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Foundations of radiative transfer theory

This chapter presents the phenomenological basis and principal energy considera-
tions underlying radiative transfer theory (RTT). The analysis of basic equations and
fundamental concepts, required for studying radiative transfer in absorbing, emitting
and scattering media, are given in this chapter. The formal and approximate
solutions of the equation of radiative transfer, given in this chapter, are widely
used in subsequent chapters when considering radiative transfer in dispersed
media (hydrometeors and aerosols in the atmosphere). Attention is chiefly given
to the analysis of solutions of the transfer theory intended for studying thermal
radiation processes in the microwave band.

9.1 RADIATIVE TRANSFER THEORY PHENOMENOLOGY

Although the principal solution of thermal radiation problems is possible using the
fluctuation—dissipation theorem (see Chapter 4), the practical solution of many
problems is rather complicated and requires the application of other physical
approaches. First of all, one should mention here the energy approach associated
with particular phenomenological concepts developed in studying electromagnetic
radiative transfer in absorbing, emitting and scattering media. The phenomena of
energy transfer by radiation in media, which can absorb, emit and scatter radiation,
have been of interest for a long time. This interest was aroused by the study of
complicated and interesting phenomena related to astrophysical problems, remote
sensing, nuclear explosions, flows in hypersonic compressed layers, rocket engines
and plasma generators designed for nuclear fusion. Although some of these
applications appeared quite recently, the absorption and emission processes in
gases have aroused interest for more than a hundred years. One of the first investiga-
tions was devoted to electromagnetic radiation absorption by the terrestrial
atmosphere. This problem has always stirred the optical astronomers, who have
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observed the light from the Sun and more distant stars. The distorted spectra of
black-body radiation of the Sun in the near-IR band, obtained for a number of years
beginning with 1880 (see Siegel and Howell, (1972) for more details), have testified to
essential wavelength dependence of emissive properties of gases in the terrestrial
atmosphere. Solar radiation absorption by the cloudless atmosphere was caused,
as was found later, primarily by water vapour and carbon dioxide existing in the
atmosphere. As a matter of fact, these investigations were the first systematic remote
studies of the Earth’s atmosphere using the ‘regular transmission’ technique.

The emission of gases (and, later, of plasma systems) has also been of interest
for astrophysicists in connection with studies of the structure of stars. Models of
stellar atmospheres and of the Sun were proposed describing the energy transfer
processes in these objects, after which the emission spectra, calculated on the basis
of these models, have been compared with those obtained experimentally. It was
these investigations, on the basis of which the phenomenological foundations were
developed and radiative transfer theory was constructed and advanced both for
astronomy and for remote sensing applications (Troitskii, 1954; Chandrasekhar,
1960; Sobolev, 1963; Staelin, 1969; Kondratyev and Timofeev, 1970; Malkevich,
1973; Marchuk, 1976; Marchuk et al., 1986; Sabins, 1987; Apresyan and
Kravtsov, 1996, Thomas and Stamnes, 1999; Matzler, 2000). An overwhelming
majority of the physical results obtained in astronomy, radio-astronomy and
remote sensing was based, one way or another, on using the methodology of
radiative transfer theory.

In industry the problem of emission of gases became topical in the 1920s in
connection with studying heat exchange in furnaces (smelting of steel and glass),
in combustion chambers of engines and later, in the 1950s and 1960s, in rocket
engines (Ozisik, 1973; Siegel and Howell, 1972). At the same time, it was found
that similar physical approaches and, accordingly, the equations can govern the
processes of the propagation of neutrons in nuclear reactors (Murray, 1957).
This undoubtedly gave a new impetus to the detailed investigation of transfer
processes.

In studying radiative transfer in absorbing, emitting and scattering media, two
very important features arise. First, in such media the absorption and emission of
radiation occur not only at the boundaries of a system, but also at every point inside
a medium. The same is true for scattering. For complete solution of the energy
transfer problem it is necessary to know the volume field of temperature and
physical properties of a medium at each point of a system. By a point of a system
here is meant a physically infinitesimal (unit) volume of a medium, which contains a
fairly large number of particles, the interaction between which can provide the local
thermal equilibrium conditions (see Chapter 4). By particles here is meant either a set
of macroscopic particles (aerosols, water drops, snow and ice particles, volcanic
ashes or particles of another nature), or a set of quantum particles (atoms and
molecules of gases).

In the first version transfer theory is considered at the macroscopic level bringing
in the results of Maxwell’s theory of scattering on macroscopic particles (Mie scatter-
ing theory). The properties of a physical medium, in which the process takes place,
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are taken into account by a set of some (phenomenological in a certain sense)
coefficients determined either experimentally or by calculations.

In the second version the electromagnetic field is considered as a combination of
particles (the ‘photon gas’), and the radiative transfer process of interest is consid-
ered as the interaction of these particles with the particles of substance on the basis
of quantum-mechanical concepts (see Chapter 11 for more details).

To find the local values of radiation intensity in a medium the ‘astrophysical’
approach is applied (Siegel and Howell, 1972), where the complete equation of
radiative transfer is solved. As it will be shown later, the radiation intensity is
related to energy transferred along some selected direction. Having determined the
variation of the intensity of radiation along the path of its propagation, we can get
an idea of how absorption, emission and scattering processes influence radiative
transfer. Such an approach is most efficient in considering the problems related to
absorption and emission of the terrestrial atmosphere and to the structure of stars,
and in other problems where the quantity sought is the spectral intensity of radiation
at a point of the medium. The solution of a complete problem, as we shall see later,
encounters considerable mathematical difficulties.

Second, the spectral characteristics of rarefied systems (gases) have much
sharper changes (usually narrow lines of various types), than the spectral character-
istics of solid or liquid bodies. Such a kind of noise emission is called selective
radiation (see Chapter 11). The physical nature of this circumstance is well known
now: it lies in the features and distinctions of the quantum-mechanical structure of
gases and solid bodies. Therefore, for studying the radiation of gaseous media it is
necessary, as a rule, to consider in detail the spectral characteristics (i.e. the so-called
radio spectroscopy methods should be applied). In using approximations, based on
the properties averaged over the spectrum, special caution is required. The majority
of simplifications, which are introduced in solving the radiation problems of physical
media, are made with the purpose of avoiding these difficulties. So the ‘astrophysical’
approach often undergoes serious simplification to facilitate its use in engineering
calculations carried out mainly with the purpose of determining the integral (over
frequencies or solid angles) of energy fluxes, rather than the differential radiation
intensity (Ozisik, 1973; Siegel and Howell, 1972). However, in solving remote sensing
problems such simplifications are inadmissible, since in the majority of cases very
important information on polarization and the spectral characteristics of investi-
gated objects is lost.

9.1.1 RTT applicability conditions

The use of RTT in relation to real media is based on some physical simplifications
which allow us, generally speaking, to advance in studying radiative transfer in
composite (for example, multiphase) media, where the direct use of the Maxwell
theory is troublesome. It should be mentioned here that, in the majority of works
on the presentation of the RTT fundamentals and application of the theory, the
physical suppositions underlying this theoretical presentation are as a rule neither
discussed nor analysed.
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(1) The use of the geometric optics approximation, where the electromagnetic
radiation wavelength is essentially lower than the scale of variation of a macro-
system’s parameters. This approximation, as known, uses the beam conceptions
for electromagnetic wave propagation in a medium (see section 1.6).

(2) The use of the approximation of electromagnetic rarefaction of a medium, where
the distance between particles, constituting an elementary volume of a medium,
essentially exceeds the working wavelength. The original flux, falling on an
elementary volume, reaches each particle. The particles do not ‘shade’ each
other, and there is no mutual interference between the particles. Thus, the
total effect of electromagnetic field interaction with a group of particles is
achieved by summing the interaction effects on each particle.

(3) The relationship between the size of individual particles and the working wave-
length is arbitrary, i.e. all diffraction effects at the electromagnetic field interac-
tion with an individual particle should be taken into account.

(4) All processes of the external electromagnetic field interaction with a unit volume
of a medium are reduced to three acts only — the absorption act, the emission act
and the scattering act (see section 9.2 for more details).

These conditions will be referred to and analysed at the appropriate places in the
presentation of the foundations of RTT.

9.2 ENERGY TRANSFORMATION BY A VOLUME ELEMENT

Consider a beam of radiation with intensity I, (r, Q) propagating in the absorbing,
emitting and scattering medium in a given direction. The energy of radiation will
decrease owing to its absorption by substance and owing to the deviation of a part of
the radiation from the initial trajectory as a result of scattering in all directions. But,
at the same time, the energy will increase because of thermal radiation emission by
the substance volume. The absorption, scattering and emission of radiation by a
substance have effect on the energy of a radiation beam that propagates in it. In this
case the total balance of change of the initial intensity can be, certainly, both positive
and negative. Besides, a strong inhomogeneity of the energy balance, both over the
substance volume and over the observation direction, is possible. These properties
have been analysed in detail in books by Chandrasekhar (1960), Sobolev (1963),
Ozisik (1973), Siegel and Howell (1972). In this section we briefly consider radiation
interaction with a volume element using the phenomenological concepts of three acts
of radiation interaction with the substance volume element — the act of absorption,
the act of emission and the act of scattering.

9.2.1 The act of absorption

Consider a beam of monochromatic radiation with intensity 7,(r, Q') restricted by
the elementary solid angle d©2’ and falling along the normal to the element of surface
dA of the layer of width d.S (Figure 9.1). As the incident radiation propagates in the
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Figure 9.1. Schematic presentation of the geometry of the radiative transfer procedure by a
volume element: (a) the act of absorption; (b) the act of scattering; (c) the total energy
transformation.

substance, the part of radiation is absorbed by this substance. Designate by ~,(r) the
spectral absorption coefficient, which is equal to the fraction of incident radiation,
absorbed by substance over the unit of the radiation propagation path length, and
has the dimension of (length)™'. Then the quantity

%, (1), (r, Q') dQ’ (9.1)

characterizes the absorption of the incident radiation 7, (r, Q') by substance from the
direction Q' per unit of time, in a unit of volume d4 dS and in a unit frequency band.

If the radiation falls on a volume element from all directions within the limits of
a total solid angle, then expression (9.1) should be integrated over all solid angles (see
section 5.1):

21 p+1

0 I R Y R 9.2)
0 n'==1

This expression characterizes the absorption, by substance, of radiation falling on a

separated volume element from all directions within the limits of a spherical space,

per unit of time, in a unit of volume and in a unit frequency band (with the

dimension of W/m® Hz).

9.2.2 The act of emission

In the problems of radiative transfer in absorbing, emitting and scattering media the
supposition of a local thermal equilibrium (LTE) is used almost always with the
purpose of deriving the expression for the intensity of thermal radiation of a volume
element (see section 4.4). In essence, the question here is about the volumetric form



362 Foundations of the radiative transfer theory [Ch. 9

of Kirchhoff’s law (see section 6.3). The LTE conditions imply that any small
volume element of a medium is at the local thermodynamic equilibrium, owing to
which the state of any point can be characterized by local temperature 7(r). This
supposition is lawful in the case where the collisions of particles in a substance occur
so frequently that they result in a local thermodynamic equilibrium at each point r of
a medium. In this case the emission of radiation by a volume element can be
described by means of the volumetric form of Kirchhoff’s law. If we designate by
J,,(r) the radiation emitted by a unit volume of substance per unit of time, within the
limits of a unit solid angle and in a unit frequency band (with dimension of
W/(m® HzSt)), then the emission of radiation by substance can be expressed in
terms of the Planck function for the intensity of radiation of an ideal black body:

Ju(r) = ’YV(r)IVB[V7 T(r)]v (93)

where I,3(7T) is determined by formula (6.2).

If the supposition of a local thermodynamic equilibrium is inapplicable for the
studied system (this requires some special investigation), then the emission of
radiation by a substance becomes a function of energetic states in the system, and
the problem of radiative transfer in such media is essentially complicated.

9.2.3 The act of scattering

If the medium includes inhomogeneities in the form of small particles, then the
radiation beam, while passing through this medium, will be scattered in all direc-
tions. For example, particles of dust or drops of water in the atmosphere scatter
electromagnetic waves passing through such a medium, as well as the thermal
radiation formed in other spatial parts of a medium. Thus, the general picture of
thermal radiation of the whole medium may be rather complicated.

Absolutely homogeneous media do not exist in nature, except in an absolute
vacuum. However, in many cases the medium can be considered to be optically (or
electromagnetically) homogeneous, if the linear size of inhomogeneities is known to
be considerably smaller than the radiation wavelength. For example, a cloudless
atmosphere in the microwave band satisfies these conditions. One should also
distinguish coherent from incoherent scattering. The scattering is called coherent if
the scattered radiation has the same frequency as the incident radiation, and
incoherent if the frequency of scattered radiation differs from that of the incident
radiation — owing to turbulent motion of macroscopic particles in air, for instance.
As a whole, the scattering problem is very complicated. A considerable literature is
devoted to studying these problems (see, for instance, Ishimaru, (1978, 1991)). In this
chapter we shall consider only the simplest version of coherent single scattering.
Nevertheless, the scattering of microwave radiation in numerous real media is well
described within the framework of this approximation.

Consider a beam of monochromatic radiation with intensity 7,(r,Q"), which
propagates in the direction Q' within the limits of elementary solid angle dQ’,
whose axis coincides with the chosen direction, and falling along the normal to
the surface d4 of the elementary layer dS (Figure 9.1(b)). While the incident
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radiation passes through the medium, part of it is scattered by substance. Designate
by o, (r) the spectral scattering coefficient, which is equal to the fraction of incident
radiation scattered by substance in all directions over the unit of length of the
propagation path of radiation and having the dimension of (length)™'. Then the
quantity

o,(r)L,(r, Q") dQ’ (9.4)

characterizes the scattering, by substance, of the incident radiation 7,(r,Q')dQ’ in
all directions per unit of time, in a unit of volume and in a unit frequency band. In
other words, this is the part of the energy which will be completely extracted from the
external radiation beam falling on a unit volume in the direction Q’. However,
expression (9.4) does not provide complete information on the distribution of
scattered radiation over the directions. The distribution over the directions can be
described by means of the phase function (or scattering indicatrix) p,(Q' — Q),
normalized in such a manner, that

1

E”Q:Mpy(g’ - Q)do=1. (95)

Note that the quantity

1
-p,(Q — @)d0 (9.6)

has an important physical sense: it determines the probability of the fact, that the
radiation, falling in the direction ', will be scattered within the limits of the
elementary solid angle df2 in the direction €, i.e. in the direction of observation.
Then the quantity

0,(01,(r, ) 4] - p, (@ — ©) 40 9.7)

characterizes the scattering, by substance, of the incident radiation per unit of time,
in a unit of volume, in a unit frequency band within the limits of elementary solid
angle dQ2 with axis . In other words, we have the case, where the radiation, falling
on the volume from the direction Q’, is re-scattered by a studied unit volume of
substance in the direction of observation . When the radiation falls on a volume
element from all directions within the limits of a spherical solid angle, the integration
of (9.7) over all incident solid angles gives the expression

Lo*y(r) dQ ” 1,(r,Q"p,(Q — Q)dQ/, (9.8)

4w Q/—4r
which characterizes the scattering of radiation, which falls on a volume element from
all directions within the limits of a spherical solid angle and scattered within the
limits of elementary solid angle d©2 with the observation axis £ per unit of time, in a
unit of volume and in a unit frequency band. From the viewpoint of an external
observer, this part of the radiation has the character of an extra source of radiation,
which is seen from observer’s direction. As we shall see soon, it is this integral which
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presents basic mathematical difficulties in solving the problems of radiative transfer
in scattering media.

In the case, where the scattering particles of a medium are homogeneous and
isotropic, and possess spherical symmetry, and there is no preferential direction of
scattering in a medium, the scattering indicatrix depends only on the angle 6,
between the directions Q' and Q. It follows from the geometrical considerations
(Gradshteyn and Ryzhik, 2000), that the angle ¢, between the incident and scattered
beams is determined by the expression

cosfy = cosfcosf’ +sinfsinf’ cos (o — ') (9.9)
or

uo=uu’+\/l \/1 2cos(p — '), (9.10)

where 6, p and @, ¢’ are polar coordinates determining the directions ' and Q, and
i, o' and g are equal to cosf, cos’ and cos 6, respectively.

When the scattering indicatrix depends only on the angle 6,, expression (9.8)
takes the form of

1 27 41
-0 dQJ J L,(r, 1", 0" )py (o) dp’ dyp, (9-11)
T 0 J-1

where p is determined by formula (9.10).
The simplest scattering indicatrix for the case of isotropic (ideal) scattering is as

follows:
Pu(pg) = 1. (9.12)

Thus, the total radiation emitted by the volume element per unit of time, recalculated
for a unit of volume, in a unit frequency band and within a unit solid angle, whose
axis represents the given direction Q, consists of thermal radiation and scattered
radiation and can be presented as

1
J,(F) + —O’,,JJ L(r,Q")p,(Q — Q)dQ'. (9.13)
4 Q'=4n
If Kirchhoff’s law is valid and the medium does not have preferential direction of
scattering, this expression takes the following form:

21 p+1

WOLATE) + =o)Ll de 014)

0
Here the first term describes thermal radiation emitted by heated substance of a unit
volume, and the second term describes the radiation falling on the same volume
element from all directions within the limits of a spherical solid angle and
scattered in the observation direction Q.

Thus, as a result of the main radiation beam interaction with a unit volume of
substance, two (conventionally, positive) radiation components will exist, which put
the energy into the main flux recorded by an observer, and two components (con-
ventionally, negative), which extract the energy from the main flux. As we have
already noted, the total balance of change of the initial intensity can be, certainly,
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both positive and negative, depending on the relationship between the processes of
emission, scattering and absorption in a unit volume.

The scattering concept described above is called a single scattering regime. There
exist, of course, other approaches to the description of scattering process, for
example, taking into account multiple scattering. The study of such approaches is
a subject for separate consideration, however; so we refer the interested reader to the
specialized literature (Ishimaru, 1978, 1991).

The introduction of definitions for spectral absorption and scattering coefficients
and scattering indicatrix in this paragraph was done in a purely phenomenological
manner. The next important stage is the problem of attributing the values of the
introduced coefficients to the structure of substance (for example, formed as a cloud
of water particles). This procedure will be performed in Chapter 10. Now we shall
proceed to deriving the basic equation of radiative transfer theory.

9.3 THE RADIATIVE TRANSFER EQUATION

The spatial-angular distribution of radiation intensity 7,(r, Q) in a studied medium
satisfies the so-called radiative transfer equation. Quite various approaches can be
used for deriving this equation. It can be obtained using rigorous methods of
statistical physics, by using the Boltzmann equation for radiative transfer as a
transfer of photon gas. On the other hand, it is possible to use energy considerations,
writing the energy balance equation for some elementary volume on the beam
propagation path (Chandrasekhar, 1960; Sobolev, 1963; Ozisik, 1973). An equiva-
lent equation was obtained in the theory of transfer of neutrons (Murray, 1957). We
shall make use of the energy approach as most instinctive physically.

Consider the emitting, absorbing and scattering medium characterized by the
spectral absorption coefficient v,(r) and spectral scattering coefficient o,(r). The
beam of monochromatic radiation with intensity 7,(r,Q) propagates in this
medium in the observation direction €2 along the path s. We choose the elementary
volume in the form of a cylinder with cross section dA, length ds, disposed in the
vicinity of coordinate s, the axis of a cylinder coinciding with the direction of s
(Figure 9.1(c)). (As subsequent investigations have shown, the form of a unit
volume does not play any part in deriving the basic equation.) Let I,(s, Q) be the
radiation intensity at point s, and 7,(s, Q) + dI, (s, Q) be the radiation intensity at
point s + ds, and d/, be the variation (positive or negative) of the intensity flux when
it passes the path ds.

The quantity

dr,(s,Q)dA4dQdvds (9.15)

represents the difference of energies of radiation, which intersects the surface d4 at
points s 4+ ds and s for the time interval dz in the vicinity of 7, in the frequency band
dv in the vicinity of v, and propagates within the limits of a unit solid angle dQ2 with
respect to the direction Q.
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Designate by W the increase of the beam radiation energy in this volume, related
to a unit of volume, time (in the vicinity of ¢), frequency (in the vicinity of v) and
solid angle (with respect to the direction of observation €). Then the quantity

W, dAdsdQdvdr (9.16)

represents the increase of the energy of radiation of a beam concluded in the
elementary cylindrical volume dA4ds and propagating within the limits of solid
angle d2 with respect to the direction © for the time interval d¢ within the
frequency band dv.

Equating (9.15) and (9.16), we obtain

d1, (s, 2)
P w,. (9.17)
Now we can obtain the expression in the explicit form with respect to W, using the
results obtained in section 9.2. For an absorbing, emitting and scattering medium,
quantity W, is formed by the components caused by increments and losses of
radiation energy:
W,/ = WE — WA —|— WIS — WAS' (918)

The first term on the right-hand side represents the radiation energy increment
caused by thermal radiation of a medium and related to the unit of time, volume,
solid angle and frequency. If the local thermodynamic equilibrium is established in a
medium, then Wg will be related to the Planck function and spectral absorption
coefficient by relationship (9.3), i.e. Wg =J,(r). The second term represents the
radiation energy losses caused by radiation absorption by a medium and related
to the unit of time, volume, solid angle and frequency. They can be written as
follows:

Wy = ’)/D(S)Iu(& Q) (919)

The third term corresponds to the radiation energy increment caused by radiation
falling on a medium from all directions of a spherical space and scattered by a
medium in the observation direction. This quantity, like the two previous ones, is
related to the unit of time, volume, solid angle and frequency. For purely coherent
scattering in the isotropic medium the third term can be presented as

Wis = 4iay(s)“ 1,(5,Q")p,(Q)) — QdQ. (9.20)
U 4

The last term corresponds to beam energy losses due to radiation scattering by a
medium, as a result of which the beams are deflected from the direction Q. These
losses are also related to the unit of time, volume, solid angle and frequency. They
can be written as follows:

Was = 0,(s)1,(s, Q). (9.21)
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The substitution of the expressions obtained into (9.17) gives the radiative transfer
equation in the form of

dr,(s,Q
LD 4 1 (5) + 0, (I (5, 2) = 3 () T)]
1
—l——o,,(s)JJ T,(s,Q)p(Q" — Q)dQ'.
4m Q'=4n
(9.22)
Most frequently this equation is presented in a more compact form:
1 d(s,Q)
———— 4+ I(5,Q2) =S, (: 9.23
M @) = 8.0, 9.23)

where the following designations are used:

S, = (1 =) alT0) 4ol Le.@p@ e, 029

'=4m

Bu(8) = 1(s) + 0, (), (9:25)

o, =28 (9.26)
V() + 0, (s)

In these relations S,(s) is called the source function, /3,(s) the spectral extinction
coefficient, w,(s) the spectral albedo, which represents the ratio of a scattering
coefficient to the extinction coefficient. In studying the transfer processes in
gaseous media the spectral albedo is often called the probability of survival of a
quantum and is designated as A,(s). Note once again, that all definitions of
medium’s parameters presented above are related to the unit volume of substance,
rather than to its individual components (for example, the drops of water in a cloud).
Equation (9.22) is the integro-differential partial derivative equation, since the

full derivative d/ds contains partial derivatives with respect to spatial coordinates, if
it is written in the explicit form for the given coordinate system, and the sought-for
intensity 7, (s, Q) is under the sign of integral in the source function. For this reason
the solution of equation (9.22) represents a very complicated problem even for the
one-dimensional case. Below we shall consider some important special cases of RTT.

9.4 SPECIAL CASES OF THE RADIATIVE TRANSFER EQUATION

Since obtaining complete solutions of the transfer theory equation for the arbitrary
case is rather troublesome, we shall consider some important special cases of RTT,
whose solutions are often used in experimental and observational practice (remote
sensing, radio-astronomy).
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9.4.1 A purely scattering medium

By a purely scattering medium we mean a medium that neither absorbs nor emits
thermal radiation, but only scatters electromagnetic radiation, i.e. where w,(s) = 1,
and, hence, (,(s) = o,(s). Certainly, in such a case the scattering of the external
(with respect to the medium studied) radiation takes place. Natural analogues of
such media in the optical band are cloud systems in the terrestrial atmosphere, which
consist of small crystals of snow and ice or of volcanic dust particles. The diffuse
regime of illumination in such systems has the colloquial designation ‘milk’.
Important examples of such media can serve for the cloudy atmosphere of Venus
and the Martian atmosphere (in the presence of dust-storms). For such media the
basic equation (9.23) is simplified:

1 dl,(s,Q 1

50 % (5, Q) = E”%I”(S’Q/) L(Q — Q)dQ’. (9.27)
It can easily be seen, however, that the equation for scattering media is still integro-
differential and does not have any direct solution. To solve it, one resorts to special
methods of solution or to simplifications (Chandrasekhar, 1960; Sobolev, 1963;
Ozisik, 1973).

9.4.2 The absorbing and emitting medium

Absorbing and emitting media are characterized by the fact, that they absorb the
external radiation passing through them, and emit thermal radiation (the emitted
radiation), but do not scatter it, virtually, i.e. w,(s) =0 (o,(s) = 0). Analogues of
such a type of media (for the microwave band) are wide spread in nature. They
include: cloud systems (small drops of water, snowflakes and hailstones), clouds of
dust, sandy storms, a drop-spray phase on the sea surface, precipitation of
various sorts.
For such media the basic equation (9.22) takes the form:

1 d7,(s,9Q)
B, ds

Unlike the basic equation (9.22) and preceding equation (9.27), the latter equation is
purely differential, and its solution can be obtained in the closed form:

+ IV(S7 Q) = uB[T(S)}‘ (928)

1,(5,) = Ioexp (—fs) + jo LalT(s)] exp (—ps") ds', (9.29)

where [ is the boundary condition, or, otherwise, the intensity of the external (with
respect to the medium) radiation at the medium’s boundary. For better visualization,
we present here the one-dimensional version of the solution of equation (9.29)
for a homogeneous medium with respect to the electromagnetic parameters
(8,(s) = 7,(s) = const), but with inhomogeneous heating of the medium
(I,g[T(s)]). The first term of the solution reflects, how much the external radiation
will be absorbed by the medium as the observation point advances in the medium. As
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Figure 9.2. Schematic presentation of the radiative transfer passing through the absorbing
and emitting one-dimensional layer. I is the external radiation; Iz is the emitted radiation.

should be expected, the external radiation decreases according to the exponential
law. The intensity of thermal radiation of the medium is reflected in the second term
value and is related to the thermal profile T(s) in a complicated manner (via the
Planck function). If the medium is supposed to be not only homogeneous but also
isothermal, i.e. T(s) = Ty = const, then in this case the solution of (9.29) can be
reduced to the form:

1,(v,s) = Iyexp (=fs) + L (v, To)(1 — exp (—Ps)). (9:30)

Note that the second term in this expression is none other than the Kirchhoff law.
Figure 9.2 shows schematically the relationship between two components formed
after external radiation passage through the layer of homogeneous and isothermal
medium. The relation obtained is important, since it is often used in experimental
practice for various preliminary estimations.

9.4.3 Transparent medium

The non-absorbing, non-emitting and non-scattering medium is called transparent
(or diathermal). For such a medium the absorption and scattering coefficients are
zero. Substituting o, (s) = ~,(s) = 0 into equation (9.22), we obtain:

dr,(s,Q

# = 0;1,(s, Q) = const. (9.31)

ds

This implies that the radiation intensity in a transparent medium remains constant
everywhere in any direction.

9.4.4 The ‘cold’ layer approximation

The ‘cold’ layer approximation characterizes the situation, where the external
radiation falling on a medium essentially exceeds, in its intensity, the thermal
radiation of the medium, which possesses both nonzero absorption coefficient and
nonzero scattering coefficient. In other words, the Iy > I3[T(s)] condition is
satisfied. A similar situation is met frequently enough under the natural conditions



370 Foundations of the radiative transfer theory [Ch. 9

as well. So, solar radiation in the optical band (under terrestrial conditions) essen-
tially exceeds the thermal radiation of terrestrial media. The power of artificial
sources (radio broadcasting, television, communications, radar sources) essentially
exceeds thermal radiation of terrestrial media in the microwave band (see Chapter 1).
Using this approximation for relation (9.29), we have:

I,(s) = I, exp {— J; B.,(z) dz]. (9.32)

The exponential factor in this expression is often written in another form by
introducing the dimensionless quantity

7(s) = [ B(z) dz. (9.33)

The dimensionless quantity 7 is called the optical thickness (opacity) of a layer of
scattering and absorbing medium having thickness s, and is a function of all values
of absorption and scattering coefficients over the spatial scales from 0 to s.

It can easily be seen, that the given relation is none other than the well-known
and widely used ‘in optics’ Bouguer law for absorbing and scattering media
(Born and Wolf, 1999; Siegel and Howell, 1972). As far as the microwave
sounding problems are concerned, the frameworks of application of the Bouguer
law are rather limited, since in this band natural radiations have a compatible
order in intensity and, therefore, various constituents should be taken into
account when performing measurements under the natural conditions (see
Chapters 5 and 12).

9.5 EQUATION OF RADIATIVE TRANSFER FOR THE
PLANE-LAYER CASE

As we have noted, the basic equation of radiative transfer is the integro-differential
equation, and obtaining its complete solution for the general three-dimensional case
is a very complicated problem. However, it is quite useful to trace the formal
integration of equation (9.22), so that in some important practical cases it will
be possible to obtain results that satisfactorily agree with experimental and
observational data. Here we should mention, first of all, the one-dimensional,
plane-parallel case. This geometry is widely used in studying the terrestrial
atmosphere and terrestrial surfaces over spatial scales where the Earth’s curvature
does not play a noticeable part.

We shall consider a medium composed of planar layers perpendicular to axis oy,
the electromagnetic properties of the medium being constant in each layer. Let s be
the length measured in the arbitrary direction € and 6 be the polar angle between the
direction Q and positive direction of axis oy (Figure 9.3). The derivative with respect
to direction d/ds can be expressed in terms of derivatives with respect to the spatial
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Figure 9.3. The coordinate system for the plane-parallel case. Notation is explained in the
text.
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Figure 9.4. The coordinate system for the formal solution of the radiative transfer equation
for the plane-parallel case. 17 (0, ) and I~ (7, 1) are outgoing and incident components of the
sought-for radiation. 7y is the value of opacity for the upper boundary of a layer.
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Figure 9.5. The mirror-reflecting, emissive and black boundary conditions for the radiative
transfer equation solution. 7, is the temperature of the upper black-body boundary. T} and

r(p) are the temperature and the emissivity and the lower reflecting boundary. Notation is
explained in Figure 9.4.




372 Foundations of the radiative transfer theory [Ch. 9

coordinate y in the form
d o0 dy 0
—=— = 9.34
ds 9y ds May’ (9:34)
where p is the cosine of angle 6 between the radiation transmission direction £ and
axis oy, i.e.
p=cosb, (9.35)

and the partial derivatives with respect to x and z for the plane-parallel case are
equal to zero. Then the equation of radiative transfer (9.21) takes the following form:

0Ly, 1, )
B, Oy

where the source function will be written as

+1,(y, ) = S, 11, ), (9.36)

2T +1
Sl/(yaﬂv 90) = (1 7wV)Il/B[T(y)] +(:_DJ J p(/‘LO)IV(ya 122 90) d‘Ll,/d(pl (937)
T Jp'=0 Jpu'=0

and pg is the cosine of angle between the directions of incident radiation and
radiation scattered by a volume element (see equation (9.10)).

Further on, when equation (9.36) is solved mathematically, it is convenient to
reduce it to the so-called dimensionless form, making use of the concept of the
optical thickness of a layer (9.33). Then equation (9.36) will take the form

81/ b b
p B o) = S, 0), (9.39)
where
w, 21 +1
S, (1, 1, 0) = (1 = wy ) Lg[T(7)] +EJ , OJ , lp(uo)ly(ﬂ w,e)dp'de’. (9.39)
@'=0Jp'=-

If the boundary conditions for the equation of radiative transfer are character-
ized by axial symmetry, then the intensity of radiation in the medium studied does
not depend on the azimuthal angle, and equation (9.38) is simplified:

oL, (T, w, +l 2a
uJﬂtly(ﬂ 1) — (1 —w, ) Lp[T(7)] +—J Iy(mﬂ)J ppo) de’dp.
or 4m w'=l »'=0

(9.40)

To fulfil the integration over ¢’ in this relation and, thus, to essentially simplify the
right-hand side of equation (9.40), one resorts to the following approach. The
scattering indicatrix p(pg) is expanded over the orthogonal Legendre polynomials
(Gradshteyn and Ryzhik, 2000):

N
p(UO) = ZanPn(MO);aO =1, (941)
n=0

where P(p) is the Legendre polynomial of the nth order from the argument p. The
physical prerequisites for choosing just such a type of orthogonal expansion are
related, first of all, with the fact that the scalar wave equation for systems of
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particles allows, in the Maxwell theory, the following separation of angular and
spatial variables and has particular solutions of the following form (Stratton, 1941):
coslp
¥~ {Pu(cos0)}Z,11)2(r). (942)
sinly
In this case the spherical Bessel function Z,,;/(r) can be presented in the far
radiation zone as

Zyiaja(r) ~ lexp (=jkr) (kr) '], (9.43)

where k is the wave number.

Thus, using the features of the orthogonal expansion over the Legendre poly-
nomials, the internal integral in the right-hand side of relation (9.40) can be inte-
grated, and the following expression is obtained (see Ozisik (1973) for more details):

27 N
L P(uo) dp" =2~ a, Py(1) P(p'). (9:44)
n=0

The substitution of (9.44) into (9.40) represents the equation of radiative transfer in
the case of axial symmetry as

w. (1
P 1) = (1 = T + 2l ) a's (945)
where
Pl p') =Y ayP, (1) Py(1). (9.46)
n=0

In this case the scattering indicatrix p(u, ') of a unit volume does not depend on
the azimuthal angle. Relation (9.46) has a number of important special cases, which
are widely used in observational practice. So, the case of N = 0 corresponds to the
so-called isotropic scattering, N =1 to the indicatrix of linearly anisotropic
scattering, i.e.

plpsp') =1+ aipp', (9.47)
and N = 2 to the indicatrix of anisotropic scattering of the second order:
Pl p') =1+ aypp’ + a3 = )3’ - 1]. (9.48)

The indicatrix of the important case of so-called Rayleigh scattering can be obtained
from (9.48) for ¢; =0 and a, = 1/2, i.e.

Pl p') =33 — i + B = 1) (). (9.49)

Below we shall transfer to the formal solution of the equation of radiative
transfer in the planar case in the presence of axial symmetry (9.45). To solve this
equation, one establishes, first of all, the so-called double-flux approximation. For
this purpose the unknown intensity ,(7, 1) is separated into two components: the
direct (or outgoing) one I, (7, 1), > 0, and the reverse (or incident) one 7, — (7, 1),
1 < 0 (Figure 9.4). From the viewpoint of experimental practice such a separation is
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quite lawful and justified since, when a receiving device is at the upper boundary of a
layer, we receive radiation formed by the volume of a medium and the escaping
(outgoing) from this medium. And when we are at the lower boundary of a medium,
we receive radiation falling (incident) from the medium’s volume on a receiving
device. The separation of the intensity into two components in performing particular
measurements is clear enough and, therefore, no special explanations are usually
made in describing the experiments. In this approach the equations for outgoing
and incident components of the sought-for radiation and the corresponding
boundary conditions will be as follows:

orf (r,
M%Jr L (1) = S(7, 1), (9.50)
LT )l — = 1,(0,);0 < pp < 1, (9.51)
L (r, )=y, = 1, (7o, 1); =1 < pu <0 (9.52)

These equations are not independent, however, but represent an interdependent
system, since they contain the source function, which can be written in this repre-
sentation as:

SV(T7 :LL) = (1 - wu)lyB[T(T)]

1 0
w, _
2 [ o Gy [ gty G| 059
The formal solution of equations (9.50) can be obtained by means of the well-known
integrating multiplier method. For an outgoing flux we have:

I (r 1) = I (0, ) exp (— (/1)) +£J;S(T’,u) exp(—(r— )/ dr’  (9.54)

for u > 0.
For an incident flux after traditional replacement of 1 by —p the solution has the
form:

To

I (7, 1) = I (0, ) exp (—(ro — 7)/11) + H S, (. —p) exp (~ (' — 7)) dr'.
9.55)

In these relations, for example (9.54), the first term in the right-hand side represents,
in the explicit form, the contribution of radiation from the boundary surface with
7 =0, which has attenuated on passage through a medium to depth 7 without
scattering. The second term represents the contribution of the source function
within the range of values from 7 =0 to 7 into the intensity of radiation at depth
7. The terms of relation (9.55) have similar physical sense (with correction for
geometry). The formal expressions (9.54) and (9.55) are not solutions in the true
sense, since in the general case the source function and the intensities at the bound-
aries depend on the unknown intensity of radiation emitted by the medium. And,
therefore, they cannot be directly used as initial expressions in solving the problem



Sec. 9.6] Boundary conditions 375

under consideration. Below we shall demonstrate how the problem can be solved up
to the final result for a series of important practical cases.

9.6 BOUNDARY CONDITIONS

In section 9.5 the formal values of functions I} (7, u), p > 0 and I, (7, 1), u < 0 have
been used as boundary conditions at the boundaries of 7 =0 and 7 = 7, respec-
tively. In this section we shall present explicit expressions for these boundary con-
ditions in the case of transparent and non-transparent boundary surfaces being
diffuse and mirroring reflectors.

9.6.1 The transparent boundaries

If the boundary surfaces 7 =0 and 7 = 7y are transparent, and the adjacent sur-
rounding space is a vacuum (i.e. it does not interact with radiation), then the
boundary conditions for the incident (from outside) radiation in the case of axial
symmetry can be written as

170, 1) = fi,(w); >0, (9.56)

1;(7—07/0 :fZV(M);M < 07 (957)

where f1,(p) and f5,(p) are specified functions of parameter p. If the incident
radiation, falling on a studied layer from outside, is constant, formulas (9.56) and
(9.57) are simplified to the form

IIIL(O) :f‘ll/;/J' > 07 (958)

I, (19) = fo; <0, (9.59)

where f|, and f, are constants.

Typical examples of such kinds of boundary conditions are solar radiation
falling on the upper boundary of the terrestrial atmosphere and other extra-
terrestrial sources of radio-emission of galactic and extra-galactic origin.

9.6.2 The black boundaries

If both boundary surfaces 7 =0 and 7 =7, are black (i.e. fully absorbing the
incident radiation) and are maintained at constant temperatures 77 and 75, respec-
tively, then the spectral intensity of radiation emitted by these surfaces is described
by the Planck function at the surface temperature (see Chapter 6). Then the
boundary conditions can be written as:

1,(0) = Ly(Ty), (9.60)

1, (1) = Lp(T>), (9-61)

where I,5(T) is the Planck function, whose value does not depend on the direction.
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A typical natural example of such a type of boundary (for the microwave band)
is the upper boundary (conventional, in a certain sense) of the terrestrial atmosphere,
on which falls the black-body radiation of the relic background of the universe with
brightness temperature of 7, = 2.7K.

9.6.3 Mirror-reflecting and black boundaries

In the microwave band, as we have already argued (see Chapter 7), some part of
terrestrial surfaces can be considered in the approximation of mirror-reflecting
media with a power reflection coefficient distinct from unity. Thus, such a type of
boundary on the one hand will be the source of thermal radiation, and, on the
other hand, will reflect the incident radiation falling on it from the studied
medium.

Now we consider the situation with the boundary conditions, which is quite
close to real situations in experimental practice when studying the terrestrial atmo-
sphere. In such a case, the upper boundary represents a black body with a brightness
temperature of 2.7 K (see relation (9.61)). The radiation at the lower boundary will
be formed from the thermal radiation of the surface with emissivity x;(u) and
temperature 7 and from re-reflected radiation with the Fresnel power coefficient
|R(11)]?, which was formed at the lower boundary of a studied layer. In virtue of the
fact that the emissive and reflective properties of the surface depend on the polariza-
tion of radiation received by a receiving system, the outgoing flux under these con-
ditions will also possess polarization properties, though distinct from the
polarization properties of the surface itself. Corresponding examples will be con-
sidered below.

So, for the conditions at the upper black-body boundary and at the lower
reflecting boundary (Figure 9.5) the unknown boundary conditions can be
presented in the form:

1™ (79) = 1,p(T>), (9.62)

1;(0, 1) = k(1)L (T1) + [R, ()1, (0, 1) (9.63)
We shall repeatedly use the boundary conditions of type (9.62) and (9.63) hereafter.

9.7 RADIATIVE TRANSFER IN THE EMITTING AND
ABSORBING MEDIUM

One of the most important particular cases in the radiative transfer theory is the
approximation of emitting and absorbing medium (without scattering, i.e. w = 0).
This approximation is especially widely used in the microwave band. For the
conditions of purely gaseous terrestrial atmosphere, without the presence of hydro-
meteors, the relation w = 0 is met accurately. But even in the presence of hydro-
meteors at wavelengths greater than 1cm this condition is met to a good accuracy
(see Chapter 10). For this reason, we shall present in this section the explicit expres-
sions of radiation intensity for some particular observational schemes.
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Figure 9.6. The measurement scheme for recording the outgoing radiation by the aircarrier
(A) (aircraft) inside the atmosphere and by a satellite (S) outside the atmosphere. Notation is
explained in the text.

Figure 9.6 presents the measurement scheme for recording the outgoing
radiation in the conventional electrodynamically homogeneous, non-isothermal
atmosphere over the solid (or liquid) surface. The recording microwave device is
installed either on an aircraft inside the atmosphere at the given altitude (the
dimensionless coordinate 7), or on a satellite outside the atmosphere. We shall
suppose that outside the conventional atmosphere the attenuation in a medium is
absent; therefore, for a satellite version the altitude coordinate can be 7 = 7.

As we have already noted, the Rayleigh—Jeans approximation is valid in the
microwave band, and, hence, we can proceed to presentation of the solution of
(9.54) and (9.55) in the form of brightness temperatures. Then the source function
will be equal to S(7) = Ty(7) and, thereby, it reflects the non-isothermal character of
the atmosphere.

Thus, the complete solution for outgoing radiation, which is recorded at the
dimensionless altitude (%), will be equal to:

7(h)
Tg (1.1) = T3 (0, ) exp (=(7/n)) +ij0 To(r")exp (—(r —7')/p) d7’s u > 0.
(9.64)

The boundary condition at the lower boundary will be formed from two com-
ponents — the thermal radiation of the surface and the incident radiation from the
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atmosphere, re-reflected by this surface:

Ty (0, 1) = 6(0) Ty + |R(1) |’ T (0, —p). (9.65)

In its turn, the incident radiation, falling from the atmosphere to the lower
boundary, will also consist of two components — the external radiation (the
radiation of illumination) 7} fallen on the upper atmosphere’s boundary and
attenuated in the atmosphere medium, and the thermal radiation of the atmosphere
formed inside the atmosphere. The complete solution for incident radiation at the
lower boundary will take the form:

T

T5 (0, —p) = Tyexp (—(ro/u)) +ij To(r')exp (—(r'fu)) dr'su > 0. (9.66)

For greater physical clarity we assume the atmosphere to be isothermal, i.e.
To(7) = Ty. Note that the isothermal approximation for atmospheric problems
should be used with great caution, since it is known from the thermohydrodynamics
that such atmospheres are dynamically unstable under gravity conditions.

So, the expressions for the isothermal atmosphere will be as follows:

Tg (7, 11) = T (0, p) exp (= (7/ ) + To[1 — exp (—(7/p))]; (9.67)

Ty (0,1) = K1) T2 + [R(u)P[ Ty exp (= (ro/1) + To(1 = exp (—(r0/w))].  (9.68)

Note that the outgoing recorded radiation consists of two components — the
contribution of the atmosphere itself and the contribution from the surface and
external radiation. As we have already noted, all these components possess
identical statistical properties and cannot be distinguished by this criterion. So, it
is necessary to use the polarization features of total radiation to separate various
components. Note that the last term in these expressions is none other than the
numerical expression of Kirchhoff’s law.

The obtained expressions for outgoing radiation (9.64) and (9.67) are
widely used in various modifications in experimental microwave remote sensing
practice.

9.8 FEATURES OF RADIATION OF A HALF-SPACE WITH THE
SEMI-TRANSPARENT ATMOSPHERE

In this section we shall consider in more detail the features of radiation of the
surface—atmosphere system and also will present the observational techniques that
are used in studying the electromagnetic properties of the atmosphere.

For physical clarity we shall consider the simplest isothermal version, where
both the atmosphere and the surface are at the same thermodynamic temperature
Ty, and external radiation is absent, i.e. 7} = 0. Using relation (9.67), we obtain in
this case the expression for the outgoing flux intensity at the upper boundary for
observation into the nadir (¢ = 1) in the following form:

Ty(79,0) = To[l — [R(0)[* exp (—27)]. (9.69)
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It follows from this relation that the emissivity of the surface—atmosphere system
ksa Will be equal to:

ksa(10,0) = 1 = [R(0)|* exp (—27). (9.70)
Recall that in the absence of the atmosphere the surface emissivity kg will be
R (79, 0) = 1 — [R(O). (9.71)

Note that the doubled value of the optical thickness (path) in the exponent is physic-
ally related to the fact that three types of radiation make contribution to the total
radiation in a statistically independent manner, namely: (1) the thermal outgoing
radiation of the atmosphere, (2) the re-reflected incident radiation of the same atmo-
sphere, and (3) the thermal radiation of the surface.

9.8.1 Brightness contrast

Note that in experimental practice are brightness contrast is important in studying
complex geophysical objects. Suppose we are interested in the brightness contrast at
observation of the surface—atmosphere system and surface only. In this case the
expression for the brightness contrast can be presented as:

ATg(79,0) = Tsa(79,0) — Ts(79,0) = To|R(0)]*(1 — exp (—27)), (9.72)
and the emissivity contrast can be written as:
Ak = kgp — kg = |R(0)]*(1 — exp (—27)). (9.73)

If the homogeneous atmosphere possesses semi-transparent properties, i.e. ¢ < 1,
then in this case, expanding the exponential function into a series and retaining the
first two terms, we shall have

ATg(7,0) =2 To|R(0)|*2+h, (9.74)

AK(79,0) 2 |R(0)]*2vh. (9.75)

The relations obtained give rise to some important consequences, which are
widely used in experimental practice. First, the brightness contrast is always
positive in the presence of absorbing and emitting atmosphere. However, as we
shall see below, the situation can drastically change when scattering is present in
the atmospheric formations. Second, the value of contrast for a semi-transparent
atmosphere is proportional to the electrodynamic properties of the atmosphere
medium, and, knowing the values of temperature and atmosphere’s height from
accompanying measurements, we can obtain the value of attenuation in the atmo-
sphere substance. Third, as the value of the optical path of the atmosphere increases
(via increasing the height or attenuation in the atmosphere), the emissive properties
of a system will tend to the properties of black-body radiation (Figure 9.7). In this
situation the information on the surface and the electrodynamic properties of the
atmosphere will be completely ‘blocked’ (see Chapter 6).
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Figure 9.7. Emissivity of the atmosphere—surface system as a function of the atmospheric
optical thickness. The symbol kg presents the surface emissivity; kgs is the atmosphere—
surface system emissivity.

By virtue of this circumstance, in experimental practice the atmosphere is
subdivided (fairly conventionally, of course) into three types: the transparent
atmosphere with 7<0.05 (and, accordingly, with the emissivity contrast
Ak < 0.1); the non-transparent atmosphere with system emissivity kga > 0.95 and
accordingly, 7 > 1.6, and the semi-transparent atmosphere with optical path values
in the range of 0.05 < 7 < 1.6 (Figure 9.7). It can easily be seen that the measure-
ments in the semi-transparent atmosphere will be most informative for remote
sensing, as we shall see below.

9.8.2 Angular measurements

By virtue of the fact, that the emitting half-space possesses polarization properties
(see Chapter 7), these properties will reveal themselves (in a rather peculiar manner,
however, as we shall see later) in measurements of the surface—atmosphere system as
well.

So, for the isothermal, planar surface—atmosphere system under observation at
angle # we obtain from relations (9.67) and (9.68) the following value for the
outgoing radiation intensity:

Ksa, (1) =1 — |Ri(10)| exp (—270/ ). (9.76)

where i = H, V' are the horizontal and vertical components of an outgoing flux,
respectively, and p = cos#.

As we already know, the emissivity of the planar half-space (both components)
tends to zero as the observation angle tends to 90°, and, accordingly, the Fresnel
coefficient tends to unity. However, it can easily be seen from (9.73), that for § — 90°
and, passing to the other complementary angle o = 90° — 6, the limiting value of xgp

can be written as:
Ksa, (@) = 1 —exp (—27/a) — 1 (9.77)

for any values of the optical path of the atmosphere. In other words, the radiation of
the surface—atmosphere system represents black-body radiation at grazing observa-
tion angles (Figure 9.8). In such a case measurement of the surface’s properties and
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Figure 9.8. Polarization dependences of the atmosphere—surface system (solid lines) and of the
surface (dashed lines).

of the electrodynamic properties of the atmosphere is impossible. The physical sense
of such a paradoxical (at first sight) situation is related to the initial specifying of a
plane-layered model of the atmosphere. In real atmosphere investigation practice it is
necessary, of course, to take into account the sphericity of the atmosphere, which
eliminates the paradoxical effect mentioned. It is important to note that such an
observation mode, which is called the limb method of studying the atmosphere, has
been widely disseminated recently, since it makes it possible to record and study in
detail very fine features of radiation both of the terrestrial atmosphere (Hartmann
et al., 1996; Masuko et al., 2000), and of the atmospheres of planets (Mars, in
particular) as well.

9.8.3 The oblique section method

The features of thermal signal transmission on oblique tracks allow us to use some
measurement techniques, very useful in observations, which are generically called
the oblique section method. This method was proposed and developed in radio-
astronomical practice. Now it is used, with various modifications, in remote observa-
tion as well.

The observational scheme of the oblique section method is as follows. The
instrument is situated at the lower boundary of the atmosphere layer and records
the intensity of an incident flux (9.66). If there is a strong thermal source with
brightness temperature Tgg outside the atmosphere, then the total intensity of an
incident flux can be written as

Ty (p) = Tesexp (—1o/p) + To(1 —exp (—70/p)), (9.78)

(for the sake of convenience we have replaced p with —p).
Here the first term describes the received radiation from the extraneous
(external) source, and the second term corresponds to the contribution of the
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thermal radiation of the atmosphere. This makes it possible to follow one of two
experimental techniques: either to study source intensity variations as the source
passes across the sky (for ‘regular transmission’), or to use forced scanning over
the observation angle at reception of thermal radiation of the atmosphere. Each of
these techniques possesses both positive and negative features in their direct use in
observational practice (Haroules and Brown, 1968; Gorelik et al., 1975).

A principal feature of the oblique section method is the circumstance that the
variation of the angular dependence of a received signal in various modifications is
identical, namely, as a secant of the observation angle. This makes it possible to
essentially simplify the measurements, that is, to avoid absolute radiothermal meas-
urements and pass to the mode of relative measurements. The latter approach is, of
course, much easier and more reliable both methodologically and in respect of the
technological implementation.

To better understand the essence of the oblique section method we rewrite the
expression for an incident flux in the following form:

—— =exp (—7sech). (9.79)

Differentiating over the parameter sec, we obtain from (9.76) the following
expression:
1 d[TR(0) — To
Ty — T, d(sech)

= 19 exp (—7psech), (9.80)

and, substituting here the expression for an exponential function from (9.79), we find
the relation sought:

1 d(Tg — Ty)
= — . . 1
K (TB - To> d(sect) (-81)
And, passing to finite differences, we shall have
A[Ty(0) — T
——————— = —T1y A(sech). 9.82
TB(G) — TO 0 ( ) ( )

Thus, quantity 7, can be determined from the relative measurements of variations of
the external signal intensity as a function of sec 6.

A similar approach can also be used in measuring the thermal radiation of the
atmosphere (the second term in expression (9.78)). Performing a similar operation,
we shall obtain the expression for the optical path in the form:

_ 1 d(Tg —Ty)
Ty — T, d(sech)

70 (983)
In other words, the optical path value can be obtained as a tangent of the angle of a
slope of the plot of relative variations of thermal radiation versus secf. As an
indicative example, we shall present the data of measurements of thermal
radiation of a cloudless atmosphere (for clear weather conditions), carried out simul-
taneously at two frequencies: 19 GHz and 35GHz (Figure 9.9) (Haroules and
Brown, 1968). It follows from the measurement data, that under the meteorological
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Figure 9.9. Measured atmospheric opacity at 19 (squares) and 35 GHz (circles) under clear
weather conditions (temperature, 4°C; pressure 1000.9 mbar; water vapour 2.4g/m’)
(Haroules and Brown, 1968).

conditions studied the opacity of the terrestrial atmosphere at the frequency of
19 GHz was found to be 0.035, and at the frequency of 35 GHz, 0.06. It follows
from this result that under the meteorological conditions studied the state of the
atmosphere can be characterized as a transparent atmosphere.

A final objective of this kind of experiment is obtaining spectral characteristics
of absorption of the atmosphere within a wide wavelength range, which, in its turn,
determines the physicochemical and aggregate composition of the atmosphere (see
Chapters 10 and 11).

9.9 RADIATIVE TRANSFER IN THE EMITTING, ABSORBING AND
SCATTERING MEDIUM

To evaluate the contribution of scattering to radiative transfer, we consider a model
situation where we shall take into account the full scattering losses, but disregard the
contribution of rescattering (see section 9.2). In other words, the source function will
be taken into account as it is written in relation (9.53); however, we shall still
disregard the contribution of the integral, i.e. we let p(ug) =0. This model
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approach makes it possible to evaluate the upper boundary of possible losses during
radiative transfer in a scattering medium.

The values of scattering albedo for particles in the terrestrial atmosphere for the
millimetre and centimetre bands vary within very wide limits, from 0.1 to 0.7. In
the optical band, however, the albedo in cloudy systems can reach the values of 0.99
and greater.

Taking into account the model approach conditions, we obtain from relations
(9.54) and boundary conditions (9.63) the expression for an outgoing flux at the
upper boundary of the atmosphere in the form of

Ty (10, 1) = £Toexp (—7o/p) + (1 + [R()[* exp (—79/ 1)) (1 — w) To(1 — exp —7p/p)).
(9.84)

It follows from the expression obtained that, as (7p/u) — oo, the limiting value of
intensity tends to (1 — w)7T,. In other words, under such conditions the surface—
atmosphere system emits as a black-body emitter, but with essentially lower
effective thermodynamic temperature. In this case one sometimes says, that the
‘cooling’ of a medium occurs because of ‘the inner radiative scattering losses’. The
incident radiation, falling on a volume element and scattered by it, will be subjected
to further multiple scattering on other medium’s elements and, eventually, will
dissipate in a medium. The processes of multiple scattering in scattering media
are, certainly, very complicated and represent a subject of independent investigation
(Marchuk, 1976; Ishimaru, 1978, 1991).

As we have already noted, of importance in the observational practice are back-
ground contrasts — the difference between radiation of the surface—atmosphere
system and radiation of the surface only. Making easy transformations using
(9.84), we obtain the expression the radiothermal contrast at observation of the
nadir:

w1+ [RPexp(—7)
IR]> 1+exp(—m)

ATg(p=1) = To|R[*(1 — exp (—279))

1 . (9.85)

And, assuming the atmosphere to be transparent (7 < 1), we simplify expression
(9.85) to the form:

wl + |R[

ATy = To|R|*27 T

. (9.86)

Let us analyse the relations obtained. First, it should be noted at once that the
contrast in the presence of scattering atmosphere (unlike non-scattering atmosphere)
can have both positive and negative sign. Second, the contrast depends, in a rather
complicated manner, not only on the properties of the atmosphere itself, but on
the emissive properties of the surface. If the surface is rather ‘cold’ in the radio-
thermal sense, i.e. k — 0, then the value of contrast is positive and can be
presented as

ATg = To(1 —exp (—279))(1 — w) = Tp27(1 — w). (9.87)
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In the opposite case, for ‘warm’ ‘black-body’ surfaces (x — 1), the situation is
reversed: the contrast is negative, and its value can be written as:

ATB = —Tow(l — eXp (-27’0)) = —2T0w7'0. (988)

From relation (9.86) it can also easily be seen that at a certain value of surface
emissivity the value of contrast will be zero. This value of x can be estimated as
21 —w)
RE——. (9.89)
It can be seen from this relation that, for example, for a cloud with albedo w = 0.7
the surface emissivity, for which the effect of presence of a cloud is absent, will be
equal to kK = 0.5.

The physical meaning of the obtained results is rather transparent. In the case of
‘warm’ surfaces, the scattering cloud does not compensate in a full measure for those
scattering losses of radiation, outgoing from the surface, which are introduced by the
cloud itself. In the case of ‘cold” surfaces the situation is the reverse — the cloud not
only fully compensates scattering losses, but, in addition, makes its own contribution
into the total radiation, thus providing a positive contrast.

The importance of the model situation, considered above, lies in the fact that
this simple example clearly demonstrates the important fact that the scattering can
drastically change the whole radiation energetics in an emitting and scattering
system.

9.10 RADIATION OF THE INHOMOGENEOUS AND NON-
ISOTHERMAL HALF-SPACE

Making use of the formal solution of the basic transfer equation (9.54) and (9.55), we
obtain the explicit expression for radiation intensity in another important case — for
a medium with stratified electromagnetic and thermal parameters. We mean the non-
isothermal half-space with inhomogeneous electromagnetic properties. The natural
analogues of such media are widespread: they include both inhomogeneous soils and
grounds with complicated moisture and temperature profiles, inhomogeneous vege-
tation with a complicated internal thermal regime, the non-isothermal surface micro-
scopic layer of the ocean, inhomogeneous rocks, and surface layers of the Moon,
Mars and other planets.

So, we shall consider the absorbing and emitting medium (without scattering,
w = 0) with arbitrary profiles of electromagnetic properties v(z) and temperature
To(z) (here z denotes the layer depth from the surface). We shall consider, for
convenience, the solution of (9.52) for an incident flux at the lower boundary of a
layer:

17 (0.1) = I (0, ) exp (=m0 1) + HO St w)exp (—r'fuydr’. (9.90)
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Since we consider the half-space, we shall tend 7p — oo and pass from the
dimensionless optical path to the dimensional layer depth z. Then we use the
presentation of intensity in terms of the brightness temperature. And, finally, after
some transformations we shall have the expression for the so-called effective
temperature 7, of the non-isothermal and inhomogeneous half-space, measured
from the internal side of a layer, in the form:

T (0) = Jw T(z)y(z) 1 exp{— ! Jz v(z") dz'} dz. (9.91)

0 cosf cosf )

Since in considering half-spaces the coordinate z in the positive direction is
usually pointed to the depth of a layer, we change the coordinate system from
what was accepted earlier in studying the atmospheres to the opposite one. Note
also that angle 6 in expression (9.91) represents an internal angle in a medium (rather
than the external observation angle 6, related to 6 by Snell’s law). A fairly compli-
cated functional dependence of the electrodynamic properties of a medium under the
sign of integral is explained by the following circumstance. Any unit layer in a
medium absorbs that radiation which passes through it from underlying layers
and, at the same time, it emits thermal energy that will be partially absorbed by
overlying layers. The intensity expressed in (9.91) is formed directly under the half-
space boundary; and, finally, that energy will escape into free space, which is propor-
tional to the following value:

Twi(09) = [1 — [Ri(60)’] Ter (6), (9.92)

where i = H, V' (horizontal and vertical polarizations).

It is important to note that the internal radiation of a medium, described in
terms of effective temperature, does not possess polarization properties. The
radiation acquires these properties only after intersecting the planar boundary.

By virtue of the aforementioned specificity of thermal radiation formation, it can
easily be concluded from expression (9.91) that the depth of the layer at which the
basic part of emitted energy can be formed has a quite finite value. We have already
made this estimation for moist soils in section 8.8. For this purpose we shall consider
the isothermal medium with homogeneous parameters and variable lower limit (the
depth). Then at observation into the nadir we obtain the expression for the bright-
ness temperature in the form:

Ty(z) = [1 = [RO)P] To(1 — exp (—72)). (9.93)

It directly follows from this result, that the effective depth z.; of homogeneous space,
which forms 90% of radiation intensity intensity (the so-called skin layer of
radiation), equals the following value:

fe= 22 08 A , (9.94)

L)

where €, and tgé are electrical parameters of an emitting medium.
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If the medium is transparent, i.e. tgd < 1, then the above expression is
simplified:
A

NG

It can easily be seen from this relation, that for terrestrial media the values of
effective depths vary within very wide limits. So, for the glacial ice, whose electrical
parameters are €; = 3 and tgd ~ 0.001, for the decimetre wavelength band (30 cm
for instance) the effective depth will be 63m. In the same wavelength band for
fresh water (1 =0°C) (¢; = 80 and tgd =~ 0.04) the effective depth will be about
30cm, whereas for salt water, under the same conditions, z, ~ 1.3cm. In the
millimetre band (8 mm) the skin layer of radiation for an aqueous medium will be
I mm only.

If the emitting medium is highly inhomogeneous in electrical and temperature
parameters, then the direct estimation of a skin layer from relations (9.94) and (9.95)
is unacceptable, strictly speaking, since the picture of internal radiation can be very
complicated (see section 7.7.2).

It is interesting to note that if we transfer to the isothermal case (Ty(z) = 7)),
then the complex integral (9.91) for effective temperature transforms to the value T
regardless of the profile of electrodynamic properties of a medium. In other words,
the semi-infinite isothermal medium represents a black-body emitter for any values
of electrodynamic properties and profiles.

Comparing the expression obtained with relation (7.100), we can easily see their
full identity. However, at the same time, both the limits of applicability of radiative
transfer theory and clear limitations in using this theory become obvious (see section
7.7.3). This is due to the fact that in the presence of electrical losses in the studied
medium (tgd # 0) Snell’s law should be used, strictly speaking, in the complex form
and, hence, the value of angle # inside the medium will also be complex. Thereby
expression (9.91) loses its physical sense as radiation intensity. Thus, strictly
speaking, the results of radiative transfer theory are applicable for transparent
media only. However, some special investigations, carried out beyond the
radiative transfer theory framework (Shulgina, 1975; Sharkov, 1978; Klepikov and
Sharkov, 1983), have shown, in fact, that the situation is not so dramatic. The
contribution of absorbing properties of a medium to refractive characteristics of a
medium is quite small (see section 7.7.3). And, therefore, the transfer theory results
can be successfully used for media with considerable absorption (such as sea water)
as well.

The aforementioned formulas (9.91) and (9.92) are widely used in analysing
the emissive properties of inhomogeneous and non-isothermal media, both for
remote sensing applications and in radio-astronomy. So, it was from radio-
astronomical (remote) observations, using the transfer theory results, that the
features of the thermal regime of the subsurface layers of the Moon were revealed
and, it was by means of Krotikov’s relations (8.52) that the physicochemical proper-
ties of surface and subsurface layers of the Moon were first determined (Troitskii,
1954, 1967; Tikhonova and Troitskii, 1970). These results served as a basis for

Zg 2036 (9.95)
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developing the modules designed for landing on the lunar surface. Similar investiga-
tions have been subsequently carried out for the Martian surface as well.

9.11 APPROXIMATE METHODS FOR SOLUTION OF THE
COMPLETE TRANSFER EQUATION

The mathematical difficulties that arise in solving the complete integro-differential
equation of the transfer theory (9.23) have resulted in the appearance of a series of
approximate approaches and methods for solution of the radiative transfer equation.
At present, the approximate methods of solution of the radiative transfer equation
form an independent mathematical discipline. Here it should be noted that quite
different (initially) physical prerequisites are laid down in various approaches, and,
therefore, the spheres of applicability of these methods are very different from each
other. As a result, the matching of solutions of various approximate methods among
themselves, sometimes represents, a very complicated problem in itself. So, in the
approximations of thin-optical and thick-optical layers (the latter is also called the
diffusive approximation, or the Rosseland approximation) simplifications are used
that follow from the corresponding limiting value of the medium’s thickness. In
Eddington’s and Schuster-Schwarzchild’s approximations the simplifications are
related to the introduction of some special assumptions on the angular distribution
of radiation intensity. In the method of exponential approximation of a core the
integro-exponential functions in the formal solution are replaced by the exponents.
The spherical harmonics method and the Gaussian quadratures method are the most
well-developed techniques allowing us to obtain high-order approximations using
fairly simple procedures.

In this paragraph we shall describe two of the aforementioned approximate
methods for solution of the radiative transfer equation in the schematic form. For
more detailed study of the approximate methods we can recommend the reader the
following papers on the same subject: Chandrasekhar, 1960; Sobolev, 1963;
Malkevich, 1973; Ouzisik, 1973; Marchuk, 1976; Marchuk et al., 1986; Sabins,
1987; Thomas and Stamnes, 1999; Barichello et al., 1998. The approximate
methods are necessary from two points of view. First, they provide various simple
methods for the solution of fairly complicated radiative transfer problems. In this
case, however, their application is limited by the circumstance that the accuracy of
the approximate method cannot be estimated without comparing it to the accurate
solution or to the results obtained from accurate solutions of the Maxwell electro-
magnetic theory. Therefore, in using the approximate methods for studying particu-
lar natural media, some caution should be exercised, since the accuracy of any
approximate method is not always clear enough. Second, in solving the reverse
remote sensing problems, of principal significance is the possibility of describing
the radiation of a studied natural medium by means of fairly simple analytical
formulas. The use of numerical models (such as the Monte Carlo method)
(Marchuk, 1976) does not allow to form the algorithms for reverse problems.
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9.11.1 The spherical harmonics method

The spherical harmonics method enables one to obtain the approximate solution of
the radiative transfer equation by using the initial assumption on a special form of an
unknown solution. The physical basis for such a choice is the feature of electro-
magnetic energy scattering on particles, which allows for separating the angular and
spatial variables in the Maxwell theory (Stratton, 1941). This method was first
proposed by J. H. Jeans in 1917 in connection with the problem of radiative
transfer in stellar atmospheres. The detailed description of the method of spherical
harmonics as related to radiative transfer can be found in a series of papers (Chan-
drasekhar, 1960; Sobolev, 1963; Ozisik, 1973; Marchuk, 1976; Thomas and Stamnes,
1999; Barichello et al., 1998).

Consider the radiative transfer equation for a planar layer of a grey medium
under axial symmetry conditions:

11
PP ) = (=BT +5 ] pla ) d's 096)

where it is supposed that the volume element scattering indicatrix can be presented in
the form of expansion over the Legendre polynomials, but, unlike (9.46), with the

other coeflicients:
o0

(21 + 1)f Py (1) Py(). (9.97)
=0

n

Suppose that the unknown radiation intensity (7, 1) can also be expanded in a
series over the Legendre polynomials in the following special form, separating spatial
and angular coordinates:

1) = 3PP, (). (9.98)

m=0 ™

If function ¥,,(7) is known, then the radiation intensity can be found from (9.98).
For this reason we shall analyse in more detail the determination of function ¥,,(7).
The substitution of expansions (9.97) and (9.98) into the basic equation (9.96) after
some simplifications, determined by the orthogonality properties of the Legendre
polynomials and by their recurrent formula (Ozisik, 1973), we obtain the system of
ordinary differential equations with respect to function ¥,,(7)(m =0,1,2,...):

(m + l)qjig/hLl + m\IJI{Hfl + (2m + 1)(1 - wfm)\Ijm = 471—(1 - W)IB[T(T)}éonw (999)

where f, = 1 and prime denotes the differentiation with respect to 7.

For example, for the simplest isotropic scattering it is necessary to let in equation
(9.96) all functions f,, equal to zero, except f;, which is equal to unity.

Equations (9.96) form an infinite system of ordinary differential equations with
an infinite number of unknown functions ¥,,(7). In practice, however, systems with
a finite number of equations m = N are considered, where the term ¥, (7) is
neglected. The aforementioned procedure is certainly very important for the final
solution and, hence, it should be substantiated from the physical point of view.
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As a result, the following system of equations is obtained:
Ui + (1 —w)¥ = 4n(1 — w)I[T(7)]

205+ W+ 3(1 — wf) T, =0
2 0 ( 41) 1 (9100)

NUA 4+ 2N+ 1)(1 — wfy)Ty =0

which represents the system of N + 1 linear ordinary differential equations with
N + 1 unknown functions ¥, ¥,..., ¥y and is called the Py approximation.

The solution of system (9.100), as known, can be written as a sum of the solution
of the corresponding system of homogeneous equations and a particular solution.
The latter, however, cannot be accurately determined until the function of black-
body radiation intensity (i.e. the thermal regime inside the medium) is known. Let us
find the solution of the system of homogeneous equations in the form of

U (1) = gnexp (kr);m=0,1,..., N, (9.101)

where g, are arbitrary constants, and k are unknown exponent indices. The sub-
stitution of (9.101) into the system of homogeneous equations, obtained from
(9.100), gives the following system of N + 1 homogeneous algebraic equations
with respect to coefficients g,,:

k[(m + l)gm+1 + n’lgmfl] + (2’/” + 1)(1 — W m)gm = Oa (9102)

where m=0,1,2,... ,N,fy=1and gy, =0.
In the case of isotropic scattering, we let f, = 1, and f,, = 0(m #£ 0).
Then (9.102) is simplified and takes the form of

k[(m + l)gm+1 + mgmfl] + (2m + 1)(1 - W(SOm)gm =0. (9103)

For the system of homogeneous algebraic equations (9.103) to possess a nontrivial
solution, the determinant, composed of coefficients of the equations, should be equal
to zero. Thus, as a result of performing the procedure mentioned, we obtain the
allowable values of k; for each value of w. Then for each of k; the set of g,,(k;) values
(m=0,1,2,...,N) is determined from equation (9.102), after which the solution of
the system of homogeneous equations for isotropic scattering, obtained from (9.100),
can be written in the form of

N
in(r) =Y Agu(k;)exp (k7);m =0,1,2,...,N. (9.104)
i=0

The complete solution for function Y,,(¢) can be presented as
U, (1) = U, (r) + ", (9.105)

where the particular solution ¥ (1) depends on the spatial distribution of radiation
intensity of an ideal black body, i.e. on the internal thermal regime in the medium.
The unknown coefficients 4 appearing in (9.104) are found from the boundary
conditions of a problem. Once functions W°(7) are determined, the unknown
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distribution of radiation intensity is found by formula (9.98). Here we note that there
are also many other presentations of the solution of (9.104) related specifically to
particular physical problems (Chandrasekhar, 1960; Sobolev, 1963; Ozisik, 1973;
Barichello et al., 1998).

As a particular case, we shall consider below the P -approximation for isotropic
scattering. This approximation is obtained from (9.100), if we accept N = 1, f,,, = dom,
and neglect the term d¥,(7)/dr, i.e.

Ui (1) + (1 = w)to(7) = 4n(1 — w)Ig(T) }
=0.

(9.106)
Wi(r) + 30, (7)

Rearranging the equations of system (9.106), we shall have the expressions for ¥,
and ¥, separately:

2

dd\I;O =3(1 — w)[Vy — 4nls(T)]

) (9.107)
dq}l—(l—w) 30, 4+ 473, (T)

dr? P )

After determining function ¥, from the solution of equation (9.107) and taking into
account (9.106), we obtain the expression for the unknown intensity

T = 4= [¥or) - 0S|

(9.108)

The expressions for ¥, will include both the boundary conditions and the thermal
regime features. In the theory of stellar atmospheres (Sobolev, 1963) this approxima-
tion of a complete solution of the spherical harmonics method is called the
Eddington approximation.

In remote sensing the spherical harmonics method (in the P, — P, approxima-
tion format) has been widely used in studying the thermal radiation of both small
dispersed systems (non-precipitation clouds, aerosols) and medium dispersed
systems (drizzle-type precipitation clouds), where the scattering still does not make
a noticeable contribution to the total radiation balance of a system (see Chapter 10).

9.11.2 The Gaussian quadratures method

The Gaussian quadratures method makes it possible to obtain the approximate
solution of the radiative transfer equation via the approximate presentation of
integrals in the basic equation by the so-called Gaussian quadratures and subsequent
transformation of the initial integro-differential equation into the system of ordinary
differential equations.

We separate the unknown intensity into the direct (outgoing) component /(7 i),
w € (0,1), and the reverse component I(7, 1), & € (—1,0), as we have already done it
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in section 9.5, and we shall write the basic integro-differential equation in a slightly
different (as compared to (9.50)—(9.53)) form:

MWH@ 1) = (1 — W) I [T (7)

w 1 1
5| ottty | ol =1t -y au

(9.109)
for 0 <7< 19, >0 and

w—i—l(ﬂ —p) = (1 —w)Ig[T(7)]

w 1 1
5| o=+ [ i)

(9.110)

for 0 <7< 7, u>0.

Note that equations (9.109)—(9.110) are valid for positive values, i.e. u € (0,1),
and two intensity components are distinguished by means of designations /(, 1) and
I(r,—p).

The integral terms in above equations can be approximately presented by the
sums with using the formula for the double Gaussian quadrature:

1 N
J gz (T, 14); 11> 0, (9.111)

0

where a; are weighting multipliers (Christoffel’s coefficients), which are determined
by the Gaussian quadrature formula, and pu; are the discrete values of u, which
are determined by the Gaussian quadrature formula (Gradshteyn and Ryzhik,
2000).

The integro-differential equations (9.109) and (9.110) are transformed, by
means of the N-point formula for the Gaussian quadrature, into the system of 2N
ordinary differential equations with respect to intensities 7(, ;) and I(71, —py;)
(i=1,2,...,N). After some transformations equations (9.109) and (9.110) can be
reduced to the form (Ozisik, 1973):

dI(T7 :u’l)
dr

~ > ayl(np) Z@, w) = (1=DB[T@) (0112

1

-~
I

"MZ

=

dI(T(iT—uf)+Z Byl () +Z% :_i(l_w)zB[T(T)], (9.113)

J=1 !
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where p; € (0,1),i=1,2,...,N and

lw bij
= —Zap(u. w) — -2 9.114
g = - ap i 1) " (©.114)
lw
By = ;Eajp(ﬂn —1)- (9-115)

Equations (9.112) and (9.113) represent the system of 2N linear ordinary differ-
ential equations with 2N unknown values I(7,y;) and I(7,—p;), (i=1,2,...,N),
which should be solved simultaneously with 2N corresponding boundary conditions.

Suppose that the solution of a homogeneous system of equations, corresponding
to the system of (9.112) and (9.113), can be written in the form of

(7, 1) = gi(k) exp (k7); I(7, — ;) = g; (k) exp (=kr), (9.116)

where i=1,2,...,N.

After substitution of these solutions into homogeneous parts of equations
(9.112) and (9.113) we shall obtain the system of 2N linear homogeneous
algebraic equations with respect to g;(k) and gj(k) with k as a parameter. The
allowable values of k are found from the condition, that the determinant
composed of coefficients g;(k) and g (k) becomes zero, if the resulting system of
algebraic homogeneous equations has a nontrivial solution. Once the values of k; are
found, the algebraic equations are solved for each value of k; (j =1,2,...,2N) and
the corresponding values of g;(k) and gj(k)(i=1,2,...,N) are determined. The
general solution of the system of equations (9.112) and (9.113) is written as a
linear sum of general solutions of homogeneous equations and a particular solution:

(7, i) Zc/g, ) exp (k;T) + (9.117)

I(r,—u;) Zc,g, ) exp (k;7) + (9.118)

where ¢; denotes 2N constants of integration, which should be found from
2N boundary conditions. For an isothermal medium the particular solution is
found quite easily, and for a non-isothermal medium some special techniques can
be used.

In microwave remote sensing the Gaussian quadratures method (true, in a
slightly transformed form) has been applied in studying thermal radiation of
almost all transparent media with inclusion of small dispersed scatterers (England,
1974, 1975). The internal scattering results in the effect of ‘darkening’ (or ‘cooling’)
thermal radiation of the whole medium. In this case the ‘cooling’ effect will increase
as the scattering albedo grows and medium’s dielectric constant decreases. These
effects should be expected from physical considerations (see section 9.9).

Natural media where these effects are possible include the glacial ice sheets of
Antarctica and Greenland. As we have noted above (section 8.7), the negative
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frequency-selective spatial variation of thermal radiation of internal regions of
Antarctica is caused by the effect of volume scattering of a glacial medium.
Similar effects are quite possible for ground structures of the Moon and Mars
as well.

9.11.3 Approximate formulas

In the cases where fairly simple algorithms for reverse microwave remote sensing
problems can be formed (see Chapter 13), the necessity arises of using approximate
formulas which will take into account the main scattering effects. However, the
pure absorption approximation, which is often used in practice (see section 9.4),
where the scattering effects are fully ignored, unsatisfactorily describes the
radiation of a scattering layer (of the atmosphere) for optical thickness values
greater than 1.5.

Earlier Basharinov et al. (1967) suggested a method for the description of the
radiothermal emission of a planar isothermal layer by means of effective coefficients
of transmission, ¢, and reflection, r, in the following simple form:

71]3:’110(1—q—1’)7 (9119)

where T is the temperature of a medium,

(1= r%)exp(—kTO). _, 1 — exp (—2k7)

= = . 9.120
=7 riexp (—2kmy) 01 — ryexp (—2k7) ( )

Here 7, is the total weakening in a scattering medium (for example, in a rain), and
coefficients k and ry for a symmetrical scattering indicatrix are equal to

k:vl—w;roz%. (9.121)

The expressions for ¢ and » were obtained by Ambartsumyan (Sobolev, 1963) on
the basis of one-dimensional model of the scattering of stellar atmospheres. In
deriving (9.119) the Kirchhoff law was used, where it was supposed that, owing to
scattering, the fraction of radiation equal to rT was reflected backwards and was as
though ‘extracted’ from the basic energy balance. The comparison of results of a
complete solution of the transfer equation and calculations by formula (9.119),
carried out on paper by Basharinov et al. (1967), has shown that expression
(9.119) gives overestimated values of radiobrightness temperatures, the distinctions
not exceeding 15%.

Smirnov (1984) believes the following form of expression for the brightness
temperature to be more correct:

Tg = To[l —qg—r(l —q)]. (9.122)
Here it was supposed that the part of radiation that was not dissipated in the

medium possessed effective reflection. In this case the radiobrightness temperatures
of outgoing 7" and incident 7~ radiation of the ‘atmosphere — underlying surface’
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system can be written in the following form:

T-=(1-rTy(l —gexp(—7y)) + r&Ts, (9.123)

T =(1—r)|[kTsqexp (—my) + To(1 — gexp (—79))
+ (1 =k)T gexp(—7y)], (9.124)

where T is the average temperature of a medium with scattering (the atmosphere
with precipitation), 7 is the total absorption in a medium (in the atmosphere), x is
the underlying surface emissivity and Ty is the underlying surface temperature. The
second term in (9.123) describes the part of the underlying surface radiation that is
reflected from the precipitation layer owing to scattering.

The special modelling of radiation of a medium with scattering (the atmosphere
with precipitation) by the Monte Carlo method (Smirnov, 1984) has demonstrated a
good agreement between calculations by formulas (9.123) and (9.124) and modelling
results. It was also shown in that paper, that the radiation intensity value only
weakly depends on the form of a scattering indicatrix and can be approximately
described by the single scattering model.

In conclusion, it should be mentioned that, depending on the physical and
geometrical features of a specific problem, many of approximate formulas can be
obtained for forming the algorithms of reverse problems.






