(#) approximation of model I should be
recommended. With increasing 7 > 40°C all three models (I-III) sharply worsen in
their conformity with model VI. The reasons for this are discussed below. Reliable
experimental data on the temperature dependence of Ag(7) for supercooled water are
absent. And we can only suppose that, if the exponential character of the Ag(¢)
dependence conserves also for 7= —40°C, then the relaxation wavelength can
reach values of the order of 10cm. Such a conclusion is substantiated by the
results of our CP data processing for water at 1 = —4.1°C (see the inset in Figure
8.10), as well as by the estimates of Ag(#) for supercooled water obtained earlier by
the original technique using the experimental data from the double-frequency radio-
thermal system in sensing the supercooled drop clouds (Akvilonova and Kutuza,
1978). However, the analysis of the inset in Figure 8.10(b), where these results are
reproduced (with appropriate re-calculation to fit them into the scale of the plots),
indicates that final conclusions about the numerical approximation model can hardly
be drawn because of considerable measurement errors.

8.4.5 Analysis of parameter ¢ (1)

Before proceeding to the analysis of optical constant values in the existing relaxation
models, we shall consider the general contemporary situation concerning the avail-
ability of experimental data on frequency CP dependencies in the band ranging from
short centimetre to submillimetre waves. It can easily be seen from the analysis of
relations (8.16)—(8.17), that it is just this wavelength band where the features of
spectral CP dependencies of water should make the main contribution to the
formation of the values of parameter £,,(¢). And their analysis will allow us to
reveal the reasons for discrepancies in the empirical models in relation to the
mentioned parameter.

Figure 8.11 presents the experimental (1970-1991) data on measuring the
spectral dependence of a real part of CP in the wavelength band of 3-0.07 cm and
in the temperature range of —4.1 to 80°C, as well as the fitting curves corresponding
to these data. The analysis of the spectral dependencies presented indicates two
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important circumstances. First, in the millimetre and submillimetre bands, experi-
mental data are extremely limited over the temperature range. So, in the 0.07-0.5cm
band the data are available only in the range of 19-21°C. Second, even in this rather
limited temperature range the conformity of compared experimental data over
spectral dependencies is quite weak: approaching the submillimetre band the diver-
gence between the €; values exceeds 30-40%. The reasons for such serious non-
conformities are related, most likely, to systematic errors in the experimental
techniques used. So, Demyanov et al. (1974) have used the balance absorption
method; Blue (1980) has measured the reflection coefficient; and Apletalin et al.
(1970), Meriakri et al. (1980) and Volkov et al. (1980) have applied quasi-optical
techniques. The experimental nonconformities mentioned should serve as a basis for
in-depth study of the source of measurement errors, because the existing situation
with the experimental CP data in the millimetre and submillimetre bands cannot be
regarded as satisfactory. Similar conclusions were drawn later by Liebe ef al. (1991)
and Lipton et al. (1999). The experimental data in this region of electromagnetic
waves are quite important for correct formation of the ‘optical constant’, since this
band is some kind of transition between the modes of purely Debye and super-Debye
absorptions in the submillimetre band (see Figure 8.3). It is still impossible to form a
reasonable picture of spectral CP dependence in the millimetre and submillimetre
bands within the temperature range required for remote sensing applications (from
—40 to +90°C) (Sharkov, 1983, 1996¢; Lipton et al., 1999). However, taking into
consideration the available data (Figure 8.11) and the character of spectral depen-
dence of the Debye ‘branch’ in &;()\) as A (see relation (8.16)), we can state quite
confidently that at ¢ ~ 0°C the boundary wavelength Az between the purely Debye
and super-Debye bands tends to 0.3-0.4cm; for ‘supercooled’ water (r < —10°C)
A & 1-2cm, whereas for ‘hot” water (7 > 60°C) Ag sharply ‘runs’ into the submilli-
metre region (Ag &~ 0.08-0.06cm, or in the frequency band of 12-17cm™'). The
estimations of parameter €. (¢) carried out by different techniques bear a burden
of the experimental nonconformities mentioned and of a limited (over the tempera-
ture range) volume of experimental data.

Figure 8.12, in which the plots of () are constructed for existing models (the
D model), illustrates their rather weak conformity with various models, not only in
the quantitative, but even in the qualitative respect. So, the early (1952-1961) relaxa-
tion models (Saxton, 1952; Hasted, 1961; Van Loon and Finsy, 1957) were based on
the idea that the optical constant does not depend (to a low degree of accuracy, of
about 20%) on the temperature (model I), or on the data (Hasted and El Sabeh,
1953), which were interpreted later as a weak temperature growth (model 1V). This
attitude of the authors was justified, because they did not have at their disposal any
reliable experimental data in the millimetre wavelength band at that time.

However, the subsequent (1961-1981) acquisition of experimental data on the
CP of water (including those in the millimetre band) did not elucidate the situation in
any way. So, in accordance with Ray’s (1972) data, model II supposes a strong
decrease of e.,,(¢) (Figure 8.12) down to 1 and below (at a temperature of 65°C),
which is a doubtful physical result. Subsequent science publications did not confirm
this fact either.
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Rozenberg (1972), the author of model III, kept to the early models, supposing
the optical constant €,, = 5.5 to be constant within a wide temperature range, from
—40 to +75°C, without estimating the accuracy of this parameter. The author of
model I1I, however, did not have at his disposal any appropriate experimental base
to formulate such conclusions.

The digital models, formed by Mason et al. (1974) (model VI) and Kaatze and
Uhlendorf (1981) (model VII), were constructed on the same experimental facts.
Their analysis (Sharkov, 1983, 1996c) enables us to reveal a peculiarity which is
traced as a considerable decrease of ¢,, — from 6.0 down to 4.0 — with increasing
temperature. On the other hand, in model VII the values of the parameter €., change
drastically (up to 20%) as the temperature varies by 1°C only (see Figure 8.12: for
t =20°C e,, = 5.5, and for 1 = 21°C g, = 4.0). Such ‘kicks’ in the optical constant
values did not allow the authors of model VII to formulate the analytical form of the
temperature dependence of £, (). One more interesting point follows from the
analysis of Figure 8.12: the earliest relaxation model (model I by Saxton (1952))
includes, in essence, all modern approximation approaches for £, (z) values.

Sharkov (1983) has shown that such an (‘unstable’) situation is due to the fact
that the procedure of calculating the e, values has illegitimately included the experi-
mental data obtained at wavelengths lying beyond the field of influence of the purely
Debye absorption band. For example, for 7 = 20°C the use of data at wavelengths
shorter than 0.2cm is incorrect. In this case, as mentioned above, the boundary
wavelength between a purely Debye and super-Debye absorption bands very
heavily depends on temperature. The analysis of processing of the experimental
data obtained in 1980-1991, undertaken by Sharkov (1983) with account taken of
the circumstance mentioned above, has shown (Figure 8.12) that the ¢ (¢) values,
formed from relation (8.21) and from the data of various authors, lie within the
limits of 5.0-5.9 in the wide range of temperatures (1 = 0-50°C).

To finally solve the question of the temperature dependence of £ (¢), as well as
of Xs(7) of the relaxation D model for freshwater, it is necessary to carry out
successive experiments (by the unified technique) on measuring CP with regard to
some kind of a ‘choice rule’ (Sharkov, 1983), namely: for ‘cold water’ (¢ = 0-20°C)
in the wavelength band of 1-3 cm, for ‘warm’ water (¢ = 20-40°C) in the wavelength
band of 0.6-1.5 cm and for ‘hot” water (¢ = 40-90°C) in the wavelength band of 0.1-
0.5cm. Ignorance of the ‘choice rule’ formulated above, and the illegitimate
inclusion into the processing procedure of the experimental data at wavelengths
lying beyond the range of the purely Debye relaxation band for the temperature
range under study (as was just done in constructing the models I and VI), will result
in the aforementioned nonconformities in the e, (¢#) parameter in the models.
Sharkov (1983) has presented a demonstration example of the illegitimate
construction of e,,(¢) with a special ‘capture’ of the frequency region of super-
Debye absorption. As a result, the range of ‘kicks’ in e, (¢) values was from 3.8 to
4.6 as the temperature varied by one degree only (from 21 to 22°C), which is a
physically contradictory result.

The attempts to introduce the double-Debye model, undertaken by Liebe et
al. (1991), slightly improved the situation, but, nevertheless, full clarity in the
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relaxation model for the band of short millimetre and submillimetre waves was not
achieved.

Thus, for the majority of remote sensing applications satisfactory approximation
formulas for the static constant (= —40 to +90°C) and relaxation wavelength
(t=0-40°C) can be used from models I and VII. For supercooled and ‘hot’
water, however, additional purposeful investigations should be carried out, since a
satisfactory temperature approximation of the relaxation wavelength value is absent.
The approximation formulas for the ‘optical’ constant can be used only if account is
taken of the essential (~20%) uncertainties in the parameter values. To finally solve
the question of the temperature dependence of the ‘optical’ constant, a set of experi-
ments should be carried out with allowance for the revealed ‘rule of choice’ of the
temperature ranges and working wavelengths studied.

8.5 DIELECTRIC PROPERTIES OF SALT WATER

A cosmic feature of our planet lies in its riches of salt water. The World Ocean
contains about 1413 x 10'® kg of aqueous solution of electrolyte of medium concen-
tration. Salt water occupies about 71% of planet Earth’s surface. The substances
contained in such a huge amount of water can be subdivided into two categories. The
first category includes dissolved substances such as salts, organic compounds and
dissolved gases; the second category includes substances forming an independent
phase, such as bubbles of gas and solid particles of both inorganic and organic
origin. In addition, electrolytes and non-electrolytes are sometimes distinguished
among dissolved substances. When dissolved in water, electrolytes form the
particles which are able to transfer the electric charge (the ions) and, thereby, to
decrease the electric resistance of a system. This phenomenon is not characteristic of
non-electrolytes.

The substances dissolved in seawater are represented primarily by salts. The
chemical composition of seawater is rather complicated in detail. Here it is sufficient
to mention that a ‘typical’ specimen of seawater weighting 1 kg contains about 19 g
of chlorine in the form of chloride ions, 11 g of sodium ions, 1.3 g of magnesium ions
and 0.9 g of sulfur (mainly in the form of sulfate-ions). In other words, seawater
represents an aqueous 0.5M solution of NaCl and 0.05M solution of MgSO,. In
addition, sea water contains small admixtures or traces of almost all the elements of
Mendeleyev’s table.

The well-known physical fact that the water possesses a considerable heat
capacity suggests that the oceans represent an excellent thermostat for the entire
climatic system of the Earth. This simple and, at the same time, fundamental
fact involves some unusual consequences — it provides one of the necessary con-
ditions (the ‘greenhouse’ effect) for the origin and development of biological life
on Earth. In addition, the existence of moderate (and, moreover, comfortable for
a human being) climatic conditions where there is a moderating influence from
neighbouring seas has played an important part in the history and development of
human civilization.
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The oceans of the Earth represent an actively functioning system, which is
regulated, first of all, by thermohaline processes. Therefore, the knowledge and
monitoring of spatial-temporal fields of the ocean’s surface salinity and of the
surface field of temperature are most important problems of remote sensing
(Miller, 2000; Miller and Payne, 2000; Miller et al., 1998; Schmitt and Montgomery,
2000).

8.5.1 Electrolyte structure

The presence of electrolyte drastically changes the structure of water (Sinyukov,
1976; Horne, 1969; Dzens-Litovskii, 1967). The local violation of the water
structure near an ion or, more correctly, the region of this violation, is called the
hydrated atmosphere of an ion. It has a complicated composition and consists of an
inner zone with an ordered structure and an outer zone with the reordered structure
of water. Hydration can be quantitatively described by means of hydration numbers
of ions or on the basis of the notion of the time a water molecule remains in an
equilibrium state near an ion and in the pure water structure. The experimental
investigation of hydration is fairly laborious; however, generally speaking, the
greater the density of the charge of a cation, the stronger it is hydrated; cations
are usually hydrated stronger than the corresponding anions.

Water structure theories based on the assumption of the existence of the
destroyed structure of ice or ice-like crystalline structure in a liquid explain the
strengthening or spliting effect of ions by the fact, how easily they can be disposed
at emptinesses of a structure or at the place of a water molecule in the frame.

In accordance with the Frank—Wen model of liquid water, based on the idea of
flickering clusters, the ion in the solution is supposed to be surrounded by two
structured layers of water molecules — the two-zone model (Figure 8.13). The
inner layer (A), which, apparently, can be identified with what is called a
‘primary’ hydration sphere, is more dense owing to electrostriction. And the water
molecules inside this layer are less mobile and form strong bonds with an ion in its
Coulomb field. By electrostriction is meant the appearance of mechanical spatial
deformations in the dielectric structure under the effect of the electric field of an
ion. Since in such a type of interaction the polarization of dielectrics in the electric
field is proportional to the square of the electric field strength, the quadratic effects
can appear in the ultimate polarization properties of a dielectric (see Prochorov,
(1984) and also Chapter 2).

At a greater distance from an ion (region C in Figure 8.13(a)) the water
molecules remain ‘normal’, though they can be very weakly polarized by the
electric field being present everywhere. Of special interest is the intervening layer
(B). In this space the Coulomb field of an ion is still strong enough to be capable
of violating the ‘normal’ structure of liquid water. But, nevertheless it is still
insufficiently great to be capable of causing rearrangement of water molecules and
generating any new structure (as, for example, in the layer A). Therefore, layer B
represents a region of comparative reordering. In any case, the ordering or
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(a)

Figure 8.13. Schematic presentation of a hydro-rotation atmosphere of an ion in water
solution. (a) Two-zone model. A: the ‘inner’ layer; B: the intervening layer (space); C:
‘normal’ water or the ‘outer’ layer (space). (b): Two-dimensional pattern of structure-
ordered hydro-rotation atmosphere for ion Na¥. D;: Electrostriction zone. D,: Frank—-Wen
cluster zone. Ds: the intervening space (‘free’ water).

reordering effect of an ion depends on which one of indicated layers predominates. A
very orderly zone is supposed (Sinyukov, 1976; Horne, 1969) to exist in the
unchangeable state for all ions, whereas the specific properties of various types of
ions are caused by changing a very disorderly zone B. Investigations of viscosity
variation with the electrolyte concentration allow us to quantitatively evaluate the
influence of various ions on water structure. The ions strengthening the water
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structure, such as Na™ and Mg>", increase the water viscosity (positive hydration),
whereas the ions destroying the water structure, such as, for example, CI”', K™ and
Cs", increase its fluidity (negative hydration). One should keep in mind that,
depending on the temperature of solution, the degree of an ion’s influence on the
water structure can drastically change — so, at 27°C the hydration process for a
sodium ion changes from positive to negative. Similar features exist for other ions
and cations as well. Subsequent investigations have shown that these features are
most likely to be associated with the structure features of an ordered zone owing to
the fact that the inner, very orderly zone is, in its turn, separated into two subzones
(Figure 8.13(b)). The zone closest to an ion consists of a very orderly pattern of water
molecules which experience strong electrostriction; and adjacent to it is the zone that
is determined by the size of the Frank—Wen cluster zone with weaker electrostriction
effects. The inner electrostriction zone can be identified with the so-called primary
hydration shell. This is apparently confirmed by the fact that in the case of the Na™
ion it contains four water rigidly structured molecules, whereas in the general very
orderly zone (zone A) of the hydration atmosphere of a sodium ion the number of
water molecules varies (depending on temperature) from 52 to 21 (Figure 8.13(b))
(Horne, 1969).

As the concentration of salts increases up to 1.5-2 mol/l, the boundaries of zone
B come into contact, and the free water zones in the electrolyte virtually disappear
(the full solvation regime). As the concentration further increases, the solution
assumes a structure resembling a composition of a melt of salts with conservation
of the crystalline structure elements (Sinyukov, 1976).

As we have noted above, the water molecule as a whole can experience two types
of motion — translational and rotational. The water molecule is characterized by the
high value of electric dipole moment; therefore, in the external electric field this
molecule tends to be turned and to assume the position corresponding to the
external field direction. The time of relaxation of a rotational process can be deter-
mined by measuring the frequency dependence of the full dielectric constant in the
alternate electric field, and such results (see section 8.4) are quite indicative. At a
particular temperature only one value of relaxation time is observed, and this
indicates, that the reorientation of particles of only one type takes place. Experi-
ments on water viscosity, as well as dielectric investigations have shown that the only
reoriented particles in a liquid water are the monomers, rather than any polymeric
forms (H,O),. Apparently, the polymeric (cluster) water complexes do not possess
pronounced electric dipole moments and cannot essentially distort the general Debye
polarization pattern of liquid (fresh) water (Figure 8.3). This result is, without doubt,
of momentous significance. However, its psychological effect was so great that for
more than 40 years the validity of the purely Debye model for electrolytes has been
stated with variations (with a negative sign) of only numerical values for the static
constant and relaxation wavelength. Such a rather ‘naive’ point of view has been put
forward, without any proof being adduced, for a long time, not only by specialists in
the physico-chemistry of water solutions (Hasted er al., 1948; Lane and Saxton,
1952; Horne, 1969), but by radio-engineers and radio-physicists as well (Krasiuk
and Rosenberg, 1970; Akindinov et al., 1976). And only in 1984 has Sharkov
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(1984) critically analysed in detail the previous experimental data and his own data
and shown the necessity of this point of view being largely reconsidered.

So, in spite of the progress made in the study of the thermodynamic and the
physicochemical properties of solutions of strong electrolytes, there is no quantita-
tive theory of electrodynamic properties of such water systems which would allow us
to determine the dielectric parameters by calculation. In papers by Hasted et al.
(1948) and Lane and Saxton (1952), on the basis of experiments carried out within
a rather limited frequency band, it was stated that the dielectric characteristics of
strong solutions of electrolytes (and the aqueous solution of NaCl in particular) are
described by the purely Debye relaxation model only. And the first estimations of
parameters of this model were given (in tabular form) in the same papers as a
function of temperature and salinity of a solution. This presentation has been
widely publicized and was reflected in its final form in Stogryn’s (1971) empirical
model. And, furthermore, this presentation has been actively propagandized by the
authors of a series of subsequent papers (Hasted and El Sabeh, 1953; Hasted and
Roderick, 1958; Yastremskii, 1961; Ermakov et al., 1975; Klugman, 1980). But these
authors’ own experimental data obviously contradicted the statement that the diclec-
tric properties of strong electrolytes are described by the purely Debye relaxation
model. Detailed comparison of the experimental data on the dielectric parameters of
electrolyte solutions obtained in the centimetre and millimetre bands, with corre-
sponding calculations by Stogryn’s model, allowed Sharkov (1984) to state that the
viewpoint on attributing strong electrolyte solutions to the purely Debye type should
be accepted as being invalid. Because this circumstance is important for microwave
sensing applications, the next section will be devoted to a more attentive study of this
problem (following Sharkov (1984)).

8.5.2 The experimental data processing technique

The Debye type of a polar liquid is known to be a particular case of the more general
relaxation model, the so-called Cole—Cole (C-C) model. According to this model
(equation (8.34)), the complex dielectric permittivity (CP) is described by the
following empirical relation:

60(57 l) - EOC(Sa l)
1—a(S,)
- [.AS(S, t)]

X

E(N, S, 1) = .0 (S, 1) + (8.45)

where (A, S, 1) = e1(\, S, 1) + jeac(A, S, 1); g9 and e, are the static and ‘optical’
constants of a model, «(S,¢) is the parameter of distribution of relaxation times,
As(?) is the relaxation wavelength, \ is the working wavelength, S is the salinity (in
parts %o), ¢ is the temperature; e,c (A, S, 7) is the corrected value of the imaginary part
of CP (in accordance with (8.8)):

exc(N, S, 1) = £2(\, S, 1) — 600(S, 1)\, (8.46)

i.e. &5(\, S, ) minus the correction for the ionic conductivity component. In the
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limiting case a(S, ) — 0 the C-C model transfers into the purely Debye relaxation
model. The assigning of an investigated electrolyte (the aqueous solution of NaCl) to
the corresponding relaxation type and the estimation of the model’s parameters (in
the general case, o, Ag, g9 and €,,) were accomplished by constructing the C-C
diagrams from the experimental data. These diagrams represent a set of curves
which approximate the experimental data points in the Cartesian coordinate
system (Figure 8.6(b)). Quantities ¢, and e,, were found as the abscissa values
when fitting curves intersect the abscissa axis, and quantities o« and Ag were
estimated by relations

V(A S 1/(1-a(S))
= {UEA S;] , (8.47)
a=2y, (8.48)
T

where V' and U are the distances from the experimental point of a fitting semicircle
up to points gy, and e, respectively, ¥ is the angle (in radians), formed by the
abscissa axis and the line connecting the centre of a circle with point .. To
determine unambiguously the relaxation model type by the technique considered,
the accuracy of the initial experimental data on &, and &,c should be not worse
than 5-7%.

8.5.3 Spectral dependences of strong electrolytes

The measurements of the dielectric parameters of highly absorbing strong solutions
of electrolytes to the indicated accuracy represent a fairly complicated experimental
problem. At present, a limited amount of successive experimental data on
measuring the CP of a solution of NaCl is available. These data are predominantly
concentrated within a narrow wavelength band of 3.5-2.5cm and are obtained at
temperature of 25°C. And only separate data points are available in the other
frequency and temperature ranges (see the reference book by Akhadov (1977)).

For this reason, to obtain the general picture it seems expedient to thoroughly
and critically analyse the available experimental data in the centimetre and milli-
metre bands (Sharkov, 1984). As far as the decimetre and metre bands are
concerned, the uncertainty in the experimental data on dielectric parameters is
very great (up to qualitative distinctions in the same dependencies). For example,
according to the data by Smirnov and Sharkov (1979), the value of &1 (), S, ) in the
decimetre band decreases with increasing concentration of aqueous solution of
NaCl. According to other data (Klugman, 1980), this value increases; and
according to the data of Christensen et al. (1966) and by Smirnov and Sharkov
(1979), eyc(A,S,1) assumes even negative values in the decimetre band for
S > 100%o. It is still impossible to obtain a rather unambiguous picture in the
decimetre and metre bands. In this connection, we shall limit further consideration
to the analysis of the experimental data (on electrolytes) obtained in the range
3.6-0.4cm.
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Figure 8.14. Spectra of the real part of the permittivity of water solution NaCl in the range
0.4-3.5cm at 25°C. Symbols and dotted lines display experimental data. Shaded areas present
spread of data. Solid lines are calculations of spectra of £;(\) for water solution NaCl in
accord with the Stogryn model. Figures next to experimental data and curves present values of
salinity (in parts %o). Open triangles (at 0.8 cm) are data by Onishenko and Sharkov (1982). 1,
data by Harris and O’Konski (1957). 2, Barthel et al. (1970). 3, Yastremskii (1961). 4,
Christensen et al. (1966). 5, Ermakov et al. (1975) (at 20°C). 6, Van Loon and Finsy (1975).
7, Apletalin et al. (1970). 8, points calculated by E. Sharkov using empirical Lane and Saxton
model (1952) at 25°C.

The joint analysis of the data, obtained by Onishenko and Sharkov (1982), and
of the results in the 4-mm band (Ermakov et al., 1975), points to the necessity of
essential correction of the widespread point of view, that the CP (and, hence, the
emissive characteristics) are not sensitive to salinity variations in the millimetre band
(see, for example, Wilheit, 1979; Wilheit and Chang, 1980; Ulaby et al., 1981, 1982,
1986; Miller, 2000). The results, obtained by Onishenko and Sharkov (1982),
are presented in Figures 8.14 and 8.15. Together with the data from papers by
Ermakov et al. (1975), Harris and O’Konski (1957), Barthel er al. (1970),
Yastremskii (1961) and Christensen er al. (1966), these results form a set of
frequency dependencies, in the band 0.4-3.5cm, of the real and imaginary parts of
the CP of aqueous solutions of NaCl for various degrees of concentrations (the
salinity was determined in parts %o). On the same figures are plotted the frequency
dependencies, in the band 0.08-3.5cm, of distilled water’s CP according to the data
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Figure 8.15. Experimental and calculated spectra of imaginary full €, and corrected e,¢ parts
of the permittivity of water solution NaCl. Dotted lines are curve-fitting of experimental data.
Legends as for Figure 8.14.

taken from papers by Grant and Shack (1967), Apletalin et al. (1970) and Van Loon
and Finsy (1975).

The analysis of frequency dependencies of (), presented in Figure 8.14, gives
rise to the following important conclusion. In the band of 0.8 cm there exists the
critical wavelength Acr, at which the converging (from the long-wave extremity)
branches of a set of frequency dependencies are ‘retracted’ and then diverge as the
wavelength decreases (see Figure 8.14 (inset)). Thus, the analysis of these data
indicates the existence of two characteristic regions in the frequency dependence of
e1(A): for A > Acg the concentration dependence gradient ky = (1/£1)(0e,/0S) is
negative and equals k; = —0.25% per 1%o of change of salinity (with increasing
salinity up to 200%o). At the same time, for A < Acgr coefficient k; changes its sign
— it becomes positive and equals about 0.15% (per 1%o) at the wavelength of 0.4 cm.

Figure 8.15 presents the sets of frequency dependencies of an imaginary part of
CP according to the data by Onishenko and Sharkov (1982) and bringing in the data
of papers by Ermakov et al. (1975), Harris and O’Konski (1957), Barthel et al.
(1970), Yastremskii (1961), Christensen et al. (1966) and Van Loon and Finsy
(1975), as well as the so-called ‘corrected’ e,c(A, S, ), i.e. with subtraction of the
correction for the ‘through’ (ionic) component of conductivity.

Here it is interesting to note, that in the &,(\) dependencies some critical
wavelength (Acg ~ 1.7cm) is also observed, at which the sensitivity of ,(\)) to
salinity is absent, i.e. k, = (1/2,)(09e,/0S) =~ 0. In this case, unlike the dependence
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of a real part of CP, the opposite situation arises: for A > Acg and k, < 0 for
A < Acr- In considering the e,c(), S,7) dependence attention should be given to
the following important circumstance. As seen from Figure 8.15, in general, the
character of the frequency dependence of e,c(\, S, f) remains similar to &,(\) for
the freshwater (i.e. to the form of the Debye relaxation maximum). However, the
maximum value of ,c(S) sharply drops with increasing mineralization: it decreases
almost three times as S increases up to 250%o. In this case the relaxation wavelength
shifts to the side of shorter wavelengths: whereas for freshwater Ag ~ 1.75cm, for
salinity of 250%o the value of \g equals 1.2cm. A sharp decrease of relaxation losses
can be, apparently, explained by formation of a quasi-crystalline structure in the
electrolyte and by orientational stabilization of a considerable part of polar
molecules of water.

Let us now compare the experimental data obtained with calculations of CP
values carried out using the empirical Stogryn model (shown by solid curves in
Figures 8.14 and 8.15). Analysis of the figures indicates that, whereas in mineraliza-
tions of solutions up to 60%o (in the band of 1.5-3.5cm) the indicated model can
describe the frequency dependencies accurately enough (to ~10-15%), for
S > 100%o and A < 1cm this model fails to give even a qualitatively correct descrip-
tion of the modern experimental data. Note that the earlier (1951-1952) experiments
(Lane and Saxton, 1952), on the results of which Stogryn based his empirical model
of CP of electrolytes, contained an obvious systematic error in measuring ; in the
6-mm band. So, according to the data of the paper by Lane and Saxton (1952), ¢,
decreases with increasing mineralization of a solution, whereas the real situation is
just the opposite (see Figure 8.14 (inset)). It was this circumstance which gave Lane
and Saxton reason to suppose, that the dielectric characteristics of strong electrolytes
were described by the relaxation Debye model, and to present the first estimates of
the model’s parameters (in tabular form) depending on the temperature and salinity
of the solution. This presentation has been widely publicized (as we have already
mentioned above) and was formulated in a completed form in Stogryn’s empirical
model (Stogryn, 1971). However, the comparison of the data, calculated by the
model of Lane and Saxton (1952) (for ¢ = 25°C and A = 0.62 cm), with the results
of modern experiments (Figure 8.14 (inset)) reveals the systematic error indicated
(Onishenko and Sharkov, 1982). Furthermore, we note that Stogryn has compared
the calculations by his model with the experiments, in which the mineralization
values were limited to 28%o only. Though at the time, when he had formed his
model, there were already publications (Harris and O’Konski, 1957; Barthel et al.,
1970; Yastremskii, 1961; Christensen et al., 1966) on investigations of electrolytes
with salinity of up to 275%o.

Thus, the critical analysis of available experimental data and those obtained by
Onishenko and Sharkov (1982) revealed a fairly complicated character of frequency
dependencies of CP of strong electrolytes in the centimetre and millimetre bands.
The widespread empirical model of Stogryn does not describe satisfactorily the
mentioned dependencies either from the quantitative or from the qualitative side.
A new empirical model must be constructed which would more adequately describe
the experimental frequency and concentration dependencies of CP.
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8.5.4 The C-C diagrams for strong electrolytes

The C-C diagrams presented in Figure 8.16 are constructed (Sharkov, 1984) for 10,
20 and 25°C using the experimental data, obtained in the wavelength band from 3.6
to 0.8 cm, and for freshwater in the band of 17.2-0.4 cm. It is impossible to construct
the C-C diagrams for a wider temperature range (i.e. for ¢ < 10°C and ¢ > 25°C)
because of the absence of successive experimental data at several frequencies in the
millimetre and centimetre bands.

The analysis of constructed C-C diagrams for the investigated electrolyte
indicates that, in spite of the fact that the used experiments have been performed
in different years and by different techniques, nevertheless, the general picture is
revealed unambiguously enough: the C-C diagrams of the strong NaCl solution
represent not full semicircles (as for polar Debye-type liquids), but only partial
arcs, whose centre is essentially displaced from the abscissa axis, this effect being
most strongly prominent in cooling the electrolyte (in our case for ¢ < 10°C)
(Figure 8.16(a)—(c)).

This circumstance enables us to draw a major conclusion, that the dielectric
parameters of strong electrolytes are described by the relaxation Cole—Cole model
(a # 0), rather than by the purely Debye relaxation model (¢ = 0), as had long been
thought. This circumstance entails a series of consequences and, in particular, quite
different (as compared to purely Debye ones) dependencies of the C-C model para-
meters of electrolyte solutions on temperature and concentration (see below). And
this circumstance, in its turn, drastically changes the physicochemical concepts of the
structure of electrolytes (Sinyukov, 1976; Horne, 1969).

Now we shall analyse the validity of the experimental data of papers by Hasted
et al. (1948), Hasted and ElSabeh (1953) and Lane and Saxton (1952), because it was
the results of these papers, which underlay the Debye model concept for electrolytes
and have been used till now in constructing and modifying the physicochemical
models of electrolyte solutions. The validity of the experimental data from papers
by Hasted ez al. (1948), Hasted and ElSabeh (1953) is questionable because of certain
circumstances. First, the value ¢(S) of the real part of CP, obtained (in the centi-
metre wavelength band) for S = 60%o, is greater than for S = 28%., which obviously
contradicts both the accepted general picture of concentration dependencies ¢;(S),
and the other experiments presented later in the same wavelength band. Besides, if
we analyse the data by Hasted er al. (1948), Hasted and ElSabeh (1953) by the
considered technique for obtaining the C-C model parameters, then the €., value
becomes either negative (for 10°C and S = 34 and 60%.) or zero (for 20°C and
S = 60%o). In this case the value of parameter ¢, for the NaCl solution numerically
corresponds to the g, value for freshwater. Similar data processing results clearly
indicate serious systematic errors in the original measurements carried out by
Hasted ef al. (1948) and Hasted and ElSabeh (1953).

As far as the paper by Lane and Saxton (1952) is concerned, then, as was shown
in paper by Onishenko and Sharkov (1982) (see above), the experimental data on the
dielectric properties of a strong electrolyte, obtained in that paper in the millimetre
wavelength band, also contain serious systematic errors which have resulted in
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Figure 8.16. Cole—Cole diagrams for the water solution NaCl at 10°C (a), 20°C (b) and 30°C
(c). Diagrams by E. Sharkov (1984) using the following data: 1, Yastremskii (1961); 2,
Onishenko and Sharkov (1982); 3, Hasted and ElSabeh (1953); 4, Hasted er al. (1948); 5,
Grant et al. (1957); 6, Grant and Shack (1967); 7, Demyanov et al. (1974); 8, Barthel et al.
(1970); 9, Christensen et al. (1966); 10, Hasted and Roderick (1958); 11, Pottel and Lossen
(1967). Figures next to experimental data and curves show values of salinity (in parts %o).
Letters display operating wavelengths for (a) and (b) diagrams: A=17.24cm; B=9.22;
C=10; D=3.2; E=1.26; F=0.8; H=0.5; K=0.4. For (c) diagram: A=11.49cm; B=10;
C=5.66 D=3.6; E=3; F=2.5,G=1.76; H=0.8.
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Figure 8.16 (c)

qualitative contradictions with the modern data. That is to say, according to the
data of Lane and Saxton (1952), the £(S) value at the wavelength of 0.62cm
decreases with increasing electrolyte concentration, whereas in reality the ¢(S)
value should rise. We can easily be convinced of the latter conclusion by considering
the corresponding C-C diagrams (see Figure 8.16(a) and (b)). For the indicated
reasons the data of these papers have not been used in the analysis presented
below, though they have been plotted on C-C diagrams for illustration (see Figure
8.16(a) and (b)).

8.5.5 The C-C model parameters for strong electrolytes

The concentration dependencies of the relaxation times distribution parameter are
virtually linear (Figure 8.17(a)) — the lower the solution temperature, the greater the
deviation in dielectric properties of electrolyte from the Debye model. A more
thorough study indicates an important feature of the dependencies considered;
namely, at any values of solution salinity a pretty sharp (virtually jump-wise)
decrease of the a(S) value is observed in the narrow temperature range (22-25°C).
At 25°C the deviation of the considered model from the Debye one is insignificant
(especially for low salinities of solution). This fact is enough to just explain why the
results of processing performed by Sharkov (1984) almost fully correspond to the
results of the processing of the early data (Barthel ez al., 1970) by the Debye model,
undertaken in the paper by Ermakov et al. (1975) (see Figure 8.17(b) and (c)).
Generally speaking, this circumstance just explains why many researchers adhere
to the purely Debye model of electrolytes, since the main scope of experiments was
accomplished in the range of ‘room’ temperatures.

The analysis of obtained concentration £,(S) dependencies (Figure 8.17(b))
indicates that, though the qualitative character of these curves in relation to
similar dependencies of the Debye model was conserved (i.e. £4(S) decreases with
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Figure 8.17. Relation of C-C and D model parameters to salinity of water solution NaCl.
(a) distribution parameter; (b) static constant; (c) relaxation wavelength. S is salinity (in parts
per thousand). N is molar concentration (in gmol/l). Open symbols display processing results
obtained by Sharkov (1984) using data by Yastremskii (1961), Ermakov et al. (1975),
Onishenko and Sharkov (1982), Harris and O’Konski (1957), Barthel er al. (1970),
Christensen et al. (1966), Demyanov et al. (1974), Grant et al. (1957), Grant and Shack
(1967); Pottel and Lossen (1967). Solid symbols: 1, 2 and 3, results obtained by Ermakov et
al. (1975) using D model; 4 and 5, calculations using Stogryn (1971) model and Sharkov (1984)

model.
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increasing concentration of a solution), nevertheless the ko= (1/gy)(0e/0S)
gradient considerably decreased. Note that this gradient is one of the basic para-
meters featuring in physicochemical models of electrolyte solutions. Whereas in the
Debye model the value of this gradient was 0.23-0.3 (per one %o) and virtually did
not depend on temperature (see Figure 8.17(b)) in Stogryn’s approximation model,
processing with regard to features of the C-C model revealed a strong temperature
dependence — from 0.1 (at 10°C) up to 0.18-0.2 (at 25°C), the main drop being a fall,
as in the case of «(S,1)), to the temperature range of 22-25°C.

The magnitudes of £¢(S) also underwent considerable variations — their values
were found to be essentially higher than the purely Debye €,(S) values — by 30-40%
for S = 60 > 100%o. Note also a certain physical incorrectness of Stogryn’s approx-
imation of &,(S) (or €¢(N)), obtained in accordance with the Debye model concept:
at solution salinity greater than 250%. (N > 5.1) the ¢, values become negative (at
20°C), which is invalid physically. If, however, we proceed from the C-C model,
then, as can easily be seen from the analysis of Figure 8.17(b), the essentially
nonlinear character of the concentration dependence of €y(N) is observed (even at
t = 25°C), and the static constant does not assume values lower than 35 (for solution
salinity up to 250%o.). For cooled water (1 = 10°C) the £¢(S) dependence is much
weaker, and for weak and medium electrolytes (S < 50%o) the values of static
constant virtually do not differ from ¢, of fresh water. At the same time, the
distribution parameter reaches the value of 0.1, which noticeably differs from the
Debye model data.

The results of diagram processing by the C-C model technique, presented in
Figure 8.17 for determining the character of the relaxation wavelength variation
with solution salinity, reveal the qualitative distinction from the data known in
the literature (the Debye model) (Stogryn, 1971; Yastremskii, 1961). Here we
should mention, first of all, that at 10°C the \g value increases (in the Debye
model it decreases) with increasing electrolyte solution concentration, whereas at
20°C the qualitative character of dependencies coincides with the Debye model,
though some quantitative distinctions take place (see the curves for 20 and 25°C).
A virtual coincidence of Sharkov’s (1984) results with those calculated by
Ermakov et al. (1975) in accordance with the Debye model concept is not surprising
(Figure 8.17(c)), because the relaxation process in electrolyte solutions at these
temperatures (according to Sharkov’s (1984) results) approaches the purely Debye
type with @ — 0. (This is very noticeable on the C-C diagrams in Figure 8.16(c) as
well.) A pretty sharp variation of model parameters near 25°C can be associated
most likely with the change in character of the hydration processes (from negative to
positive) for chlorine ions at 27°C (Sinyukov, 1976).

The analysis of presented data indicates that the dependencies of the optical
constant on temperature and salinity are weakly prominent for the studied variations
of temperature (10-25°C) and salinity (0-250%0) and are expressed by the relation

oo = 58402, (8.49)

not revealing any quantitative regularities inside these boundaries. The indicated
relation has more likely a qualitative character, since there are no systematic data



328 Dielectric and emissive properties of terrestrial surfaces [Ch. 8

Table 8.2. Calculated values of 4; and B; coefficients in approximations (S, ¢); As(S, ¢) and
aS, 1)

t=10°C t =20°C t=25C

A B A B A B

g0 —3.15x107% —3.92x10™* 1.60x107® —1.79x107* 3.11x107° —2.99 x 1073
As —226x107%  1.54x1073 1.52x107% —1.02x1073 6.21x1077 —1.02x 1073
o 0 1.82x 1073 0 1.22x 1073 1.62x107° 0

on the dielectric properties of strong electrolytes in the short-millimetre wavelength
band at the boundary of transition into the super-Debye absorption band.

In virtue of the practical importance of semi-empirical models of the dielectric
parameters of electrolytes (for example, for the theory and practice of microwave
remote sensing), we shall present below the results of least-squares approximation
(Sharkov, 1984) of the Cole—Cole model parameters £,(S, ¢), a(S, ) and Ag(S,?),
obtained after processing the corresponding diagrams, as the following quadratic
forms:

8O(Sv t) = 80(07 Z)[l + FI(S7 l)],
)‘S(Sa t) = )‘S(Ov t)[l + FZ(Sv t)]a
(8.50)
a(S, 1) = F3(S,1),
Fi(S,1) = B{(1)S + 4;(1)S”,

where i=1,2,3, and ¢¢(0,7) and Xg(0,7) correspond almost precisely (to an
error lower than 1%) to the Debye model approximations for the freshwater
(Stogryn, 1971). Because the number of temperature points was limited (10, 20
and 25°C), in determination of the parameters the corresponding analytical
approximations A;(¢) and B;(f) have not been found, but are presented in the
form of Table 8.2.

In conclusion to this section we note that the results of analysis (Sharkov, 1984)
gave rise to the new semi-empirical relaxation model for the dielectric properties of a
strong monoelectrolyte of aqueous solution of NaCl. However, at present it is not
possible to give a full answer to the question on concentration dependencies of the
Cole—Cole model parameters for a monoelectrolyte within a wide range of tempera-
tures. This requires the reliable and, mainly, sequential experiments to be performed
by a unified technique in the wavelength band from 0.2 to 5-6cm and in the wide
range of temperatures — from 80-90°C to negative ones (a supercooled electrolyte
solution).

8.5.6 Dielectric properties of polyelectrolytes

As we have already noted, the thorough study of the dielectric properties of mixed
electrolytes is rather complicated because of the diversity of the physicochemical
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features of components of natural electrolytes. Nevertheless, the existing (and, of
course, not complete) data indicate that the main contribution to the polarization
properties of solutions is made by the strong NaCl electrolyte, which is virtually fully
dissociated in an aqueous solution. Below are presented the experimental data on
measuring the dielectric parameters of a mixed solution of salts which is close in
composition to seawater (Smirnov and Sharkov, 1979).

Table 8.3 presents the results of an investigation of the dielectric characteristics
in the microwave bands (A =10, 18, 75 and 150cm) of composite solutions of
sodium chloride, magnesium chloride and magnesium sulfate (the partial concentra-
tions of components are indicated in Table 8.3). The same table gives the possible
radiothermal contrasts of radio-emission of corresponding media (see equation
(7.47)). It follows from the analysis of the data of Table 8.3 that the admixtures
of magnesium salts very weakly influence, in general, the real part of the dielectric
constant of a mixture (it remains constant within the limits of the experimental error)
and essentially increase the attenuation in an electrolyte. Owing to this fact, the
basically negative contrast in radiothermal characteristics of composite solutions
with respect to a monosolution is possible (from +0.2 to —4.0K).

The highly sensitive radiothermal complexes, now existing in experimental
practice, will probably, make it possible to remotely determine the physicochemical
features of composite natural salt solutions from the spectral characteristics of their
radio-emission.

8.6 SPECTRAL AND TEMPERATURE CHARACTERISTICS OF THE
EMISSIVE PROPERTIES OF WATER BASINS

Using the models of dielectric properties of water and electrolytes developed above,
we shall analyse theoretically the emissive properties of smooth surfaces of the
aforementioned media with allowance for atmosphere illumination based on
relation (7.20):

Te(M\, S,0,1) = k(N S,0,0) Ty + [1 — k(X S, 0,0)]T(\, 6), (8.51)

where (A, S,0,¢) is the emissivity of a smooth water surface, determined by
Fresnel’s coefficients R(A, S, 6, ¢) from relation (7.17), which is a direct consequence
of Kirchhoff’s law. Here T, is the thermodynamic temperature of the studied surface
and T7(), 0) is the brightness temperature of the sky and atmosphere.

The analysis of Figure 8.18, where the frequency dependencies x(\) are
presented within a wide wavelength band, indicates that the studied dependence
contains two wavelength bands which essentially differ in temperature and salinity
effect on k(\). The frequency boundary lies (conventionally) in the 5-7cm band.
Below this wavelength value the emissivity very weakly depends on salinity, in
contrast to the thermodynamic temperature dependence, where a strong negative
gradient is observed. In the decimetre and metre bands the salinity has a strong
effect on x(\) (mainly through increasing the losses in the aqueous medium), the
salinity effect being increased with the working wavelength. Besides, the temperature



Table 8.3. Dielectric characteristics of mixed electrolyte solutions

Type of solution
mixture and component

A=10cm, t = 18°C

A=18cm, t =10°C

A=75cm, t =18°C

A=150cm, t = 18°C

concentrations (%o) €1 € ATg, K ¢ & ATg, K ¢ & ATg, K ¢ & ATy, K
NaCl(20) 77.7 39.8 0 81.1 44.8 0 80.3 80.4 0 80.5 168 0
NaCl(20)+MgCl,(5,4) 76.4 40.6 +0.26 80.7 48.3 —0.95 80.1 86.2 —1.58 80.3 172 —0.45
NaCl(20)+MgCl,(7,8) 76.1 44.7 -1.0 80.2 51.6 —1.85 79.7 94.5 -3.92 80.6 187 —2.47

+MgS04(5)
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Figure 8.18. Spectra of smooth water surface emissivity at temperatures 0, 20 and 30°C for
fresh and saltwater.

dependence has a positive gradient for freshwater and a negative gradient for salt
(sea) water. The detailed numerical data on temperature and salinity dependencies of
emissivity for the wavelengths ranging from 1 mm to 1 m are presented in papers by
Hyatt (1970), Rabinovich and Melentev (1970), Lepley and Adams (1971) and
Raizer et al. (1974). These tabulated values should be used with caution, because
all these calculations were based, in essence, on the early models (Saxton and Lane,
1952) of dielectric properties of water and aqueous solutions of electrolytes (see
sections 8.5 and 8.6).

The presence of sky illumination T; (), 6) qualitatively changes the observational
situation (Raizer et al., 1975a): strong (up to 1000 K) metre-band cosmic radiation
(of the Sun and the galaxy) essentially narrows down the information region of
salinity and temperature dependence Tg(\,6,S,¢) from the side of metre-band
waves (Figure 8.19) and, in general, strongly transforms the spectral dependencies
of brightness temperature with respect to the spectral dependencies of emissivity
(Figure 8.18).

The temperature and salinity effect on the radio-emission of a water surface is
most prominent in the 50-70 cm band, the temperature gradient (ATg/Af) (i.e. the
quantity, which just determines the remote sensing efficiency) being qualitatively
different for salt and freshwater. Figure 8.20 shows the thermodynamic temperature
dependencies of Ty(S,¢) for fresh and seawater (for salinity of 20%o. and 37%o) at
the wavelengths of 18 and 75cm. All brightness temperature variations are nearly
linear — for freshwater the value of the ATy /At gradient equals about 0.5K at 1°C
for centimetre and decimetre bands. For seawater the positive gradient decreases and
assumes negative values in the metre band (—0.3 K/1°C for the wavelength of 75 cm).
Figure 8.21 presents the salinity dependencies of brightness temperature at the same
wavelengths with account taken of illumination. Variation (increase) of a solution’s
salinity results in a lowering the radiobrightness temperature at these wavelengths.
However, at higher temperatures ( = 40°C) a prominent nonlinearity of the salinity
dependence of Ty is noticeable, which is related physically to a sharp growth of
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Figure 8.19. Spectra of radiobrightness temperature of a smooth water surface at tempera-
tures 0, 20 and 30°C for fresh and salt water.
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Figure 8.20. Temperature-dependent radiobrightness of a smooth water surface at wave-
lengths 18 cm (1) and 75cm (2). I: fresh water. II: salinity is 20%o. I11: 36%o.
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Figure 8.21. Salinity-dependent radiobrightness of a smooth water surface at wavelengths 18
and 75cm. I: at temperature 0°C . II: 20°C. III: 30°C.

dielectric losses at low concentrations of salts (5-15%.). As the temperature
decreases, the nonlinearity of the Tg(S) dependence noticeably becomes smoother.
So, whereas for the wavelength of 75 cm and at 30°C the gradient for weak salinities
can reach 4-5K (at 1%o), for 18 cm it decreases down to 0.5. At ¢ = 0°C the salinity
dependence of brightness temperature in the decimetre band completely disappears
(Figure 8.21). Thus, investigations of salinity in the polar regions of the ocean using
this wavelength band (18-21 cm) are rather problematic. Brightness contrast calcula-
tions were performed (Smirnov and Sharkov, 1979) on evidence derived from
experiemental dielectric data (see Table 8.4).

It is of interest to note that, according to the data of Smirnov and Sharkov
(1979), the influence of the other (apart from sodium chloride) salts in mixed
solutions provide a negative contrast (in relation to a monosolution), but of rather
small magnitudes (from 0.2 to 3.9 K) (see Table 8.3).

The experimental data, obtained in the course of aircraft work on studying
surface salinity fields (Droppleman et al., 1970; Chukhrai and Shutko, 1978;
Blume and Kendall, 1982; Blume et al., 1977), are, generally, in satisfactory
agreement with the developed model.

As an effective example, we shall consider the results of aircraft investigations of
the sea surface salinity (SSS) field of the coastal zone of the Atlantic Ocean near
Chesapeake Bay (Miller, 2000). These investigations have been carried out by means
of the microwave passive instrument at the wavelength of 21.4 cm. The fluctuation
sensitivity threshold of the instrument, normalized with respect to the salinity value
by using the contrast value calculated from the aforementioned model, was found to
be some tenths of a part %o for the three-dimensional pixel of 1 x 1 km (see section
5.6). Plate 2 (see the colour section) shows the spatial fields of sea surface salinity of
the coastal zone of the Atlantic Ocean before (Plate 2(a)) and after (Plate 2(b))
tropical cyclone ‘Fran’ passed through the southern states of the USA (on
September 8—10, 1996). This powerful cyclone caused strong rainfall in the basin
of rivers feeding the Chesapeake Bay. A strong freshwater pulse through the river
drainage basins into the coastal zone of the Atlantic Ocean was formed, and it was
recorded on the radiothermal microwave maps (Plate 2). It would not be possible to
obtain a similar result using contact means (from on board a ship) in the spatial—
temporal scales investigated.



Table 8.4. Diclectric characteristics of strong electrolyte NaCl

A=10cm, r = 18°C A=18cm, t =10°C A=75cm, t =18°C A=150cm, t = 18°C
Normality,  Salinity,
mol/l %o &1l & ATB7K &1 159} ATB,K &1 & ATB,K £l 155 ATB,K
0 0 79.4 10.2 0 81.7 6.8 0 82.3 4.1 0 82.1 3.7 0

(78.33) (13.52) (82.48)  (10.21) (80.79)  (1.86) (80.82)  (0.93)

0.20 12 78.4 27.3 3.1 82.3 34.7 53 80.4 56.3 9.4 82.3 116 23.2
0.31 17.9 76.2 349 4.2 82.9 42.2 53 79.7 73.7 144 80.4 160 30.9
0.63 36.0 76.4 47.2 8.0 83.1 57.8 114 80.2 108 23.3 79.9 203 36.5
1.83 100.1 72.0 65.8 13.6 77.6 79.2  17.1 79.4 139 30.2 77.8 231 39.2
3.92 200.7 68.1 78.6 18.3 71.8 97.6  22.1 72.7 165 354 74.1 258 41.9
5.08 250 64.9 82.3 19.0 72.2 104 23.5 70.2 178 37.5 70.9 267 42.8

Note. Figures in brackets are theoretical values of water dielectric constant on the D model basis.
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8.6.1 Requirements for SSS observations

Salinity is a significant variable for upper ocean dynamics at very high latitudes
(near-freezing temperatures and ice formation lead to a salinity-dominated stratifica-
tion), in the western Pacific warm pool (very high precipitation and evaporation),
and in subtropical high-salinity regions. The warm pool also represents a region,
where the surface freshwater flux induces a shallow salt stratification and a ‘barrier
layer’, that isolates the surface from the main thermocline, with important conse-
quences for surface layer heating. Salinity also has a strong influence (the halosteric
effect) on the calculation of surface layer heat storage from the observed sea level.
The application of remotely sensed SSS to the study of these different ocean
dynamics phenomena implies different requirements for space, time and even
salinity resolution, due to the different scales involved and the contrast in surface
water characteristics. Typical values required to resolve some of the specific
phenomena are (Kerr et al., 2000c,d):

e Barrier layer effects on the tropical Pacific heat flux: 0.2 practical salinity unit
(1 psu=1%o), 100 x 100 km, 30 days.

e Halosteric adjustment of heat storage from the sea level: 0.2 psu, 200 x 200 km,
7 days.

e N. Atlantic thermohaline circulation: 0.1 psu, 100 x 100 km, 30 days.

e Surface freshwater flux balance: 0.1 psu, 300 x 300 km, 30 days.

The North Atlantic thermohaline circulation and convection in the subpolar
seas has the most demanding requirements, and it is the most technically challenging,
because of the lower brightness/SSS ratio at low water temperatures. A compromise
for all these different requirements would be met by considering the optimized
requirements as a general goal for the SMOS mission (Schmitt and Montgomery,
2000; Kerr et al., 2000c,d; Martin-Niera et al., 2000) (see also Chapter 14).

Here we note that the first successful remote aircraft experiments, performed in
Russia and USA at the end of 1970s and at beginning of the 1980s (Chukhrai and
Shutko, 1978; Blume and Kendall, 1982; Blume et al., 1977), gave rise to unjustifi-
able hopes for the rapid implementation of space experiments to study salinity fields
by means of antenna systems having huge apertures (Blume ef al., 1978) for ensuring
the necessary spatial resolution. Though these projects have failed, expert oceanol-
ogists nevertheless believe that the study of the spatial-temporal variability of the
surface salinity field of the World Ocean with the spatial resolutions available soon
will be one of the problems given priority in the future development of remote
sensing (Lagerloef ef al., 1995; Miller et al., 1998; Schmitt and Montgomery, 2000;
Miller, 2000; Miller and Payne, 2000).

At present, great efforts are being directed towards scientific—technological
development of radio-interferometric technology, which is sometimes called
passive aperture synthesis, for ensuring acceptable spatial resolution (Milman,
1988; Camps et al., 1997, 1998; Camps and Swift, 2000; Kerr et al., 2000b, 2000c,
2000d; Wigneron et al., 2000; Martin-Neiza and Goutoule, 1997). Parallel to this
approach, designers are working on versions of antennas with large-scale apertures,
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but with a lightweight structure (inflatable antennas), as well as deployable mesh
surfaces and other structural versions of antennas (Njoku et al., 1999, 2000b; Wilson
et al., 2000).

8.7 EMISSIVE PROPERTIES OF ICE SURFACES

The ice surfaces of congealing seas at middle and high latitudes, as well as glacial ice
surfaces (Antarctica, Greenland, glaciers in mountains) are quite important objects,
which essentially influence the hydrological and meteorological characteristics of the
Earth’s surface—atmosphere system. In this case the phase transitions of water and
ice are accompanied by releasing and absorbing huge masses of heat, by changes in
the optical regime and salinity, by the generation of strong electrical fields. The ice
surface of seas, oceans and land is a fine regulator in the thermal and dynamical
interaction of the ocean and atmosphere. Its inhomogeneities in width and huge
spatial size mean that high-speed and reliable means are required to determine
and diagnose age gradations, cohesion, the size of ice fields and their thickness. As
durable investigations of Earth’s ice surfaces by various remote sensing techniques
have shown, microwave methods provide significantly different information on the
structure and physicochemical composition of ice systems as compared to the data
provided by the methods in the optical and IR wavelength bands. This is due to the
fact that the phase transition of liquid water into the solid state is characterized by
radical changes in dielectric properties (see section 8.2).

If, however, the ice surface is qualified with regard to its place in the system
of dielectrics (and, accordingly, with regard to emissive characteristics), one can
distinguish at least three types of ice systems — glacial ice, freshwater ice and sea
ice. All these types of ice surfaces are substances which significantly differ in the
electrodynamical respect. In addition, we note that their role in thermal and
dynamical interaction in the ocean—atmosphere system is significantly different
as well.

Since glacial ice (Antarctica, Greenland, glaciers in mountains) is generated
through a very complicated morphological formation from precipitated snow,
rather than from a liquid phase, the strong influence of the internal geometrical
structure on dielectric and emissive properties of glacial ice fields over great
spatial scales is obvious. As we have noted above (section 8.2), the dielectric proper-
ties of glacial ice specimens are very close to freshwater ice characteristics — the real
part of the dielectric constant is virtually constant in the microwave band with very
small variations in temperature and structure. In other words, the so-called dielectric
anisotropy takes place here (Matsuoka et al., 1996, 1997). The imaginary part,
however, was found to be strongly influenced by weak mineralization, by the
presence of organic substance and admixtures of gas bubble type, and by thermo-
dynamic temperature. However, since the magnitude of this part is small, its value
and variations have virtually no effect on emissive characteristics. Using equation
(7.47) one can easily obtain the emissivity value for glacial ice — it will be equal to
0.93. And, thus, the radiothermal contrast between the ice surface and water surface
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can constitute considerable values namely, 100-150 K. Note that the indicated radio-
thermal contrast is greatest among the natural surfaces of the Earth.

However, the first investigations of the thermal radiation of glacial ice in
Antarctica, carried out by Russian researchers from the ‘Kosmos-243’ satellite in
1968, brought about an unexpected surprise. A serious decrease of emissive
properties of resonance type was recorded in the centimetre band in the inner
regions of Antarctica (Basharinov et al., 1971) and then in Greenland. This
result was confirmed later by the American investigations from the ‘Nimbus-5’
satellite in 1972 (see Plate 3). The effect was so unexpected and obscure, that it
was called ‘Antarctica’s puzzle’. The essence of the problem lies in the fact that
in formally restoring the dielectric properties of Antarctica’s inner regions by
the known formulas (7.47) a physically contradictory result is obtained — the
continental regions of Antarctica would represent the lakes of freshwater in
this case.

This ‘puzzle’ was soon (in 1973) resolved by the efforts of Russian scientists
(Gurvich et al., 1973). The frequency-selective variation of thermal radiation of
Antarctica’s inner regions was found to be caused by the effect of volume dissipation
of a substance’s thermal radiation on mesoscale geometrical features of the structure
of a glacier in its formation from the snow mass. Certainly, the use of the homo-
geneous dielectric model to interpret emissive characteristics is not admissible in the
given case.

The microwave investigations have clearly indicated a complicated internal
structure of the glacial ice surfaces of Antarctica and Greenland in mesoscales.
Neither contact measurements, nor optical observations could reveal these features
at all.

A more interesting point is that the exchange between the atmosphere and the
Antarctic ice sheet takes place largely through sublimation processes, i.e. through the
direct transition from the solid state to a gasecous one (avoiding the melting process).
Thereby, some peculiar areas in the Antarctic ice sheet are formed, which can serve
in many respects as the Earthly analogues of the northern ice cap of Mars (Siegert
and Fisher, 2002).

Drifting sea ice is a rather peculiar physical body. Unlike glacial ice, it repre-
sents, first of all, a multicomponent system, which includes solid, liquid and gaseous
phases. The solid phase represents an ice-crystalline consolidated skeleton, the liquid
phase is a ‘pickle’ formed from the seawater, and the gaseous phase represents air
bubbles of a quite diversified, dispersed structure. Under natural conditions sea ice
almost always represents a three-phase system. This essential fact determines its
physico-mechanical properties: the ice as a solid body always exhibits viscoelastic
properties, and as a dielectric it shows essential electrical spatial-temporal inhomo-
geneity; and, accordingly, it includes a spectrum of relaxation mechanisms (see
section 8.2). The above considerations and the severity of the hydrometeorological
conditions of formation and existence of ice make the direct (contact) investigation
of electrophysical properties of sea ice a really complicated experimental and techno-
logical problem. Nevertheless, even the first microwave radiothermal investigations
with highly sensitive instruments (Bespalova er al., 1976b) have demonstrated a
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highly efficient recognition of various types of sea ice and its spatial and temporal
characteristics.

As we have already noted, it is difficult to form a detailed picture of the dielectric
properties of sea ices, since they strongly depend on the mineral composition of
sea water in a particular basin, as well as on the temperature and meteorological
history of solid phase formation. For this reason, contemporary researchers
follow an opposite path in a certain sense — they carry out remote microwave
investigations of various types of sea ice and then restore the electrophysical
characteristics of drifting sea ice in accordance with some particular model (see,
for instance, Hewison and English (1999)). On the basis of the results of these
authors, we shall consider some types of sea ice and the spectral features of their
emissive properties.

Grease ice is a matt, brownish ice undulating as surface waves, but it also
includes flat, shiny ice rind. This category is thinner than 10 mm, and the emissivities
show a strong dependence on thickness, ranging from those of open water to thick
new ice (Figure 8.22 and Table 8.5).

Nilas includes light, dark, and rafted nilas, which could not be resolved radio-
metrically. This is a flat, new ice with no air or brine pockets and, hence, it exhibits
no significant surface or volume scattering. The emissivity is dependent on the ice
thickness, saturating when it is greater than about 30 mm. The upper line (Figure
8.22 for the nilas diagram) represents a best fit calculated for only the thicker
samples of Baltic nilas. This shows high emissivity across the spectrum, as
expected. The limited amount of Arctic nilas observed generally has a lower emis-
sivity than that found in the Baltic owing to the difference in salinity. The lower
curve in this diagram is a fit to only the Arctic samples, which may be thinner than
the ice used to calculate the Baltic nilas line.

Bare new ice is a thicker, homogeneous, flat, dark ice formed within the last
few days, undisturbed by pressure ridging or snowfall. It is characterized by flat
emissivity spectra. This ice excludes Arctic samples.

Snow-covered new ice is as above, but includes a thin surface (a few centimetres)
of fresh, dry snow. This category also includes a pancake ice (close-packed, regular,
circular floes of less than 10 m diameter) and icecakes (similar, with larger diameter).
Lower frequencies see a higher effective emissivity, as they penetrate the snow to the
slightly warmer underlying surface. Compact consolidated ice, when the snow surface
was wetter, is included in this category because of its spectral characteristics.

Broken ice covers a variety of forms, from pure slush found in fine-grained
Shuga, brash ice to larger, crushed ice floes making up close and very close pack
ice. This grouping shows a large range of spectra owing to the irregularity of the
samples’ ice fields.

Compact consolidated ice comprises large ice floes that have frozen together,
often with ridging and variable amounts of dry snow surface. This is the most
extensive ice type observed in the Baltic, and is typically 30-50cm thick. The
spectrum (Figure 8.22) shows lower emissivity at higher frequencies, characteristic
of the volume-scattering mechanism of small brine and air pockets within the
thicker, older ice pack and its snow cover.
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Figure 8.22. Nadir emissivity spectra of natural media. All samples within each surface category are shown, linked with dashed lines, and
error bars represent the standard error of mean. The average dependences are shown as continuous lines (Hewison and English, 1999).
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Table 8.5. Average emissivity of surface categories

Nadir emissivity

Category (24) (50) (89) (157)
Water, 0°C 0.504 0.617 0.660 0.743
Grease ice 0.632 0.714 0.720 0.779
Baltic nilas 0.924 0.916 0.918 0.919
Bare new ice 0.923 0.918 0.910 0.915
New ice + snow 0.961 0.944 0.937 0.915
Broken ice 0.923 0.918 0.897 0.875
Compact pack ice 0.950 0.913 0.857 0.726
Fast ice 0.872 0.744 0.672 0.969
Lake ice + snow 0.858 0.726 0.662 0.711
First year ice 0.981 0.964 0.922 0.844
Deep dry snow 0.700 0.633 0.640 0.724
Close forest + snow 0.923 0.891 0.857 0.864
Fresh wet snow 0.957 0.962 0.964 0.955

Note. Figures in brackets are working frequencies in GHz.

Fast ice is the landlocked ice found along the northern shore of the Baltic. It is
typically 60cm thick, and has a flat surface as it cannot be affected by pressure
ridging, and occasionally has a thin (a few centimetres) surface of snow. This is
the oldest of the Baltic ice types (although still “first year’), and the volume scattering
is evident — even at 24 GHz. Some samples did show spectra intermediate between
that of fast ice and other types. A trend is evident for an increase in emissivity above
100 GHz, which suggests increasing absorption, although scattering is still a
dominant mechanism.

Despite the snow cover, lake ice areas showed very similar emissivity spectra to
fast ice, which has a similar structure. This provides evidence that the brine pockets
do not dominate the volume-scattering process.

Attention should be paid to the considerable scattering (or, as authors Hewison
and English (1999) say, the errors) in separate realizations of spectral characteristics.
This is associated with a strong spatial-temporal variability of sea ice fields and with
their complicated hierarchical structure. This phenomenon was noticed long ago,
beginning with the first works on the remote study of sea ices (Bespalova et al.,
1976b). But until now these hierarchical spatial features of sea ice fields have not
been investigated fully enough, which greatly complicates the procedures of image
recognition of remote microwave observations from spacecraft (Comiso and Kwok,
1996; Parkinson et al., 1999; Belchansky and Alpatsky, 2000; Comiso, 2000).

The analysis of emissive properties of sea ices, however, results in the conclusion
that the identification (within a limited band) of various types of ice from microwave
spectra is not satisfactory. It is necessary both to essentially extend the range of
working frequencies (up to decimetres), and to use the polarization properties, as
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well as the features of spatial patterns of objects both in the radiothermal and in the
scatterometric mode of observation (Matzler and Wiesmann, 1999; Pulliainen et al.,
1993, 1999; Pulliainen and Hallikainen, 2001; Wiesmann and Matzler, 1999;
Wiesmann et al., 2000).

We shall pay attention also to the fact that the use of simple relaxation models
(of the Debye model type) for interpreting complex electrophysical systems, such as
various types of sea ice, can lead to paradoxical conclusions. So, Hewison and
English (1999), when interpreting the frequency properties of lake ice covered with
snow, obtained the value of a static constant of dielectric permittivity (for the Debye
model, section 8.3) for such a system, which is essentially lower (1.78) than the
optical constant value (67.1). This indicates that the range of use of the models of
homogeneous dielectrics with simple relaxation mechanisms for real natural media is
fairly limited, and in many cases the application of simple relaxation models (of the
Debye type) is not productive.

8.8 RADIATION PROPERTIES OF THE TERRESTRIAL SURFACES

Apart from the huge water and ice areas, a considerable part of the Earth’s surface
are the continents, which, in their turn, have a great type of diverse surfaces. In this
section we shall consider the dielectric and radiation properties of the terrestrial
surfaces in the homogeneous, isothermal, half-space approximation (the primitive
models) as a fundamental model for forming more complicated electrodynamic
models, which are better suited to the real terrestrial surfaces.

8.8.1 Primitive models

Under indicated conditions (homogeneous and isothermal) the radiation character-
istics of the emitting half-space are determined by the dielectric properties of a
medium and by the physical temperature (see equations (7.20), (7.44)). In order to
imagine more clearly the qualitative distinctions in radiation properties of the ter-
restrial media, we shall consider the dependence of the emissivity of some terrestrial
media on dielectric properties and, accordingly, the microwave contrasts received by
remote sensing devices.

Figure 8.23 presents the diagram of dielectric properties of some (natural and
artificial) media and their emissivity. The ‘coldest’, in the microwave sense, of the
earth media is the water surface and, especially, the sea surface in the decimetre and
metre bands. From the artificial media the ‘coldest’ are the metal surfaces, since the
real and imaginary parts of the dielectric constant tend (formally) to infinity. As
usual, the coefficient of reflection (in power) in the centimetre band equals less than
0.05-0.01.

Rock and sandy surfaces, in contrast to aqueous media, are ‘hot” media with
emissivity values of about 0.9-0.95 in a very wide wavelength band — from a few
millimetres up to kilometres. Glacial ice, as well as the surface media on the Moon,
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Figure 8.23. Emissivity curves for vertical incidence and for different permittivities of various
terrestrial media. Dashed lines show levels of constant emissivity.

Mars, Venus and Mercury can also be attributed to the same group of ‘hot’ natural
media.

As we have already noted (section 8.2), in some cases very rigid chemical bonds
can be obtained in artificial polymeric systems by means of special processing. The
consequence of this is a low mobility of the basic polymer chain and a limited
possibility for motion of separate groups and links. Thus, the dipole-group polariza-
tion is insignificant and the dielectric permittivity of polymers is minimal; also
minimal are the dielectric losses and losses for pure conductivity. A similar
situation arises in some widely used building materials (such as glass, asphalt,
cement, concrete and modern synthetic building materials). The emissivity of such
materials, as well as of rocks, reaches the values of 0.95-0.99 (Figure 8.23) in a very
wide wavelength band.

The intermediate (‘warm’) class of emitting terrestrial surfaces represents sub-
stances which contain water (both fresh and salt) in various physicochemical forms.
First of all, one should mention here the soils of both naturally occurring type, and
of the agricultural landscape. Among these surfaces can also be included vegetation,
which contains in its basis a great amount of saline aqueous solutions. However, one
should bear in mind in this regard, that the radiation properties of vegetation in vivo
are largely determined by its geometrical characteristics, rather than by dielectric
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properties as such. This circumstance is clearly seen for large tracts of forest and for
a grassland (Figure 8.23), whose emissivity is close to black-body radiation.
Let us now consider these basic classes of Earth more closely.

8.8.2 Rocks

The detailed studies of the dielectric properties of the terrestrial rocks in the
microwave band, carried out at the end of the 1950s and in the 1970s, were based
on the need to solve radio-astronomical problems in studying the surface layers of
the Moon, and later of Mars, based on the belief that there is a certain identity of
rocks constituting the upper surfaces of the Moon, Mars and Earth (Troitskii, 1954,
1967; Krotikov, 1962; Parkhomenko, 1965; Alekseev et al., 1967; Tikhonova and
Troitskii, 1970; Krupenio, 1974).

Since prominent electronic polarization is observed in rocks (see section 8.2), the
absence of frequency dependence of dielectric properties within a wide range of
frequencies, from the submillimetre up to the kilometre band, is obvious. This has
been confirmed by direct experiments, generally speaking (Krotikov, 1962; Parkho-
menko, 1965). In these investigations the dependencies on the chemical composition
and density of the terrestrial rocks studied (such as quartz, granite, pumice, tuff,
volcanic ashes, basalt) were found. Beginning with wavelengths of about several
kilometres (~10* Hz), the low-frequency polarization mechanisms and, in particular,
intersurface polarization come into effect. Because these wavelengths are not used
directly in remote sensing, we shall return to discussing the microwave band.
Detailed study in this band has shown that some invariant can be formed between
the real part of a dielectric constant, the tangent of dielectric loss angle (tgd) and the
density of the substance investigated. Such invariants from the density were found
experimentally for the terrestrial rocks in 1962 (Krotikov, 1962) and were called
Krotikov’s relations:

VEI — 1 tgd

= a = const;— = b = const. (8.52)
p p

Subsequent laboratory experiments (Tikhonova and Troitskii, 1970) made it possible
to reveal the values of constants in Krotikov’s relations depending on the rock
structure (holocrystalline and decrystallized) and on the content of silicon oxide,
SiO,, that determines the history of the given rock formation. It was shown to an
acceptable accuracy that Krotikov’s constants depend on the SiO, percentage (x) as

follows:
-1 40 t A
veol_ 0w, A (8.53)
p x'p X

Thus, having obtained from microwave observations the a and b values, it is possible
to restore the SiO, content from the a value and then the type of crystalline structure
from the b value. Then, from the type of rock and SiO, content, one can restore the
relationship between the other oxides as well. Using this particular remote technique,
the basic parameters of lunar soil were determined before the landing of the Apollo
mission spacecraft. These parameters included, in particular, the dielectric constant
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(e; = 2-2.5), the density (0.75-1 g/em’), the type of rocks (the SiO, content is 57%),
the homogeneity of rocks over the lunar surface (lands and seas) and the absence of
considerable dust cover. The indicated relationships are used now in microwave
studies of radiation of regolith covers of Mercury (Shchuko and Kartashov, 1999).

8.8.3 Soils

Soil moisture represents one of the basic components of the power budget at the
land—atmosphere boundary mainly through its influence on the latent energy
exchange. From the point of view of scientific and agricultural-technological
problems, it is important to obtain the data on soil moisture stored at various soil
horizons. They include: the surface soil moisture, which is determined by the water
content in the liquid state in the upper 5cm of soil and the stored water at horizons
up to 20cm and at horizons up to I m. The stored water can be present both in
vegetation, in the root system of plants and in the form of unbound and bound
water, snow and ice in the soil bulk. For apparent hydrological and meteorological
reasons the surface soil moisture rather poorly correlates with the stored water.
Therefore, one of the basic problems of agricultural technology and the hydro-
geology of land consists in detecting the moisture profile and in clear separation
of these types of soil moisture. The cost of direct observation of soil moisture is very
high and its performance is very labour-consuming; therefore, remote aerospace
monitoring of soil moisture fields is the only reasonable alternative (Schultz, 1988;
Vinnikov et al., 1999; Schultz and Engman, 2000).

A series of techniques for remote sensing of soil moisture have recently been
proposed (Schultz and Engman, 2000). They can be implemented under the strict
constraint of the absence of cloud cover, and also preliminary data on the observed
territory (such as the soil character, the type of surfaces) should be available. These
techniques include the method of moisture determination from the data of measure-
ments of reflected solar radiation in the near-infrared band (1.0-1.5 um), which is
based on that fact that the reflectivity greatly decreases with increasing moisture.
Much more sensitive to moisture variation is the degree of polarization of light
reflected by soil in the visible range — which has stimulated the development of the
polarization method. An increase in the heat capacity of soil with growing moisture
produces the contrast of surface temperatures and, hence, of thermal radiation from
wet and dry areas of soil — which serves as a physical basis for the method of
moisture determination from the data of measurements of infrared thermal
radiation. A principal feature of these methods is the very insignificant depth of
the skin-layer (1-10 pum), from which the information is obtained (see section 1.6),
and, as a result, difficulties arise in the interpretation of results. The principal
disadvantages of the methods considered are the non-feasibility of the method in
the presence of cloudiness and the necessity of taking account of the influence of the
thickness of the atmosphere.

Most promising, for the purposes of global monitoring of soil moisture, are
passive and active microwave methods (Sharkov and Etkin, 1976; Njoku and
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Kong, 1977; Schmugge and O’Neill, 1986; Ulaby et al., 1981, 1982, 1986; Reutov and
Shutko, 1990a,b; Promes et al., 1988; Njoku and Li, 1999; Shutko, 1982, 1986; Singh
et al., 2000; Rao et al., 1999; Schultz and Engman, 2000; Kerr et al., 2000a; Paloscia
et al., 1999, 2000a; Paape et al., 2000; Stoffregen et al., 2002; Yechieli and Wood,
2002). The physical basis for the possibility of soil moisture determination by means
of passive techniques is the fact that, as the moisture increases, the dielectric per-
mittivity of soil grows, and, therefore, its emissivity and radiobrightness temperature
decrease. Note here that the reflectivity recorded by microwave active instruments
(scatterometers and ground-penetrating radars), is not bound up with the influence
of the thermodynamic temperature and thermophysical properties of a medium
(unlike passive microwave techniques). Therefore, active and passive microwave
techniques can provide various scientific information of measurements.

The fact of radiobrightness temperature decreasing with increasing ground
moisture was clearly traced for the first time when the data of the measurements
of microwave radiation, obtained from the ‘Kosmos-243’ satellite (1968) at wave-
lengths of 0.8-8.5cm, was processed. In papers by Basharinov et al. (1969, 1971) it
was noted that a lowering of the radiobrightness at the areas of continents in the
latitude belt of 30-50° was observed at the places of moistening of terrestrial
surfaces, where the emissivity of soils was equal to 0.7-0.8. The vast amount of
statistical material obtained as a result of processing the data of microwave
radiation measurements from the ‘Kosmos-243" satellite, revealed the virtually
linear character of radiobrightness temperature decreasing with growing moisture
at the wavelengths of 3.4 and 8.5cm in measurements over agricultural landscape.
The subsequent series of ground and aircraft measurements confirmed the fact that
the radiation properties of various types of surfaces depend on moisture. Since then
complicated models have been developed, which take into account temperature and
moisture profiles, the type of soil and the contribution of moist and rough vegetation
(Kondratyev et al., 1970, 1973; Popov et al., 1974; Shulgina, 1975; Schmugge and
O’Neill, 1986; Liou et al., 1999; Burke and Simmonds, 2001). Let us now discuss in
more detail the possibilities of soil moisture determination by means of the passive
microwave sensing technique.

The radiobrightness temperature of soil, measured in the direction of the
normal, is determined as follows (S(#) = 1 in equations (7.101)—(7.102)):

0.0} Z

v(z,m)T(z) exp {—J v(z',m) dz/} dz, (8.54)

0

Ty = () |

0

where k(z,m) is the soil emissivity, v(z,m) is the absorption coefficient, 7'(z) is the
temperature profile in soil and m, z are the moisture and the vertical coordinate,
respectively. The integral expression in (8.54) is sometimes called the effective
temperature. Note that this expression is valid for smooth (with respect to used
wavelength) profiles of thermal and electrical parameters of a medium (see section
7.7 for more details).
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The emissivity of soil depends both on its properties (its physicochemical
structure, electrical parameters, the features of its distribution in depth), and on
the interface surface characteristics (smoothness or roughness, the presence of
vegetation). For bare soil or for a surface whose radius of roughness is much
greater than the wavelength the emissivity factor x(z,m) can be determined in
terms of Fresnel’s mirror reflection coefficient, if the emitting layer of soil is
homogeneous in depth:

rw(m) =1 —|R(m)|*. (8.55)

Special investigations of the reflection coefficients of soil, which is linearly inhomo-
geneous in depth, have shown (Shulgina, 1975) that for real soils the influence of
inhomogeneity on the reflection coefficient is insignificant and that these coefficients
can be calculated, to a first approximation, by Fresnel’s formulas. (Only at great
wavelengths, of the order of 60 cm, and for soils having a dry surface is the influence
of inhomogeneity essential.) However, even in the case of a smooth surface, the
radiobrightness temperature of soil represents a fairly complex functional of tem-
perature and moisture (8.54). Since in the general case the remote sensing task should
consist in studying both the moisture content characteristics and the temperature
regime of the soil, it is worth considering the influence of soil moisture (as a function
of emissivity) and the influence of the temperature profile separately.

Suppose we have an isothermal medium (i.e. 7(z) = T,) with a constant (in
depth) value of moisture. From (8.54) it can easily be seen that the radiobrightness
temperature of a medium will be equal to

Ty = w(m)T,. (8.56)

On the basis of detailed experimental data from studying two different types of
ground (sandy and clayey) in a wide band of wavelengths (from 0.8 to 226 cm),
Popov et al. (1974) have calculated the emissivity of these types of ground in the
mentioned band of waves, which virtually covered the whole band now used in
remote sensing practice. Figure 8.24 presents the dependencies of emissivities of
clay (a) and sand (b) on the volume moisture for several wavelengths calculated
by formula (8.55). The contribution of an imaginary part of the dielectric constant
of a medium to the medium’s emissivity equals the relative value of up to 30% for
moisture of about 20%. Therefore, this contribution cannot be neglected (as it
has been in some papers). It can be seen from the analysis of the plots in Figure
8.24, that both for low (m < 5%) and high (m < 15%) moistures the x(m)
dependence essentially deviates from the linear. It should be noted that the linear
model is also often (and worthlessly) used in the empirical models. The linearity of
these dependencies (and, in the case of the isothermal model, the linearity of
moisture dependencies of the radiobrightness temperature) can take place only
within a limited range of moistures (from 5% up to 15% approximately), this
interval being essentially dependent on the working wavelength range and on the
type of ground. For high moisture variations the plots of Figure 8.24 should be used
as calibration curves. A sharp nonlinearity for low moisture values is associated,
physically, with a complicated mechanism of water interaction with soil’s skeleton
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Figure 8.24. Nadir field moisture-dependent emissivity of bare soils: clay (a) and sand (b)
surfaces at various wavelengths (cm) (figures next to curves).

and pores, which results in changing the dielectric properties of water and in giving
rise to the so-called strongly bound water (Boyarskii et al., 2001; Xu and Sun, 2002;
Park, 2001).

From the practical point of view, it is important to know the ‘sensitivity’ of the
radiobrightness temperature to moisture variations (ATg/Am). The estimates of this
value disregarding the sky illumination at the rectilinear section of the plot
(at Ty, = 300K) give for a clayey ground at the wavelength of 226 cm the value of
8.6K/%; at the wavelength of 90cm, 7.5K/%; at 30cm, 7.2K/%; at 3cm,
7K/%. For sandy ground the ATg/Am value is virtually constant throughout the
considered wavelength band and equals about 6.1 K/%. For moisture higher than
15% at all wavelengths a sharply nonlinear saturation section begins, where the
aqueous solution makes, physically begins, the main contribution to the
microwave emission.

Now we shall analyse the sky illumination effect on the radiobrightness tem-
perature of moist ground (see equation (7.20)). The noise temperature of the sky at
zenith does not exceed 10K in the range from 3 up to 30 cm, and as the wavelength
further increases, it sharply grows up to 500 K for A = 300 cm (Esepkina et al., 1973).
With increasing the observation angle 6 (as you approach the horizon) the noise
temperature of sky grows according to the law T} = Tyz/ cos 8, where Tz is the noise
temperature at zenith.
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From formulas (7.20) it can easily be seen that the presence of sky illumination
decreases quantity ATg/Am. This effect, which is not so essential at wavelengths of 3
to 30 cm at the wavelength A = 226 cm at the thermodynamic temperature of ground
Ty = 300K, leads to virtually full independence of the radiobrightness temperature
on the moisture and on the type of ground, since in this case expressions (7.20) give
Tg = T,. Radiobrightness temperature variation, corresponding to 1% moisture
variation, will be equal, taking account of sky illumination, for clay (sand) at the
wavelength of 90 cm to 6.4 (4.2) K/% and at the wavelength of 30cm to 7.1 (6.0) K/
%, at the wavelength of 3cm to 6.7 (6.0) K/%. As would be expected, the radio-
brightness temperature sensitivity to moisture variation is at a maximum in the
wavelength band from 3 up to 30cm, in which the noise temperature of sky is
minimum.

It is interesting to note that the presence of moisture has an essential effect on
polarization characteristics of radiation of a medium (section 7.4). The basic char-
acteristic in this case is the polarization factor determined by the relation

 Tay(0) — Tan(0)
PO) = T B T Ton(®)

where TRy and TRy are radiobrightness temperatures of vertically and horizontally
polarized components of radiation. Since the effective temperature does not
depend on the type of polarization, the expression for the polarization factor is
simplified:

(8.57)

Ky (0) — ku(0)
kv (0) + ru(0)

The calculations by formula (8.58) indicate that the moisture dependence of
polarization factor (Figure 8.25) is nearly linear with the slop of about 1% per
1% of moisture for clay, and 0.6-1.0% per 1% of moisture for sand up to
moisture values of 15-20%, after which the tendency to saturation begins to
reveal itself. If the radiometric system makes it possible to distinguish the 1%
variation of the polarization factor (here by the per cent is meant the unit of
measurement of polarization factor, rather than the relative per cents), then for
6 = 45° about 10 gradations of moisture from 0 to 20% can be distinguished
confidently.

Let us estimate now the sky illumination effect on polarization measurements.
Substituting expression (7.20) with corresponding indices into (8.57) and taking into
account (8.55), we obtain

p(0) = (8.58)

2(0) = ky(0) — KH(HQ)TI(Q) _ (8.59)

v (0) + i (0) + 7 5 0

The solid line in Figure 8.26 presents the dependencies of polarization factor p
on the observation angle (a) and on the wavelength (b) for clay of 10% moisture
(Ty = 300 K) calculated by formula (8.59). The dashed line indicates the same depen-
dencies disregarding the sky illumination. As can be seen from Figure 8.26(a), the
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Figure 8.25. Field moisture-dependent polarization coefficient of bare clay (a) and sand
(b) soils at various wavelengths (cm) (figures next to curves). The observation angle is 45°.

difference between polarization factor values with allowance for sky illumination and
the same values disregarding sky illumination reaches a considerable value (more
than 30% for A =0.8cm, 6 =80°). At great observation angles (f = 80°) the
maximum appears in the dependence, and then a sharp drop takes place. For each
observation angle (Figure 8.26(b)) there exists some critical wavelength, at which the
polarization factor drops to zero.

It is clear from the physical considerations that the main contribution to the
microwave emission of a semi-infinite medium is made by the layer of some particu-
lar depth, because the radiation of all underlying layers decays in overlying ones.
This estimation can be performed quite easily, assuming a variable upper limit in the
integral expression for the effective temperature (8.54). Then the expression for the
effective temperature will be as follows:

Ty = To(1 — exp (—72)). (8.60)

It can easily be seen from this expression, that the main contribution (about 90%) to
the thermal radiation of a semi-infinite medium is made by the layer of finite depth
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Figure 8.26. Polarization features of radio-emission for clay soil surface with moisture 10%
(Ty = 300K) taking into consideration ‘sky’ radio-emission (continuous lines) and not taking
it into consideration (dashed lines): (a) the relationship of polarization coeflicient versus
observation angle; (b) the relationship of polarization coefficient versus work wavelengths.

l.¢, which is equal to
23

S (m). (8.61)

lef
The calculated values of quantity /¢/\ for moisture of 10% for sand (clay) in the
band of 20cm were 4.5 (1) and in the band of 75cm were 5.3 (0.53).

Now we shall consider the effect of the temperature regime of soil on its emissive
properties. The analysis of the data on the temperature regime of soil, carried out
by Kondratyev et al. (1970), has shown that the temperature profiles are well
approximated by the relation:

T(z) ={[T'(0) +a(Ty — Tr)z]z + Ty — Tr} exp (—az) + T>, (8.62)
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where Ty is the temperature at z = 0; 7'(0) is the temperature gradient near the
surface; T is the asymptotic value of temperature for z — oo; and « is the empirical
parameter. According to the data of some investigations, in summer at any time of
day T = T, even at the depth of about 40 cm (Liou et al., 1999).

Generally speaking, temperature profile approximation by expression (8.62) is
possible for any profile characterized by monotonous transition to 7, or possessing a
maximum or minimum (i.e. where the diurnal or seasonal ‘wave’ of the thermal
regime in the soil bulk is investigated).

As a first approximation, we shall consider the case of v = const. This case is
accomplished in the region of wavelengths, for which the absorption coefficient is
sufficiently high that, at the distance of effective depth of radiation penetration into
soil (0 < z < I), the moisture and, along with it, the absorption coefficient has no
time to be changed noticeably.

Making integration (8.54) with allowance for (8.62), we obtain

T’(@) +g TO — Tz

To = a7 Ut apy

T (8.63)

Let us now show how, by measuring the radiobrightness temperature at several
wavelengths (in other words, implementing microwave spectroscopy), one can
determine the moisture and the temperature profile parameters. Consider the
range of wavelengths, for which (a/v) < 1. In this case equation (8.63) takes a

more simple form
IS S R

Thus, in the wavelength range under consideration, the radiobrightness temperature
is determined by the values of temperature and its gradient at the surface, but
does not depend on the asymptotic value of temperature. Since the emissivity is a
complicated function of moisture, for determining it, as well as for finding three
other unknown quantities — m, o and 7"'(0) (T}, can be considered to be specified) — it
is necessary to have the measurement data for radiobrightness temperature at four
wavelengths (j = 1,2, 3,4), at which the absorption coeficients satisfy the inequality
(a/v) < 1. Though this system of equations is nonlinear, nevertheless it can be
resolved, for example, by the method proposed by Kondratyev et al. (1970). That
is to say, from the four measured values of radiobrightness temperature in the range
of wavelengths for which (a/v) < 1, provided that T is specified (quantity 7, can be
obtained from the data of measurements in the thermal infrared band) and from the
moisture dependence of absorption coefficients at these wavelengths, it is possible to
determine the soil moisture and the temperature gradient near the surface, the
surface emissivity and the exponential factor of the temperature profile which
characterizes the thermal ground regime.

The case of (a/v) < 1, considered above, occurs at strong absorption of electro-
magnetic waves in a medium. The second extreme case of great wavelengths, for
which («a/7) > 1, enables one to determine the asymptotic value of the temperature
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profile 7, from the equality
Ts = k(m)T,. (8.65)

This is the case of weak absorption, and, naturally, the main contribution to the
radiobrightness temperature is made by the layers at temperature 75. The inequality
(a/7) > 1 is met for decimetre-band wavelengths. For example, for the wavelength
of 60 cm, as the moisture changes from 3% to 12%, the («/~) ratio changes from 60
to 15, approximately.

The further development of this approach has lead Kondratyev and Shulgina
(1971) to the idea of using the periodic scanning at a fixed observation angle in order
to eliminate the given surface temperature in measurements (see equation (8.63)) and
to limit the study by quantities depending on temperature profile parameters we are
interested in. So, in the range of wavelengths for which («/7v) < 1, equation (8.64)
for fixed observation angle 6 takes the form

— e m T'(0)cosf _acosd
Ty = r;(m, 0)| To + ) (1 2’7_/(”7))} (8.66)

As a result of periodic scanning over the observation angle
0 =0+ 0, + 0, cost, the received signal (8.66) also is a periodic function of
time, but in this case the amplitude of the first Fourier harmonic no longer
depends on T,,. This makes it possible to use, as a method of measuring the useful
signal, its separation at frequency ) (for example, by the synchronous detection
method; see Chapter 3) and the determination of temperature profile parameters
and characteristics of soils from the amplitude of the first harmonic. If we make
use of the circumstance that within a rather wide range of observation angles
(0 < 0 <m/4) the emissivity only weakly depends on the observation angle (see,
for instance, Hewison and English, 1999), then we can perform integration and
obtain the following expression for the amplitude of the first harmonic of a
received signal

T/
Téj.) = —2/<J-(rn)ﬂ sin 8yJ1(60;) ——? §in 2600J1(264) |, (8.67)

7;(m) 7;(m)
where J;(x) is the Bessel function (Gradshteyn and Ryzhik, 2000). In this case the
constant component can be presented in the form

Ty = K (m)Ty, (8.68)

because the corrections, caused by the fixed observation angle and scanning
amplitude, will be small (2-3%). The proposed differential technique is reduced to
measuring the ratio of the first harmonics (8.67) at various wavelengths and to
subsequent determination of moisture and thermal profile characteristics. The
advantage of such an approach consists in the fact that the ratios of harmonics
can be measured to a greater accuracy than harmonics themselves.

Thus, the proposed method makes it possible, in the homogeneous half-space
approximation, to determine by means of the microwave spectroscopy method (at
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observation to the nadir or in the mode of periodic scanning over the observation
angle) the basic characteristics of the state of a surface layer of soil: the moisture and
temperature profile parameters.

However, in many practical cases the one-frequency modes of measurement in
the decimetre band (the channel of the 21 cm wavelength) have been successfully
used. In these cases fairly simple semi-empirical two-layer models were applied at
data interpretation for remote determination of soil water content (in the layer of
0-2cm) and effective temperature (at the depth of 11cm) (Burke and Simmonds,
2001; Liou et al., 1999; Ruf and Zhang, 2001).

Even the first microwave investigations of mesoscale and macroscale fields of
moisture have indicated a very important feature of constructing these fields,
namely, a complicated multiscale hierarchic structure. The detailed analysis of
these problems is beyond the scope of this book, and we recommend the reader to
address the specialized literature on this subject (Schugge et al., 1988; Sadeghi et al.,
1988; Engman, 1997; Vinnikov et al., 1999; Crow and Wood, 1999).

8.8.4 Tilled soil

Humus, one of the most important components of tilled soil, has a basic effect on the
structure and physical properties of soil. The presence of humus in soils, even in
small quantities, can drastically change their structural-functional hydrophysical and
mechanical properties, the changes being due both to aggregation of the mineral part
of elementary soil particles (called the skeleton), and to modification of its surface.
Humus is a very complicated set of various compounds, the most basic of which are
humic and fulvic acids. The molecules of humic acids have a loose, spongy structure
with a great number of inner pores and, owing to this circumstance, they noticeably
change the water-retaining ability of soils.

From the optical sensing viewpoint, humic substances colour the soil in darkish
tones, and this circumstance makes it possible to distinguish soils with varying
humus contents in the optical band. The spectral reflectivity of soil depends not
only on the quantity of humus in it, but also on the spectral reflective properties
of the soil-forming rock. For this reason the relative error of determination of
humus content can be quite high. Furthermore, in the optical band the information
is obtained from a very thin surface film (see section 1.6), which is subject to various
external effects. Especially high error occurs in cases where the humus content is
low (1-2%): it reaches 200-300% (Bobrov and Galeyev, 2001). The remote
measurements of microwave properties of soils with considerable humus content
are of undoubted practical interest. Detailed investigations of the dielectric and
emissive properties of humus-containing soils have not been carried out yet;
therefore, it is important to evaluate the first in-the-field experiments in this field.
Bobrov and Galeyev (2001) have shown that radiothermal contrasts exhibit
themselves not in the static state, but in the dynamic action mode (of intensive
irrigation) and subsequent drying of soil. Experimental investigations of the
dynamics of the radiobrightness temperature of soils with various humus contents
were carried out at frequencies of 6.25 and 8.0 GHz. And it was shown here, after
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fairly intensive irrigation of the surface of test sites because of the various changes of
soil structure and differences that arise in the drying rate, that a radiobrightness
contrast (up to 60 K) appears, which is retained for 2-3 days. In this case the ratio of
diurnal variations of emissivity for two sites with various humus contents depends on
the initial moistening. Noticeable structure-changing effects, which influence the
brightness contrast value, have been noticed after short-term freezing of the soil
surface. All this testifies to the fact that the entire system is fairly complicated
and, apparently, it is sharply nonlinear from the viewpoint of both temporal
dynamics and spectral emissive characteristics.

8.8.5 Vegetation

Vegetation on the Earth’s surface represents a complicated and diverse system
from the viewpoint of its electrodynamic properties. This is, first of all, due to a
complicated hierarchic geometrical construction — a root system, a trunk, a system of
branches and then a system of leaves and fruits. The dielectric properties of each of
these subsystems, in their turn, depend in a complicated manner on the dielectric
properties of electrolytes which supply a plant with nutrients from a soil and then
with photosynthetic products (see, for instance, McDonald et al. (1999)). From the
remote sensing point of view, the observational strategy and electromagnetic models
will depend, first of all, on the required generalization of an image. If the question is
about macroscales and mesoscales (as, for example, in the case of investigations of
the Amazon rainforest area, the Sahel zone in Africa or a vast prairie grassland
(Birrer et al., 1982; Calvet et al., 1995, 1996; Sharkov, 1998; Liou et al., 1999; Prigent
et al., 1997, 2000, 2001), then in such a case it is possible to use the electromagnetic
models of continuous homogeneous medium (of the film-on-the-substrate type) (see
section 7.5) or the cloud model over the smooth boundary within the radiative
transfer theory framework (see Chapter 9). Since vegetation possesses a certain
attenuation frequency response, it represents some kind of frequency filter which
‘blocks’ remote investigations of the soil beneath vegetation. For example, Liou et al.
(1999) have shown that, whereas in the decimetre band (21 cm) it is possible to obtain
information under the dense grass cover of the US prairie, then the microwave
devices of the SSM/I complex set (see Chapter 14) at frequencies of 9, 37 and
85GHz are no longer sensitive to the soil moisture (under the grass cover),
though these channels are sensitive to moisture in bare soil. Here one should have
in mind that between the state (the degree of ripeness and the vegetation growth
stage) of vegetation (which is determined from the optical sensing data by means of
the NDVI technique), soil moisture state and thermal regime there are no direct
correlation links (Chen et al., 1997; Sharkov, 1998). This is due to the fact that the
soil-plant system represents a sharply nonlinear system in the spatial-temporal
dimension, and the vegetation growth stages and the degree of ripeness (the
colour NDVI index) reflect the state of moisture with a considerable time delay,
however, at quite certain spatial-temporal averaging. So, Choudhury (1987) has
shown that the polarization difference (i.e. the difference of vertically and horizon-
tally polarized brightness temperature, observed at 37 GHz frequency of SMMR on
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board the ‘Nimbus-7’), in monthly averaging correlates, to a high degree of con-
fidence, with the NDVI index fields for arid and semi-arid regions of India, Africa
and Australia. In other words, the polarization difference in the microwave sensing
can serve as a fine indicator of the primary surface productivity in arid zones.

If we consider the scales of several (groups) or a single plant, then the electro-
dynamic model should take into account the hierarchic (fractal) construction of
separate subsystems of plants, each of which has both its intrinsic hierarchic
system of construction and its intrinsic dielectric properties (Ramson et al., 1997,
Ferrazzoli and Guerriero, 1996; Ferrazzoli et al., 2000; McDonald et al., 1999).

Of importance also are investigations of the biological evolution of a vegetation
system’s elements. A rather unusual and, at the same time, quite indicative example
in this respect can serve for the comparison of optical and microwave brightness
images of vegetation objects — a leaf each from an oak and a birch tree (Plate 4). The
microwave images of the leaves were obtained at the 600 GHz frequency and are
presented in ‘false’ colours (Rehm and Brand, 1999). Whereas the optical image
gives a picture of surface distribution of the chlorophyll components of a leaf, the
microwave image provides information on the temperature regime and spatial
distribution of electrolyte solutions inside the leaf bulk. Obtaining such complex
information by the other methods is rather problematic.






