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Electromagnetic properties of disperse media

The purpose of this chapter consists in considering basic electromagnetic character-
istics of disperse media, which are widespread in the terrestrial atmosphere. The
basic notions are introduced for quantitative absorption and scattering character-
istics of both secluded particles and disperse media having the form of clouds of
independent, randomly located scatterers. The principal concepts of Mie scattering
theory and approximations used in practice, such as Rayleigh scattering, resonance
scattering, and geometric optics approximation, are presented in the chapter. The
basic characteristics describing the mechanical disperse properties of heterogeneous
mixtures are introduced. The absorbing and scattering properties of natural poly-
disperse media, containing water drops and water particles in various phase states,
are considered. The chapter presents a rich set of experimental findings on the
absorption and scattering characteristics of disperse media spread in the terrestrial
atmosphere. The main attention is given to the analysis of electromagnetic charac-
teristics intended for studying the scattering and absorption processes in disperse
media, in the microwave band predominantly. The basic results are presented of
investigation of highly concentrated disperse media included absorbing scatterers
in the microwave band.

10.1 ELECTROMAGNETIC PROPERTIES OF SECLUDED PARTICLES

From the viewpoint of radiative transfer theory, of principal interest for us are the
transmission and scattering characteristics of an electromagnetic wave in the
presence of a cloud of randomly located, electromagnetically independent scatterers.
We shall analyse this problem in this chapter in two stages. First, we shall consider a
secluded particle and study its scattering and absorption characteristics. At the
second stage we shall take into account the contributions of a great number of
non-correlated particles and derive the general relations for a wave propagating in
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a cloud of randomly distributed particles. The first of these stages — the analysis of
characteristics of a secluded particle — is described in this section. This issue has been
exhaustively elucidated in a series of publications (Stratton, 1941; Shifrin, 1951,
1968, 1971; Hulst, 1981; Born and Wolf, 1999; Deirmendjian, 1969; Ishimaru,
1978; Bohren and Hoffman, 1983; Ivazyn, 1991). For this reason, we shall
consider here only the basic physical approaches to this complicated problem as
applied to microwave sensing tasks.

10.1.1 The scattering cross-section and the scattering amplitude

When a secluded and solitary particle is irradiated by the electromagnetic wave,
some part of the incident power is scattered and leaves a particle irrevocably, and
the other part is absorbed and transforms into heat eventually. These two basic
phenomena — scattering and absorption — can be described most conveniently by
supposing the particle to be illuminated by a planar incident wave.

Consider a linearly polarized planar electromagnetic wave propagating in a
medium with relative dielectric and magnetic permittivities equal to unity. The
electric field of such a wave has a form (see section 1.6):

Ei(r, Q') = Eye; exp [jk(Q'1)] (10.1)

Here E is the field amplitude; k = 27/ is the wave number, ) is the wavelength in a
medium (external with respect to a particle), Q' is the unit vector in the direction of
propagation of an external field, and e; is the unit vector specifying the direction of
the external field polarization.

This wave falls on a particle (Figure 10.1) with relative dielectric permittivity €,,,
which is complex, generally speaking, and depends on the coordinates, since the
particle can be absorbing and inhomogeneous. The field at distant R, measured
from some point inside a particle in the direction of unit vector Q, is equal to the
sum of field E; of an incident wave and a field Eg of a wave scattered on a particle. At
distances R > D? /A (D is the characteristic size of a particle, for example, its
diametre) owing to the interference of waves coming from various points of a
particle, the amplitude and phase of field Eg vary in a very complicated manner
(the so-called near field mode) (see section 5.2). In this case the observation point r is
said to be in the near zone of a particle. For R > D? /A the scattered field Eg behaves
as a spherical wave and can be presented in the form

exp (jkR) )

. D?
Es(R) :f(QQQ)T,R >

3 (10.2)
where the scattering amplitude (€2, Q") describes the amplitude, phase and polar-
ization of a scattered wave in the far zone in the observation direction Q provided
that the planar wave, propagating in the irradiation direction Q’, falls on a particle.
It should be noted that even in the case of linear polarization of an incident wave the
scattered wave of a particle of complicated shape would possess elliptical polariza-
tion, generally speaking. The scattering amplitude is very important, because its
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Figure 10.1. Schematic presentation of the geometry in scattering studies in particles.
Notation is explained in the text.

value contains information on internal dielectric properties, geometrical shape and
size of a particle.

Consider now the density Ilg of a flux of power (see section 1.6), scattered in
the directions of wave Q at distance R from a particle, when the wave with power
flux density I, falls on a particle from the direction Q'. Here I, and Ilg are the
vectors of a power flux density of incident and scattered waves in the corresponding

directions:
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where Z, is the characteristic impedance of a medium (see section 1.6). The total
power P (measured in watts), which will be scattered by a particle into the ambient
space, can be determined as

Ps(Q') = “ g (Q', Q)| d (10.4)
4
and then the ratio
Ps(Q')
og(Q) =23 10.5

is called the integral scattering cross-section of a particle. It can easily be seen that
this value has the dimension of m?. The physical sense of the introduced quantity
consists in the fact that it indicates the difference in losses for power scattering by a
particle with respect to its geometrical cross-section (or its geometrical shadow). If
the particle has a complicated shape, then the total scattering cross-section depends
on the direction from which the external radiation falls on a particle.
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Now we introduce another important definition characterizing the power and
spatial-angular scattering of incident external radiation, falling on a solitary particle,
by this particle. The differential scattering cross-section of a particle is determined as
follows:

04(Q',Q) = lim [RZM} = |f(Q Q). (10.6)

It follows from expression (10.6) that o4(€Q’, Q) has the dimension of area divided by
a solid angle. Note that the differential scattering cross-section has unambiguous
physical sense only when the considered distances from a particle exceed the size of a
far zone. In the opposite case (or in the presence of some other particle near the
investigated one) the physical unambiguity of the introduced definition is lost.

In radar and scatterometric applications the bistatical radar scattering cross-
section og and backscattering cross-section opg are often used. They are related to
04(Q', Q) by equations

op(Q, Q) = 47104 (Q, Q); 0g = 4704 (Q', —Q). (10.7)

Quantity ogg is also called the radar scattering cross-section. The physical sense of
these definitions can be elucidated as follows. Suppose that within the limits of the
total solid angle of 47 the power flux density is constant and equals the value of the
density for the direction €. Then the cross-section of a plate, from which such a
power is scattered, is equal to the value of oy for the direction Q multiplied by 4.
Note that the other definitions of backscattering cross-section are sometimes used as
well (Skolnik, 1980).

10.1.2 The absorption cross-section

Now we shall consider that part of an incident flux energy, falling on a particle,
which will be completely absorbed by a particle and then will transfer into heat.
Certainly, if a particle is inhomogeneous in its electromagnetic properties, then all
diffraction phenomena arising inside a particle should be taken into account in
calculating the absorption. For some unification of the description of scattering
and absorption processes the following definition is introduced. By the absorption
cross-section o4 (') is meant the ratio of the total power P, which was absorbed in
particle’s volume, to the density of the flux power, which falls on a particle from the
direction Q’,
Pa

The dimension of the absorption cross-section is expressed in m?. If a particle is
inhomogeneous in its composition, then the absorption cross-section will depend on
the direction of incident external radiation. Since the question is about the absorp-

tion of electromagnetic energy, this quantity can have no direct relation to the
geometry of a particle.
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10.1.3 The extinction cross-section

Now we shall consider the following important point. Since we have noted that the
energy scattered by a particle is considered in the far zone of a particle, this part of
energy ‘leaves’ a particle irrevocably. Thus, no statistical bond exists between the
power absorbed by a particle and the power scattered by the same particle. Only
under this condition can one introduce the definition describing the total losses (or
extinction) of a particle in the form of a sum of losses for scattering and absorption:

oE(Q) = o5() + o4 (€2). (10.9)

Quantity o (') is called the extinction cross-section (or the total cross-section).

10.1.4 The single scattering albedo

The relation between absorption and scattering processes, which occur when a
particle is irradiated by a flux of electromagnetic radiation, is undoubtedly, a very
important factor in studying the total energy balance in transforming (or extracting)
the energy of a basic external flux by a particle. The ratio of the extinction scattering
cross-section to the total cross-section is called the single scattering albedo of a
solitary particle:
os(Q)

os(Q') +oa(Q")

For natural media the value of albedo varies within very wide limits. So, for optically
transparent media in the terrestrial atmosphere (drops of water), the value of albedo
is close to unity (0.95-0.99). In the microwave band the albedo of water particles lies
within the limits of 0.01-0.8 (Oguchi, 1983), whereas for particles, close in their
electromagnetic properties to the black body (such as the hollow water spheres),
the albedo is virtually zero (Raizer and Sharkov, 1981).

Note that the albedo of a unit of medium’s volume introduced earlier (see
section 9.2-9.3) can essentially differ from the albedo of a solitary particle, since
the first of these definitions depends on the polydisperse composition of a medium
or, in other words, on the relationship between the working wavelength and the
range of particles’ sizes.

w(Q') =

(10.10)

10.1.5 The scattering indicatrix

It is obvious from physical considerations, that any particle of complicated shape
will scatter incident radiation in space in an inhomogeneous manner. To describe the
character of a spatial-angular scattering on a particle the special dimensionless
function p(Q’', Q) is introduced, which is the called the scattering indicatrix, in the
following form:

g4 (Q/, Q)

p(Q, Q) =4r (@)

(10.11)



402 Electromagnetic properties of disperse media [Ch. 10

The dimensionless quantity p(Q’, Q) is sometimes called the phase function and is
widely used in radiative transfer theory (in the optical band especially). Note that
this name has purely historical roots. Physically, the phase function describes the
scattered power and has no relation to the phase of an incident wave (see equation
(10.2)). The term ‘phase function’ arose in astronomy and is related to the phases of
the Moon (Ishimaru, 1978).

Using relations (10.6), (10.10) and (10.11), we obtain the equations which
associate all the electromagnetic parameters of a particle introduced above:

rs(@) = || ca@.an-|| 7@ oo

— UEESEI)J]‘ p(Q,Q)de, (10.12)
™ 4z
Wﬁ=%=é“$ﬂﬁmﬁmﬁﬁmﬂgﬂmﬂ (10.13)

These relations clear up the physical sense of the introduced parameter — the
scattering indicatrix. Suppose that the particle will scatter uniformly within the
total solid angle 47 surrounding it, i.e. p(Q',Q) = 1. Then particle’s albedo will
be equal to unity, and the total cross-section of the particle will be determined by
its scattering cross-section only. In such a case the particle is called purely scattering.

Note that the aforementioned approach to forming the scattering indicatrix of a
particle is not unique. There are, however, other approaches to the definition of a
scattering indicatrix (Skolnik, 1980). Then relations (10.12) and (10.13) will have
other numerical coefficients.

10.1.6 The optical theorem

The extinction cross-section describes total power losses in an incident wave caused
by wave scattering and absorption in a particle. It is important to note that a close
relationship has been found to exist between the behaviour of a wave, scattered in
the forward direction, and the extinction cross-section. The appropriate general
relation forms the content of the so-called optical theorem, or the forwards scatter-
ing theorem. The optical theorem states that the extinction cross-section is related to
an imaginary part of the forwards scattering amplitude f(Q’', Q), and this relation
has a form (Born and Wolf, 1999):

4 .
@:%mAQﬁm (10.14)

where Im implies ‘the imaginary part’, and e; is the unit vector characterizing the
direction of polarization of an incident wave.

This theorem is often used for theoretical calculations of the extinction cross-
section when the scattering amplitude is known. The application of this theorem is
rather difficult in the experimental respect, since it requires separating an incident
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external flux from the radiation scattered by a particle ‘forwards’. Note that in
quantum theory there exists a full analogue of the theorem mentioned, which associ-
ates the imaginary part of the amplitude of elastic forwards scattering with the total
cross-section of a particle at scattering on the other particle (Prochorov, 1984).

10.1.7 Integral presentations of scattering amplitude and absorption cross-section

The mathematical description of a scattering amplitude and scattering and absorp-
tion cross-sections can be accomplished in one of two ways. For simple-shaped
bodies, such as a sphere or an infinite cylinder, the accurate expressions for the
mentioned quantities can be found. The accurate solution for a homogeneous dielec-
tric sphere, which is called the Mie solution (or the Mie theory), will be considered in
section 10.2. However, in the majority of practically important cases the shape of
particles is not simple. For this reason, a number of techniques have been developed,
allowing us to obtain the values of unknown cross-sections proceeding from integral
presentations of a scattering amplitude (Ishimaru, 1978).

Considering the field in the far zone, scattered by a particle, and knowing the
field inside a particle E(r), one can obtain from the solutions of Maxwell’s equations
the following integral expression for the scattering amplitude of an inhomogeneous
particle:

. K2

f(Q' Q)= EJ {—Q x [Q x E(r)]}{e(r) — 1} exp (—jkrQ) d V. (10.15)

v

This is the accurate expression for a scattering amplitude f(Q’, Q) in terms of the
total electric field E(r) inside a particle. Note that the double vector product inside
the integral represents a component of the scattered field perpendicular to Q for any
direction of a vector of the total electric field E(r) inside a particle (Figure 10.2). The
main difficulty of the procedure considered consists in the fact that, strictly speaking,
the total electric field E(r) inside a particle is unknown; as a result, expression (10.15)
does not provide a closed description of a scattering amplitude in terms of known

E;
Q' 1I,
H;

Figure 10.2. The geometrical positions of the point within the particle (r’) and the observation
point (R) studies of scattering amplitude. Notation is explained in the text.
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quantities. However, in many practically important cases the field E(r) can approxi-
mately be replaced by some known function and, thus, one can obtain the useful
approximate expression for the scattering amplitude of complicated particles, such as
spheroids or multi-layered spheres (Bhandari, 1985; Rysakov and Ston, 2001).

In its turn, the absorption cross-section of any dielectric body represents a
volume integral of losses inside a particle:

oA :kJVaz(r)|E(r)\2dV. (10.16)

In this expression the incident wave amplitude is chosen to be equal to unity.

Expressions (10.15) and (10.16) are the accurate integral expressions for the
scattering amplitude and for the absorption cross-section in terms of unknown
total field E(r) inside a particle.

10.2 BASIC CONCEPTS OF MIE THEORY

The important problem in electromagnetic radiation scattering by material particles
consists in finding the relationship between the properties (i.e. the size, shape,
dielectric characteristics) of particles to the angular distribution of scattered
radiation and to the external radiation absorption by particles. Such a problem
arises in many fields of science and technology (such as astrophysics, biochemistry,
radiophysics, optical oceanography). For this reason, numerous theoretical and
experimental investigations have been carried out to study electromagnetic wave
scattering. Historically, such investigations were first been carried out in the
optical band and then were spread to the IR and radio wavelength bands.

One of first researchers, J. Rayleigh, proceeding from purely dimensional con-
siderations, obtained the famous asymptotic approximate solution for radiation
scattering by spherical particles whose size is small as compared to the wavelength
of incident radiation falling on the particle. This work was followed by the general
theory of radiation absorption and scattering by homogenecous particles having
simple geometrical shape, such as a sphere or a circular cylinder. This theory was
formulated by G. Mie in 1908. In the Mie theory, based on the solution of
fundamental Maxwell’s equations, the idealized situation was considered, namely,
a simple spherical particle made of a homogeneous, isotropic material and placed in
a homogeneous, isotropic, dielectric, boundless medium and irradiated by planar
waves propagating in a particular direction. A purely dielectric spherical particle
does not absorb radiation, whereas an electrically conducting spherical particle
partially absorbs, partially scatters and partially transmits the incident radiation.
The derivation of Mie’s solution, as well as the mathematical and physical aspects
of his theory, including the features of numerical calculation algorithms, are
contained in a series of books (Stratton, 1941; Shifrin, 1951, 1968, 1971; Hulst,
1981; Born and Wolf, 1999; Deirmendjian, 1969; Ozisik, 1973; Ishimaru, 1978;
Ivazyn, 1991). The solutions for the amplitude of a scattered wave for a sphere
have a form of complicated series containing the Riccati—Bessel functions and the
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Riccati—-Hankel functions of increasing order. The results of Mie’s solution are most
useful for determining absorption and scattering coefficients, as well as the scattering
indicatrix for spherical particles suspended in a dielectric medium, provided that the
particles are spaced at a rather great distance from each other. Some special experi-
ments were carried out for determining the minimum distance between spherical
particles ensuring their independent scattering. It was found that for some optical
scatterers the mutual interference can be neglected if the distance between the centres
of spherical particles is greater than three diametres. In the majority of applied
problems (the studies of cloudy systems, snowfalls, aerosols) the particles are
separated by much greater distances from each other. Note, however, that in the
Mie theory the idealized case is considered, namely, a secluded spherical particle,
which acts as an independent point-like scatterer in a boundless medium, whereas
the scatterers met with in the majority of practical applications have an arbitrary
geometrical shape. At present, great efforts are being made to study electromagnetic
radiation scattering by particles of arbitrary shape and orientation and complicated
structure (such as multilayer particles, spheroids) (Bhandari, 1985; Rysakov and
Ston, 2001). Nevertheless, we shall consider below the results of Mie’s theory,
since this is a unique fundamental theory now available, and its results are useful
in many idealized cases.

10.2.1 Parameters of the Mie theory

A series of dimensionless parameters are introduced in the theory, which are widely
used in practice.

The ratio of cross-section values, introduced above, to the geometrical cross-
section is called the efficiency factor and designated by Q;, where i is equal to A, S or
E (which means absorption, scattering or extinction, respectively). Thus, one can
write

Qi: Ui27 (1017)

where a is the radius of a sphere. As follows from (10.9), the efficiency factors satisfy
the relation

Op = Os + Qa- (10.18)

By the size parameter is meant the ratio of the length of circumference of a
studied sphere to the working wavelength x(0 < x < o0)
2ra  7wD
X=—=— 10.19
v=T0= T2 (10.19)
where D is the diameter of a sphere.
The complex parameter m of refraction of sphere’s substance relative to dielec-
tric properties of an ambient boundless space is

=" —n 4 ijy. (10.20)
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Here ngp is the index of refraction of sphere’s substance, and ng is a similar
characteristic of the ambient space. If the ambient space is not a vacuum, but a
medium with a high value of ng, then parameter |m| can be less than unity. For
example, such a situation takes place in studying the propagation and scattering of
electromagnetic waves of the optical band in a marine medium in the presence of air
bubbles.

Since the sphere is a symmetrical particle, the scattering does not depend on an
azimuthal angle, but is a function of scattering angle 6, concluded between the
directions of incident and scattered beams. Thus, we introduced one more
parameter — the scattering angle. Here it is necessary to keep in mind, that if the
incident flux possesses strictly linear polarization, then the (secondary) radiation,
scattered by a sphere, acquires the character of elliptically polarized radiation
(Stratton, 1941), and its description requires bringing in the azimuthal angle. If,
however, the primary field is non-polarized (the case of natural thermal radiation),
then the secondary radiation is weakly polarized. This makes it possible to present
the scattering indicatrix in the form of series over the Legendre polynomials

o0
plcosfy) =1+ Z A;Pj(cos by), (10.21)
j=1
where 6, is the scattering angle, P;(cosf)) are the Legendre polynomials, 4;
are expansion coefficients, which are functions of parameter x and parameter of
refraction only.
To get an idea about the results of the Mie theory, we shall write the expressions
for the efficiency factors of extinction and of scattering, which can be presented in the
form of infinite series:

Ok :%i@n—k 1){Re (aﬂ+bl1)}7 (1022)
n=1
05 = 53 Gnt Dflaf + 1B, (1023)

where Re is the real part of a sum. If the particle does not absorb the incident
radiation (i.e. the index of refraction is a real number and the particle is a pure
scatterer), then expressions (10.22) and (10.23) lead to identical results. If the particle
absorbs the incident radiation, then the index of refraction is complex, and the
efficiency factor of absorption Q4 is obtained from the definition of Qg (10.18) in
the form of

On = Ok — Os. (10.24)
The efficiency factor for the backscattering cross-section Qg can be presented as

follows:

OB

1 - ny - A
OQps =2 =— ;@nﬂ)(—l) (dy — by) |- (10.25)
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In radar technology this parameter was called the effective scattering area (ESA)
of a target (Skolnik, 1980). In this case the diagram showing the dependence of ESA
on the angle of wave incidence on a scatterer is called the ESA diagram (this is just
the scattering indicatrix, in its essence).

The complex a, and b, coefficients in formulas (10.22), (10.23) and (10.25) are
called the Mie coefficients. They represent complicated functions, expressed in terms
of the Riccati—Bessel functions, and are written in the form:

W)/ )
I = e )P0 [P )] — () (10.26)
L)/ 0] - i)
b e PP 6 (10.27)

where the prime denotes differentiation with respect to the argument under con-
sideration. The Riccati—Bessel functions ¥,(z) and ¢,(z) are associated with the
Bessel function of non-integer order by the relations:

#,) = (Z) " huira(2) (10.28)
62 = (Z) o) + (11 2(2), (10.29)

where z = x or y, and the complex argument y is determined as follows y = nx.

The physical sense of the Mie coefficients is as follows. The primary (external)
electromagnetic wave excites some particular forced oscillations inside the substance
of a sphere and on its surface. These forced oscillations can be subdivided into
the electric and magnetic modes of oscillations on the basis of the existence of a
corresponding radial component in a scattered (forced) field. So, if the electric
vector of a scattered field has a radial component, which is caused by electric
charges distributed over the surface, then such a mode of oscillations is called the
oscillations of electrical type. The amplitudes of oscillations of such a type are
expressed in terms of b, coefficients. If the scattered field is excited by means of «,
coefficients only, then the structure of the field will be as if it was produced by
variable magnetic charges disposed on the surface of a sphere. And such a field is
called a field of magnetic type. Thus, it can be considered (Stratton, 1941), that
a, coefficients represent the amplitudes of oscillations of magnetic type, and b,
coefficients those of electrical type. If the frequency of an impressed (external)
field approaches any characteristic frequency of the natural electromagnetic
oscillations of a system, then the resonance phenomenon arises. This is just the
condition where the denominators in expressions (10.26) and (10.27) tend to zero.
But since in a system (inside the sphere) the absorption is always present, the
denominators of the Mie coefficients can be reduced to their minimum values, but
they cannot be made equal to zero. Thus, the mathematical catastrophe — the arising
of infinite amplitudes — does not occur.
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Though the Mie solution is strictly applicable to the whole range of m — x values,
it was found fairly quickly, that the numerical calculations of a scattering indicatrix
and efficiency factors for arbitrary m and x values are rather laborious. For example,
the convergence of series determining the Mie coefficients becomes very slow when
the relative size of a sphere increases as compared to the incident radiation wave-
length. Another difficulty consists in the irregularity of the values of a, and b,
coefficients. On one hand, this makes the interpolation procedures rather unreliable
(Shifrin, 1951, 1968), and, on the other hand, in performing detailed numerical
calculations, a lot of resonance modes arise, some of which can be ‘false’ (Conwell
et al., 1984). Fortunately, for many practically important tasks (including remote
sensing) there is no necessity to perform calculations by the Mie theory throughout
the range of m — x values. One can restrict calculations to the limiting values of the
Mie solution, which, in their turn, can be determined by simplified techniques. So,
for example, for high values of parameter x (i.e. for a large spherical particle as
compared to the wavelength) the convergence of the accurate Mie solution becomes
very poor. However, in such cases the geometric optics laws are applicable for
determining the scattering indicatrix and efficiency factors, and the final expressions
become quite simple. For very small x values the accurate Mie formula is essentially
simplified, if one applies the power series expansions of spherical Bessel functions
with respect to Mie’s a, and b, coefficients. However, the procedure of expansion of
efficiency factors in power series with respect to small x values and the physical
interpretation of expansion terms turns out to be rather complicated.

Detailed investigations of mathematical features of the expressions for efficiency
factors, undertaken for a wide frequency band of electromagnetic waves and for
dielectric properties of substances encountered in natural media, have shown that
three regions can be found in which the scattering on particles possesses some
peculiarity.

The first region, or the Rayleigh scattering region, is characterized by the
following conditions: first, the size of particles is small as compared to the wave-
length of an external field, i.e. ¢ < A(x < 1); and, second, |m1]x < 1. The first
condition implies that we are in the quasi-static approximation (see section 1.6)
and can make use of the laws of electrostatics. The second condition requires the
absence of electromagnetic resonances inside a particle. As usual, the traditional
value of @ = 0.05A(x < 0.3) is accepted as an upper limit of a particle’s radius for
this approximation. But in this case the second condition should, certainly, be
satisfied as well.

The second region, or the resonance (the Mie) scattering region, is characterized
by the presence of a great number of resonance features and very complicated
scattering indicatrix. For these reasons this region has proved to be most
complicated for investigations. The values of x are usually concluded within the
limits of 0.25-0.5 to 50.

The third region (the high-frequency region, or the geometrical optics region) is
characterized by the presence of a geometrical shadow behind the particle. This
results in the situation where the extinction cross-section will tend to the doubled
geometrical cross-section of a particle (of arbitrary shape, it should be added). This
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Figure 10.3. The backscattering efficiency factor of a metal sphere as a function of the size
parameter (at microwave bands).

phenomenon is called the extinction paradox, and it has several (and different)
physical explanations.

As an indicative example, we shall consider the dependence of the efficiency
factor of backscattering for a metal sphere (Figure 10.3). This object is often used
as an experimental standard for calibrating microwave antenna systems and com-
plicated receiving radio-engineering complexes (early-detection radar stations, for
instance).

From the analysis of the plot, presented in the logarithmic scale, it can easily be
seen that the whole region of the size parameter values can really be subdivided into
three characteristic sub-regions: the Rayleigh scattering region, where Qgg decreases
as 1/ M*: the resonance Mie region, where the resonance dependencies are explicitly
exhibited; and the geometrical optics region, where the Qgg value is equal to the
geometrical cross-section value of a large particle. Of interest is the fact that for the
dimension parameter value equal to unity takes place the first and most strong Mie
resonance, at which the backscattering cross-section exceeds by nearly three times
the size of the geometrical shadow. Physically, this is due to the fact that the sphere
intensively scatters ‘backwards’ as a resonance half-wave vibrator, i.e. ma = \/2.

10.3 RAYLEIGH SCATTERING FEATURES

Because the features of electromagnetic field scattering by small particles are of great
importance for practical applications (and for remote sensing primarily), we shall
consider in more detail the features of Rayleigh scattering.

For small particles (x < 1), provided that the internal resonances are absent
|ri)x < 1, the exact Mie formulas are simplified, if we use the power series expansion
of spherical Bessel functions with respect to the Mie coefficients. The expansion of
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the Mie solution in power series with respect to small x values can be presented as
follows (Shifrin, 1951; Hulst, 1981):

2 2 2 4 2
Op = —Im 4xm_l+ix2 m-— 1\ m" +27m" + 38
BT m2+2 150 \nm?+2 2m? + 3
2
8 4 m* — 1
Rel - N 10.30
+ Re 3 <m2+2)+ ( )

Separate investigations have shown that the first term (in braces) characterizes the
efficiency factor of absorption, and the second term characterizes the efficiency factor
of scattering. The result is valid for x < 1 and |m|x < 1.

It is quite useful to obtain similar results proceeding from physical approaches.
We shall make use of two approaches: we consider the scattering on a small particle
in the quasi-static approximation and the scattering on a solitary dipole emitter.

It is known from electrostatics that the field inside a dielectric sphere, placed in
the permanent external electric field E; with linear polarization, is homogeneous and
equals (Stratton, 1941):

E:gi—zE”El :Eoei, (1031)
where e; is the unit vector in the direction of incident wave polarization.

Substituting this relation into (10.15), we obtain the expression for a scattering
amplitude for the external field with linear polarization in the form:

) K [3(e—1)

f(Q,Q)-AhT[ ) }V[ Q x [Q x ¢ (10.32)
Note that the double vector product is here the sine of angle 6, between the polar-
ization vector and the direction of observation, and V' is the geometrical volume of
a particle. The differential scattering cross-section of a particle will be equal, in
accordance with (10.6), to
2 2

a4(6y) :% [%} V2 sin® 6. (10.33)
Note that the scattering cross-section is inversely proportional to the fourth power of
wavelength and directly proportional to the square of the volume scatterer’s. It was
these two properties of small scatterers which were obtained by Rayleigh by bringing
in the theory of dimensions.

It is of interest is to compare the relation obtained with the backscattering cross-
section. Substituting the value of angle 6, = (3/2)x into (10.33) and remembering
formula (10.7), we have:

473 [3(e — 1)]?
aBS:F[%} 2. (10.34)
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As would be expected, all basic features of scattering in the Rayleigh region (the
wavelength and volume dependencies) have conserved for backscattering as well.

Using relation (10.12), we shall consider now the scattering cross-section for a
small dielectric particle:

2 2 o 2 5 6 2
7 [3(e—1) .3 J” 1287°a” (e — 1
= dQ=—|—= 0d0| dp=—79———=] . (10.35
Is Jj4ﬂgd |: e+ 2 :| JO s 0 ¥ 3)\4 €+ 2 ( )

Separating this expression with the real geometrical cross-section, we obtain the well-
known Rayleigh equation (or relation) for the efficiency factor of scattering (with
allowance for the size parameter of a particle):

2
Qs:§x4<€_ 1) . (10.36)

e+2

Comparing the obtained expression with the expansion of the accurate Mie solution
(10.30), we see that the Rayleigh approximation is a direct consequence of the Mie
solution (the first term in the real part of the expansion) for purely dielectric spheres.
The absorption cross-section is zero in this case (see relation (10.16)). Using the
obtained expressions (10.33) and (10.35), we shall obtain the expression for the
indicatrix of scattering of linearly polarized radiation by a small particle:

p(0) = 428 = Ssin20,. (10.37)

o, 2
It follows from this expression that for small particles there takes place a very strong
and peculiar feature in the angular characteristics of scattering — the scattering
indicatrix has the form of a torus; in this case the maximum of scattering is
observed in the direction of reverse and direct scattering (p = 3/2). In the directions
with 6, = 0 and 180° the scattering is completely absent. This feature of Rayleigh
scattering is often used for interpreting physical and observational experiments with
coherent sources.

Another physical approach is related to using the features of the radiation
(i.e. considered in the far zone) field of an elementary emitter in electrodynamics:
the dipole — which can be excited by the external electromagnetic field. The radiation
field of a dipole is known (Born and Wolf, 1999) to consist of one electric component
Ey and one magnetic component H,, the vectors being in phase. The electric
component is related with its polarization vector P as follows:

. ikR
Ee:kﬂp‘m

sin 6, (10.38)
where 6 is the polar angle measured from the direction of the polarization vector. In
its turn, the polarization vector is related with the complex polarizability « and the
external field as P = &E,. By the polarizability of particles is meant their capability to
acquire the dipole moment in the external electric field. For relatively simple physical
systems the relationship between the polarizability o and macroscopic dielectric
properties of substance can be established by means of the Lorentz — Lorenz
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formulas (Prochorov, 1984):

a=——"_V. (10.39)

Substituting expression (10.38) into (10.6), we obtain the value of the scattering
amplitude for the dipole:
1(6) = Késin 6. (10.40)

Making computational procedures similar to those presented above, we shall obtain
for the efficiency factor exactly the same expression as (10.36). For these reasons
Rayleigh scattering is sometimes called dipole-type scattering.

The absorption cross-section can be obtained from expression (10.16), if we
substitute into it relation (10.31), in the form of

2

Sy (10.41)
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And then for the efficiency factor of absorption we shall have:
4 2

Ox = 362
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(10.42)

The expression obtained exactly corresponds to the first term in the imaginary part
of the expansion of the accurate Mie solution (10.30).

It is important to consider some special cases, which are often met with in
observational practice.

10.3.1 Maetal particles

The dielectric properties in the microwave band of such substances are characterized
by high values of real and imaginary parts of the dielectric constant. It follows from
this circumstance, that Qg =~ (8/ 3)x4, and Qp — 0. In other words, small metal
particles intensively scatter electromagnetic radiation and, virtually, do not absorb it.

10.3.2  Soft particles

By such kind of particles are meant the particles, whose substance possesses very
weak absorbing properties (g, < 1) (transparent particles) and whose index of
refraction is close to unity (¢; — 1) < 1. Such particles include water particles in
the optical band, aerosol particles in the atmosphere in the microwave band and
many other types of particles. It follows from this fact that Qg ~ (8/3)x*(g, — 1)%,
and Qa =~ (4/3)xe,. Unlike with metal particles, the general picture of scattering of
soft particles will radically change depending on the relationship between the size
and properties of the particles’ substance. For very small particles (x < 0.05) the
albedo can be approximated as follows: w ~ 10°x>, and, thus, as the size of particles
decreases, their absorbing properties will essentially prevail over scattering ones, in
spite of a very weak absorption of the particles’ substance itself. Figure 10.4 presents
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Figure 10.4. The efficiency factors of scattering (Qs), absorption (Q ) and extinction (Qg) for

small spheres (in the case of light loss, m = 1.32 — j107°) as a function of the size parameter
(Deirmendjian, 1969).

the calculated values of the factors of efficiency of extinction, scattering and absorp-
tion for small, but finite-in-size dielectric spheres (0.025 < x < 0.35) with weak
absorption. The analysis of this figure indicates that for such particles the critical
size, in a certain sense, will be of the order of 0.05-0.1. When this size is exceeded, the
particles become purely scattering (w — 1), as a matter of fact.

10.3.3 Water particles

As we have noted (Chapter 8), the dielectric characteristics of water possess
prominent frequency properties in the microwave band. For these reasons the
general picture of the scattering of water particles will essentially change
depending on the relationship between the physical size of particles and the
working wavelength band. Nevertheless, some estimations of the behaviour of
scattering and absorption factors can be made now. So, for centimetre and
decimetre bands for fresh water (see Chapter 8) ¢y > 1 and &, < 1, and, thus,
Os ~ (8/3)x* and Q4 ~ 12xtgd(1/e;). For small particles (x < 0.05) the albedo
can be approximated as follows: w ~ 3 x 10°x%, and, thus, as the particle size
decreases, the absorbing properties of water drops will essentially prevail over scat-
tering ones, as in the case of soft particles.

In conclusion to this section, we summarize the Rayleigh scattering features as
follows:

e the scattering cross-section (and backscattering cross-section) is inversely pro-
portional to the fourth power of the wavelength and directly proportional to the
square of the scatterer’s volume;
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e the absorption cross-section is inversely proportional to the first power of the
wavelength and directly proportional to the value of the scatterer’s volume;

e the scattering has dipole character and does not depend on the shape of
particles;

e the scattering indicatrix for the wave of linear polarization has toroidal shape of
the surface; in this case the scattering maximum is observed in the direction of
reverse and direct scattering (p = 3/2). In the directions with 8, = 0 and 180° the
scattering is absent altogether. For non-polarized radiation the indicatrix can be
presented in the form of

p(0y) = %(1 + cos? ;). (10.43)

The indicated features of scattering are rather peculiar and are not met in the
other scattering regions (the Mie region and the geometrical optics region). For this
reason they are often used in observational practice as characteristic signs for the
detection of Rayleigh-type scattering.

10.4 FEATURES OF SCATTERING PROPERTIES OF
AQUEOUS PARTICLES

The most important class of scatterers in the terrestrial atmosphere are aqueous
drops, which are present in various physical media, such as cloudy systems of
various classes, fogs, precipitations of various types, and spray sheet on a stormy
sea surface.

As we noted earlier (Chapter 8), the dielectric characteristics of water possess
prominent frequency features in the microwave band. For these reasons the general
picture of scattering of aqueous particles will essentially change depending on the
relationship between the physical size of particles and the working wavelength band,
and in each particular case of experimental investigations the detailed calculation
of scattering parameters is required. It is necessary to make use of the available
calculation tables for the microwave band with subsequent interpolation procedures
(Krasiuk and Rosenberg, 1970; Skolnik, 1980; Oguchi, 1983; Lhermitte, 1988;
Bohren and Hoffman, 1983; Ivazyn, 1991). Nevertheless, we shall demonstrate, for
a series of examples, some general properties of electromagnetic waves scattering by
aqueous spheres.

Figure 10.5 presents calculated values of efficiency factors of extinction, scatter-
ing and backscattering for aqueous spheres at wavelengths of 0.8 and 0.2cm
depending on the size parameter in the range of its values up to 15. Considering
the plots of the region of values for x < 1, it can easily be seen that the behaviour of
efficiency factors corresponds to the features of the Rayleigh region (see section
10.3). The prominent maximum is observed in the Mie region for all efficiency
factors at x = 1. However, as the size parameter increases, the extinction and scatter-
ing decrease very slowly to the values equal to two and unity, respectively, not
exhibiting any prominent resonance properties in this case. Unlike extinction and
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Figure 10.5. The efficiency factors of scattering (Qs), backscattering (Qpg) and extinction
(Qg) for aqueous spheres: (a) A =0.2cm and ¢ = 20°C; (b) at A = 0.8cm and ¢ = 20°C.

total scattering, the backscattering possesses sharp and strong resonance properties
up to the values of x = 10. In the geometrical approximation the efficiency factor of
extinction becomes equal to two, i.e. it twice exceeds the geometrical diametre of a
sphere (‘the extinction paradox’). In this case the rate of tending to their limiting
values is essentially different for extinction and for scattering; as a result, for large
drops the losses for scattering exceed the losses for absorption. This circumstance is
well illustrated by the calculated plot (in the bilogarithmic scale) of a single scattering
albedo that depends on the size parameter of spheres (Figure 10.6). The data were
calculated in a wide range of frequencies — from 4 GHz (the wavelength of 7.5cm) up
to 100 GHz (the wavelength of 3mm) — and of drops’ radii (0.5-3.0 mm). Virtually
irrespective of the wavelength band, for x < 0.5 the albedo is lower than 0.1, and the
scattering contribution to the total losses is very small. Note that in this case the
decrease of albedo for small drops has a prominent character of exponential depen-
dence as x°, as it should be expected for the Rayleigh region (see section 10.3). For
x > 1 the contribution of scattering into the total losses of large drops sharply
increases, reaching 60-70% of the total losses (in other words, of the extinction).
Figure 10.7 presents the frequency dependencies (in the bilogarithmic scale) of
the efficiency factor of extinction for aqueous spheres with fixed radii in a wide
frequency band — from 5GHz (6cm) to 300 GHz (1 mm). The analysis of this
figure shows all the aforementioned characteristic regions of scattering — for large
wavelengths the exponential drop as A™" is observed for the sphere of fixed radius.
This dependence characterizes the beginning of the Rayleigh scattering region. For
short wavelengths the efficiency factor of extinction tends to the value of 2. At
intermediate wavelengths the resonance Mie maximum is observed (it is rather
smeared in this coordinate system). It is interesting to note that the plot clearly
demonstrates only the transition region from the first Mie maximum to the
Rayleigh region and the very beginning of the Rayleigh region. So, as the fixed
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Figure 10.6. Single-scattering albedo of aqueous spheres as a function of size parameter
(normalized radius) at 4, 6, 9, 15, 34.8 and 100 GHz. The points on each curve correspond
from the left, to drop radii 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mm respectively (Oguchi, 1983).

radius decreases, the exponent of the power-law drop also decreases and finally
reaches a value equal to two, but already in the purely Rayleigh region (see (10.30)).

10.5 ELECTROMAGNETIC PROPERTIES OF POLYDISPERSE MEDIA

As we have already noted (section 1.6), the structure of a substance in the Maxwell
theory is specified by introducing the phenomenological dielectric and magnetic
parameters for continua. In radiative transfer theory (the macroscopic version) the
structure of a substance is presented in a different manner — in the form of a cloud of
randomly distributed particles in a continuum (for example, in the terrestrial atmo-
sphere or in the sea) with the parameters of attenuation and scattering in a medium
(calculated per unit of a beam path in a medium). A lot of quite various physical
structures in the terrestrial atmosphere and in the ocean can be attributed to such
kinds of media. Virtually all of them have the character of polydisperse media, i.e.
media with particles of different sizes. Physically, this is related with the circumstance
that, because all polydisperse media are open physical systems, a certain dynamical
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Figure 10.7. The extinction factor of spherical raindrops as a function of frequency (¢ = 20°C)
(Oguchi, 1983).

equilibrium can be established in the dynamical process of particles’ birth and death
only. The latter circumstance stipulates the principal presence of polydisperse-
composed particles in media. In this section we shall consider the basic mechanical
characteristics which are used in describing the disperse mixtures, and the procedure
of transition from the characteristics of scattering of individual particles to the
electromagnetic parameters of a unit volume.

Physical systems consisting of some combination of substances (which are, by
themselves, in different phase states) are usually subdivided into two large
classes: heterogeneous mixtures and homogeneous mixtures (Nigmatulin, 1978).
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By heterogencous mixtures here are meant systems which contain macroscopic (with
respect to molecular scales) and chemically non-interacting inhomogeneities (or
admixtures). From a huge number of possible heterogeneous mixtures existing in
nature, some comparatively regular structures can be distinguished which are called
disperse mixtures. Such systems, which usually consist of two phases, include, for
example, aqueous drops in air or air bubbles in sea water (the so-called aerated layer)
and the hexagonal structure in sea foam. In this case the particles are called a
disperse phase, and their carrier medium the disperse phase. By homogeneous
mixtures are meant systems in which the substance is intermixed at the molecular
level. The so-called colloidal mixtures occupy an intermediate position.

Below we shall consider some mechanical characteristics determining the dis-
persity of disperse systems.

10.5.1 The density function

The most important characteristic of the microstructure (dispersity) of disperse
systems is the differential density function of particles in size, designated by
n(r,x,y,z,t), where r is the radius of particles (instead of the radius, sometimes
the diameter, surface, volume or mass of particles are used); x, y, z are spatial
coordinates; ¢ is time. Proceeding from the definition, quantity n(r,x,y,z,t)
drdxdydz is the number of particles having radius from r to r + dr in the volume
of dx dydz in the vicinity of point (x, y, z) at time instant z. Naturally, in the practice
it is impossible to determine the value of n(r,x,y,z, ) at all points of the studied
space simultaneously. For this reason the microstructure of a disperse system is often
characterized by size spectra of particles n(r), averaged over time and space, or by
related integral distribution parameters, which are proportional to distribution
moments of any order. For example, the important characteristics of a disperse
medium’s microstructure are the density of particles, the total mass of water (or
water content) and the radar reflectivity.

In the theoretical respect the density function plays a fundamental part, since it
determines the physical features of a system and its possible evolution.

It follows from physical considerations that for r — 0 and for r — oo the density
of a number of particles must tend to zero (within the framework of the given
physical system). The dimension of this parameter, as can easily be seen from its

definition, in cm™.

10.5.2 The volume density of particles

An important integral parameter is the volume density of particles (or the number
density) N (cm_3 ), defined by the following integral transformation from the
spectrum of particles:

N(em™) = J: n(r)dr = J: n(D)dD, (10.44)

where D is the diameter of particles. This characteristic determines the absolute
number of particles in a unit volume. It follows from this relation, that n(r) = 2n(D).
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10.5.3 The integral distribution function

In experimental practice it is often convenient to present the observational results in
the form of volume density of particles with the lower variable limit N(r)(cm ™), i.e.
in the form:

N(r)= JOO n(r)dr. (10.45)

This characteristic determines the absolute number of particles in a unit volume
beginning with some particular (fixed) value of size. A lot of measuring devices,
which record the size of particles, operate using this particular characteristic, and
in order to transfer to the density function it is necessary to perform numerical (or
graphical) differentiation of obtained results.

10.5.4 The relative density function

In theoretical analysis, as well as in processing and comparing the experimental
results of various types, it is expedient to use the relative density distribution
function in the form:

f(r) M;Joof(r) dr=1. (10.46)

As can be seen from the definition, the dimension of this parameter is cm ™.

10.5.5 The density sampling probability

In the experimental respect, the dispersity characteristics of a system are usually
found by detecting and estimating the density sampling probability, or, in other
words, by forming and constructing experimental histograms. This procedure is
rather complicated, in general, and requires from a researcher both experience and
skills in solving such tasks, and a clear understanding of the basic physical problem.
We shall briefly describe this procedure, predominantly in the qualitative respect.

Let the experimental data on particles obtained range in radius from a to b. The
total number of recorded particles is N. We divide the range of radii by j, the number
of bunching intervals. In each of these intervals N; particles will be recorded. The size
of a bunching interval equals Ar;. Then by

N; |
Py=Lij=1, .k (10.47)

will be meant a sampling probability of the presence of particles in the given
bunching interval. Here k is the total number of bunching intervals. Here

N=>)"N,. (10.48)
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The sampling probability P;(r;), presented in graphical form, represents the experi-
mental histogram.

By the density function of sampling probability is understood the following
quantity:

fi(ry) = W. (10.49)

From the normalization conditions it follows that

k
Z];(f.f) Ar; = 1. (10.50)
Jj=1

If the sizes of bunching intervals are the same (Ar), then the relationship between the
density function of the sampling probability and the sampling probability (the
experimental histogram data) can be presented as follows:

P -1
fi(ry) = A—’r(cm )- (10.51)
It can easily be concluded from the relation obtained, that f'(r;) is the finite-difference
analogue of the relative distribution function (10.46).

10.5.6 The total mass and the relative volume concentration of water

In some meteorological problems, as well as in the tasks of microwave sensing of the
terrestrial atmosphere, it is necessary to know the total mass of a substance (the
water, for example) in a unit of volume of the disperse medium (the cloud, for
example). If the disperse medium consists of regular spheres of various diametre,
then, by definition, the total mass of substance in a unit volume (or the water weight
content, conventionally) W (g/cm’) can be obtained from the following relation:

W= iﬂpj rn(r)dr = inNJ f(r)rdr, (10.52)
3770 3 0
where r is the density of substance of spheres.
In many application problems it is necessary to know the relative volume con-
centration of substance (or volume concentration), C (the dimensionless quantity),
which can be obtained from the following relation:

o0

C:K:iwj rn(r)dr. (10.53)
p 3 Jo

The characteristics considered are proportional to the third moment of the size

distribution of particles. However, some remote investigations, such as radar

studies of the structure of cloudy systems, require knowledge of the moments of

much higher order.
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10.5.7 Radar reflectivity

By this characteristic Z (cm3) is meant the following quantity:

Z = J n(r)r® dr. (10.54)
0
The physical sense of this characteristic can easily be understood using the expres-
sion for backscattering of an individual particle (10.34) in the Rayleigh approxima-
tion in calculating the backscattering of a unit volume o, with the density function of
reflective spheres n(r):

64 5

gy = J O'le/l(l') dr = —471' £
o A

e+42

ZJOC n(r)r® dr (10.55)
0

This relation indicates that the signal, scattered back from a cloudy structure, is
proportional to the sixth moment of the density function of drops in a cloudy
mass. It can easily be seen from this result that drops of large and super-large size
(having r > 100 micrometre) play a very essential part in the process of backscatter-
ing electromagnetic radiation from cloudy systems. Moreover, these drops are main
carriers of radar remote information in the cloudy systems (Doviak and Zrni¢, 1984;
Doviak and Lee, 1985). However, in radiothermal investigations the situation is
essentially different — the thermal radiation depends on the total mass of water in
a drop cloud and, thus, the signal is proportional to the third moment of the density
function of drops in a cloudy mass. All these features are important in the inter-
pretation of observational data.

10.5.8 Rainfall rates

If disperse systems possess prominent dynamical properties (for example, precipita-
tions of various phase types), then in their remote analysis the parameter character-
izing the quantity of a substance precipitated on a unit area per unit time is of
importance. Such a characteristic, which is widely used in meteorological and
remote investigations, is called the rainfall rate, R (cm/s). It is determined by the
following expression:

R= J n(r) V(r)%wﬁ dr, (10.56)

0

where V(r) is the velocity of motion of drops of corresponding radius. For the
conditions of rainfall drops in the terrestrial atmosphere a series of empirical
relations was established between the precipitation rate and the radius of a drop.
They include, in particular, the linear relation ¥ (m/s) = 75r (cm) for sufficiently
small-sized rainfall drops, and for larger drops the precipitation rate becomes
constant and does not depend on their size (Kollias ez al., 1999). This indicates
that the rainfall rates will be proportional to the fourth moment (or to the third
moment, depending on the diameter of drops) of the density function of drops in a
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cloudy mass of precipitating drops. In meteorological practice the dimension of R is
usually reduced to millimetres per hour.

10.5.9 Natural polydisperse media

In order to present a generalized qualitative picture of density functions for natural
polydisperse systems (for terrestrial atmosphere conditions), we shall consider the
data of Figure 10.8. It follows from the analysis of these data that the most finely
disperse and, at the same time, most intensive (in density function value) are various
types of fogs, i.e. the media which are formed immediately after the phase transition
of water vapour into the liquid state. The greatest range in dispersity is occupied by
various types of acrosols in the terrestrial atmosphere. In spite of the fact that the
aerosol mass constitutes only 10~ of the total mass of the atmosphere, it essentially
influences the atmospheric radiation processes and, therefore, the weather and
climate as well. Depending on their physicochemical origin, the aerosols are sub-
divided into five model types: maritime, continental, urban—industrial, volcanic and
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Figure 10.8. Particle-size distributions (the density functions) for natural disperse media.
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stratospheric. All these types strongly differ both in the characteristic range of
particle size, and in their intensity. The distributions can also have a multimodal
form, as in the case of urban aerosol, for instance (Figure 10.8).

The drop-cloudy systems of the terrestrial atmosphere represent an extremely
inhomogeneous medium permanently varying in space and in time. This is due, first
of all, to the great diversity of particular physical causes and mechanisms of
initiating the phase transition of water vapour into the liquid state. Therefore,
depending on the spatial-temporal scale of a particular investigation, the distribu-
tion parameters can have very wide ranges of variation of their numerical parameters
(Deirmendjian, 1969; Ivazyn, 1991; Krasiuk and Rosenberg, 1970; Marchuk et al.,
1986; Rozenberg, 1972; Houze, 1993; Marshak et al., 1994; Jameson et al., 1998).

The most grossly disperse systems in the terrestrial atmosphere are meteoro-
logical systems with precipitation. As in the case of cloudy systems, precipitations
possess strong spatial-temporal variations (the so-called multi-fractal structure)
(see Chapter 2). This greatly complicates the interpretation and comparison of
remotely sensed and in situ results by the researchers (Rodgers and Adler, 1981;
Atlas et al., 1981; Velden and Smith, 1983; Jameson, 1991; Niemczynowicz and
Bengtsson, 1996; Olsson, 1996; Kostinski and Jameson, 1997; Taylor and English,
1995; Marshak et al., 1997; Smith et al., 1998; Skofronick-Jackson and Wang, 2000;
Simpson et al., 1988, 2000; Deeter and Evans, 2000; Liu and Curry, 2000; Bennartz
and Petty, 2001; Lohnert and Crewell, 2003).

10.5.10 Analytical forms of the density function

In the last 50 years a great amount of experimental work has been carried out
devoted to searching for the most acceptable analytical form of a density function
for disperse systems of various physical natures. From the theoretical side the
efforts were directed towards the solution of complicated problems of kinetics of
physicochemical media using, for example, the solution of a system of the Fokker—
Planck—Smolukhovsky equations. The following analytical expression for the density
function, known as the gamma distribution, is considered the most theoretically

substantiated one:
n(r) = ar' exp(—br’), (10.57)

where a, b, u, v are the parameters determining all the characteristic features of the
distribution. Almost all empirical distributions, formed earlier from the experimental
data, can be obtained from the given distribution.

Using expressions (10.44), (10.53) and (10.57), we obtain the following formulas
for the relative density:

4 4 4
C= ?ﬁjn(i’)r3 dr= gwavflbf(“ﬂ)/”’l“ (%) (10.58)

Letting v = 1, we obtain the expression for the volume density:

N = Jm n(r)dr =ab'" "T'(u+1). (10.59)
0
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Here, as in (10.58), I'(x) denotes the gamma function (Gradshteyn and Ryzhik,
2000), from which this distribution assumed its name.

Using (10.57) and (10.59), we can obtain the expression for the relative density
function:
r/l,

L(p+1)

This distribution is now characterized by two parameters only » and u. This
expression is often written down in a slightly different (but equivalent) form:

, 1 o r
f(r) :mu“ rg;r]exp{—u}. (10.61)
Here parameter p characterizes the distribution halfwidth, and parameter r,
determines the so-called modal (most probable) distribution radius. Serious efforts
are now undertaken to determine these parameters for natural disperse media from
the experiment. So, for fogs and clouds the values of parameter p are concluded
within the limits of 1-10, and those of the modal radius within the limits of 0.1-10
micrometres.

It is interesting to mention that in 1948 J. Marshall and W. Palmer suggested a
simple empirical relation for the density function of rainfalls in the form:

n(r) = Nyexp (—Ar), (10.62)

f(r)=b"! exp(—br). (10.60)

where
No=1.6x10*m > x mm~"); A = 82R "' (mm™). (10.63)

Here radius is expressed in millimetres and R in millimetres per hour.

Such a distribution was found to successfully describe the averaged experimental
data both for drizzling rains, for widespread rains, and for convection and thunder-
storm rains (true, with significant modification of the numerical values of Ny and A).
The Marshall-Palmer drop-size distribution, as well as the distributions close to it
(such as the Laws—Parsons relation), are widely used now as well (Oguchi, 1983).
One has also managed to obtain a fairly simple empirical relation between precipita-
tion intensity and water content (the mass of substance in a unit volume) in a
medium, namely:

W = 0.06R"®, (10.64)

where the water content has dimension of grams per cubic metre, and the precipita-
tion intensity millimetres per hour. There exist also other numerical versions of the
given formula.

Theoretical and numerical investigations of the physicochemical kinetics
problems, including the processes of condensation of water vapour, the coalescence
between drops and drop break-up, have shown that, generally, the theoretical
spectra of drops are qualitatively close to the exponential Marshall-Palmer distribu-
tion, though there are some features, which are not described by a rule of thumb of
the given distribution. This relates, first of all, to the multimodal character of theo-
retical distributions and to considerably greater density in the small drop-size range
(r < 0.1 mm), than in the case of exponential approximation. All these features result
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in noticeable variations in the electromagnetic properties of a medium (Jameson,
1991; List, 1988).

10.5.11 Parameters of attenuation and scattering of a polydisperse medium

In accordance with the basic concept of the radiative transfer theory, namely, the
electromagnetic rarefaction of a medium, the incident radiation, falling on an inves-
tigated volume from outside, completely ‘illuminates’ all particles present in a unit
volume (see Chapter 9). Therefore, when the medium contains a cloud of spherical
particles of the same composition, but of different size, the spectral coefficients of
attenuation (extinction) and of scattering can be calculated by formulas

00

y(em™!) = Jo Qgmrn(r) dr, (10.65)

(o)
olem™') = J Osrin(r)dr. (10.66)
0
When the radiation beam propagates in a medium, which contains N spherical
particles of the same composition and the same size (each having radius R) in the
unit volume, the cross-sections of absorption and scattering (or the efficiency factors
of extinction Qg and of scattering Qg) can be related to spectral coefficients of total
attenuation (extinction) and scattering by simpler relations:

y(em™') = Qpmr*N (10.67)
and
o(em™") = Qg7mr?N. (10.68)

If the particles are grouped together in size into the intervals with radius r;
(j=1,2,..., M), then the integrals presented above can be replaced by the sums.
If in expressions (10.65)—(10.66) the integrals cannot be obtained analytically, then
numerical integration is carried out and the tables are compiled (Krasiuk and
Rosenberg, 1970; Skolnik, 1980; Oguchi, 1983; Lhermitte, 1988; Ivazyn, 1991). It
should be emphasized once again that all these expressions are obtained under
important physical limitations: the electromagnetic rarefaction of a medium and
the absence of interactions between particles.

Consider at first the Rayleigh approximation. Since the absorbing properties of
particles prevail in this approximation, the spectral absorption coefficient can be
presented as:

v =ki(\) J rn(r)dr, (10.69)

where k{(A) is the numerical coefficient. On the other hand, the total mass of
medium’s substance W (in a unit volume) will be equal to

W= gij rn(r) dr. (10.70)
0
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The comparison of these expressions indicates that the spectral extinction coefficient
for a medium with particles in the Rayleigh approximation is proportional to the
total mass of substance in a unit volume:

v = k()W (10.71)

and, what is very important, it does not depend on the form of the density function.
Thus, in remote investigations in the Rayleigh region, information on the form of a
density function of the disperse medium cannot be obtained, at least directly.

Since water possesses prominent spectral properties in the centimetre and milli-
metre bands, for the band of 0.5-10cm and for liquid-drop clouds (¢ = 180°C) the
following simple approximation can be established:

v 0,43
Wz

Here W is expressed in grams per cubic metre and absorption in decibels per
kilometre. Physically this is related to the fact that the parameter in expression
(10.42), which depends on the dielectric properties of water, has an approximation
of type 1/X on the long-wavelength branch of the Debye relaxation maximum (see
Chapter 8). However, in the case of crystalline clouds (hailstones, snowflakes) the
extinction decreases by two to three orders of magnitude (other things being equal).
And the wavelength dependence can be accepted to be 1/A (because the explicit
wavelength dependence of the real part of the dielectric constant is absent for ice).
There also exist some further experimental data approximations in the Rayleigh
region. However, all of them have a frequency character close to (10.72).

Consideration of a wider range of particle size and wavelength requires
numerical operations with (10.65) and (10.66). Special calculations of the coefficient
of extinction per unit of path (the specific attenuation — attenuation for a 1-km
propagation path), carried out in the 1-1000 GHz range for various drop-size dis-
tributions and precipitation intensities (Figure 10.9), have shown that the frequency
dependencies have a characteristic form — a rapidly growing rise from the side of
large wavelengths, a weak maximum in the frequency range of about 100 GHz and a
slow drop to the side of higher frequencies. As would be expected, these dependen-
cies do not reveal any sharp maxima which are specific for the Mie region of an
individual particle. Besides, the growing regions can be characterized as transition
regions from the ‘smeared’ Mie maximum to the Rayleigh region. In this case the
frequency approximation of extinction for high-intensity precipitation, which has
large-sized drops and, accordingly, a great scattering, is closer to the 1/ PN depen-
dence. Whereas for weak precipitation (with a small dispersity of drops and, accord-
ingly, with very weak scattering and strong absorption, this approximation is closer
to that of the Rayleigh region — 1/)\2 (see relation (10.72) and Figure 10.9). It should
also be noted that the distinctions in extinction values for various distributions are
the greater, the higher the working frequency and the lower the precipitation
intensity. We have already said that the Rayleigh region is not sensitive to the
form of distribution of drops (see expression (10.71)). As to the strong precipitations,
in this case the intensive scattering of large-sized drops in some sense ‘blocks’ the

. (10.72)
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Figure 10.9. Frequency characteristics of rain attenuation at rain temperature of 20°C, for

Laws—Parsons (solid curves) and Marshall-Palmer (dashed curves) drop-size distributions.
Parameters are rain rates (mm/h) (Oguchi, 1983).

contribution from the absorption of small-sized drops into the total extinction of a
disperse medium. Special experiments (Oguchi, 1983; Wolf and Zwiesler, 1996) have
really shown that in the millimetre frequency band for rainfalls in the terrestrial
atmosphere the sensitivity of the degree of extinction in a medium to the type of
distribution is very high, and, therefore, this band is fairly efficient for the remote
investigation of fine features of disperse media.

It is rather indicative and instructive to compare the frequency properties of the
value of extinction (per unit of path) of various disperse media, which are typical for
the terrestrial atmosphere (Figure 10.10). Certainly, in this case the question is about
the qualitative picture of the phenomenon, and the data presented are not intended
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Figure 10.10. Frequency characteristics of attenuation for natural disperse media: rain (solid
curves) and fog (dashed curves). Notation is explained in the text.

for quantitative interpretation of particular experiments. The solid lines in Figure
10.10 give the wavelength dependencies of the extinction coefficient for rainfalls with
intensities of 0.25 (curve 1), 1.0 (curve 2), 4 (curve 3) and 16 mm/hour (curve 4).
According to the existing meteorological classification, these intensities correspond
to drizzle, light, moderate and heavy rainfalls. The dashed curves in the figure show
the extinction in clouds and fogs, calculated by formula (10.72) for the water content
of 0.032 (curve 5), 0.32 (curve 6) and 2.3 g/m3 (curve 7). These fogs correspond to the
visual ranges (in the optical band) of about 600, 120 and 30 m. As follows from the
analysis of these data, the picture is rather ambiguous, in general. So, the extinction
in a thick sea fog (curve 7) exceeds the extinction in a moderate rainfall (curve 3) in
the millimetre and centimetre wavelength bands. And in the long-wave centimetre
band the extinction in a thick fog even exceeds the extinction in heavy precipitation.
This seems paradoxical, at first sight. However, physically this is associated with a
different relationship between contributions to extinction from large-sized (scatter-
ing) and small-sized (absorption) drops in various disperse media. So, for the
intensive rainfall the frequency dependence of extinction is proportional to 1/ M in
the centimetre band, and for the fog to 1/ A%, which results in an apparent paradox at
long centimetre waves.
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10.6 FEATURES OF RADIATIVE TRANSFER IN DENSE MEDIA

In connection with the intensive development of microwave diagnostics of
composite natural media in the ocean—atmosphere system, it is of interest to study
the features of the transmission and scattering of electromagnetic waves in randomly
inhomogeneous media with densely disturbed, discrete, highly absorbing scatterers,
where the size of particles, the distance between particles, d, and the electromagnetic
radiation wavelength, A, are quantities of the same order. Such important
microwave remote sensing tasks include the study of electromagnetic waves
scattering and radiation in the cloudy atmosphere with considerable volume
densities (more than 0.1%) of hydrometeors (Oguchi, 1983; Nemarich et al., 1988;
Lhermitte, 1988), in the drop-spray phase of gravitation waves breaking (Cherny and
Sharkov, 1988), in snow—water disperse media (Wen et al., 1990; Boyarskii et al.,
1994), in foam-type disperse systems (Raizer and Sharkov, 1981) and in other similar
natural media.

With the indicated parameters of a disperse medium the physical conditions of
applicability of the radiative transfer theory are obviously violated (see Chapter 9).
However, the desirability of using the numerous results of radiative transfer theory
doubtless requires, solution of the question on the limits of effectiveness of the theory
itself. Certainly, this complicated problem cannot be solved within the framework of
radiative transfer theory itself. Its solution is possible either within the multiple
scattering framework, or in the experimental way. The theoretical analysis of this
problem is far beyond the scope of the present book. Here we shall only describe the
results of fine laboratory experiments, which are closest to the subject of the present
book, namely, the microwave sensing of dense disperse media. The experiments were
carried out during 1976-1986 under the scientific guidance of the author of the
present book (Bordonskii et al., 1978; Militskii et al., 1976, 1977, 1978; Raizer
and Sharkov, 1981; Cherny and Sharkov, 1988, 1991a,b).

Though there are many experiments studying the electromagnetic properties
of tenuous discrete systems with d ~ (10-10)A and volume density
C~ (1072 =107 % (see the review by Oguchi (1983)), no results from studies of
electromagnetic properties in the radio-frequency band of dense dynamical media
with absorbing scatterers are to be found in the literature. The principal methodo-
logical problem in the statement of such experiments lies in the experimental diffi-
culties of producing dynamical dense drop structures with strictly controlled
parameters. However, the statement of such experiments is extremely topical, both
from general theoretic and from practical points of view. And, first of all, these
experiments are necessary for finding the limiting values of densities at which the
mechanisms of electromagnetic interaction of solitary absorbing scatterers are
‘switched on’. The experiments, carried out in the optical band for transparent
media and for semi-transparent particles (‘soft particles’) have shown (Varadan
et al., 1983; Wen et al., 1990), that the essential contribution of multiple scattering
falls on the range of densities exceeding 1%, this value of boundary being strongly
dependent on the particle size parameter. These numbers cannot, certainly, be
directly applied to discrete media with highly absorbing scatterers and can serve
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as a quantitative landmark only. The papers by Cherny and Sharkov (1991a,b)
contain the results of experimental investigations of characteristics of transmission,
backscattering and thermal radiation of millimetre-band electromagnetic waves in a
disperse discrete medium with the volume density of spherical scatterers ranging
from 0.05% to 4.5%. In this case the average distance, d, between the centers of
particles varied within the limits from 2.3 to 0.9\.

10.6.1 Disperse medium and its characteristics

As we have already noted, the fulfilment of the necessary radiophysical experiments
meets with the difficulties of producing, in a free-fall mode, aqueous particles of
quasi-monochromatic (in the size spectrum and in the magnitude of velocities)
flow with a high density of spherical-shaped particles. On the one hand it is
necessary to avoid dynamical deformation and decay of particles of fairly large
diametres (of the order of 2-3 mm) and having high velocities of motion (5-10m/s).
On the other hand, the gravitational and turbulent coalescence between drops should
not be allowed. The cascade processes mentioned result in a very wide spectrum of
particles under natural conditions (in cloudy systems and precipitations, for
instance) (see section 10.5). This circumstance, in its turn, essentially hampers the
interpretation of the radiophysical experiments. The processes of deformation and
decay of drops in a flow are controlled by two dimensionless numbers: the Rayleigh
number (for a sphere) Ra =2aVpu ' and the Weber number W = a*Vp(20) .
Here V is the steady velocity of a drop; « is the drop radius; p and p are density
and viscosity of air; and o is the surface tension of water. The laminar regime of air
flow around drops (the Stokes regime) is kept up to Ra = 300, and the critical value
of W for ensuring the dynamical stability of drops equals 10. The analysis of various
methods of forming dense media has led the authors to the conclusion that it is
necessary to use a forced regime with a particular flow velocity, rather than a free
flow regime. The highly dense disperse medium was produced by averages of a spray
system made as a special injector with a removable grid. The grid represents a plate
of a particular profile with orifices. The number and diametre of orifices determine
the density and size of the drops, whereas the profile determines the value of flow
divergence, which also influences the density. The sphericity of drops was specially
controlled — the eccentricity of drop ellipses did not exceed 0.3 (for high densities)
and 0.1 (for low densities). For the conditions of the described experiment the Ra
number was 200 to 300 (for various flow velocities) and W = 0.03. Thus, under the
experimental conditions both the laminar regime of air flow around a drop (the
Stokes condition) was ensured, and the processes of decay and the rise of a wide
(decay) spectrum of scatterers was not allowed. If the injector is directed downwards,
then the drops, being accelerated under the force of gravity, produce uniform density
variation down the flow. Thus, for a single grid it is possible to obtain a wide range
of variation of density with the same dispersity (Figure 10.11(a),(b),(c)). The control
and measurement of the particle density were carried out by the stereoscopic photo-
graphy method using two synchronized mirror cameras with telescopic lenses and
with a special light flash system (with a flash duration of 107®s). In addition, the
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(©)
Figure 10.11. Photographs of disperse water drop medium with relative volume concentra-
tions: (a) 0.28%; (b) 1.5%; (c) 4.50%.
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Figure 10.12. The experimental histograms of droplet radii for medium N; (a) and for
medium N, (b).

velocity of drops was measured by the method of tracks (the reflecting blinks on the
photo images, Figure 10.11(a)). The operator has analysed the stereo pairs obtained
with a sterecoscope and, when comparing them with a test-object, determined the
number of drops and their disperse properties (at a fixed time instant). The
radiophysical measurements were carried out for two types of disperse media
whose histograms are presented in Figure 10.12. The form of particle distribution
functions n(r) (dm ™ mm™") was approximated by the gamma distribution:

ny(r) = 0.38N, 7 exp(—0.73r°)

(10.73)
ny(r) = 73.5N,r® exp(—3.66r°)

The values of N; and N, are proportional to the volume density of particles. The
average value of radius for medium 1 equals 0.15cm (and, accordingly, the size
parameter x; = 1.18), and for medium 2 it equals 0.09cm (x, = 0.7). The special
statistical estimation of fluctuations of the countable particle flux density has shown
that the root-mean-square deviation of density was less than 2% (of the average
value of N). In this case the samplings, spaced in time from 1 hour to 3 hours, relate
to the same general set. It is clearly seen from the analysis of histograms that in
forming the dense flux one managed to avoid decay and coalescence processes, and
the spectrum of particles could be considered to be close to monochromatic. For
these types of media the authors have calculated the extinction, scattering and
absorption coefficients in accordance with (10.13), (10.65) and (10.66). In addition,
the single-scattering albedo was calculated for the unit volume of a polydisperse
medium, using the function of size distribution of particles obtained from the
experiment. The calculations were carried out for the working radiation wavelength
A =8mm and the complex index of refraction of water m = 5.39 —j2.81, which
corresponds to the water temperature ¢t = 22°C and salinity S = 0%.. By virtue of
the fact that the tenuous medium approximation with a near-monochromatic
spectrum is used here (see relations (10.67) and (10.68)), the scattering albedo for
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the unit volume of a medium will correspond to the value of albedo of a solitary
particle (so, for medium N; w = 0.63, and for medium N, w = 0.43) and will not
depend on the medium density.

10.6.2 Experimental technique

The purpose of the experiment was to measure the radiophysical characteristics of a
disperse dynamical medium with strict control of the disperse medium parameters.
The measurements were carried out in three modes: bistatic (radiation transmission
through the medium within the line-of-sight limits), scatterometric (backscattering
investigation) and radiometric. The extinction of the medium was measured in the
first version, the backscattering cross-section in the second one and thermal
radiation of a disperse medium in the third version. The fluctuations of scattered
radiation intensity were measured along with its average values. The extinction,
absorption and scattering coefficients, the scattering and backscattering albedo (in
the ‘cold’ layer approximation) and the thermal radiation of a disperse medium with
a spherical scattering indicatrix were calculated using the analytical solution of the
equation for a plane-parallel layer (in the ‘pure’ absorption approximation).

10.6.3 Average values of electrodynamical characteristics

Comparing the experimental and theoretical values of extinction and thermal
radiation for the disperse medium 1 (the average diametre of particles was 0.3 cm),
we can see the distinction, which is noticeably revealed with increasing density of
particles (Figure 10.13). One can distinguish the region of low deviation of experi-
mental from theoretical data and the region of greater deviation. The boundary that
separates these regions corresponds to a value of particle volume density approxi-
mately equal to 0.8%, this boundary being the same both for extinction and for
thermal radiation. Considering the results of investigation of the extinction value for
disperse medium 2 (where the average diametre of particles was 0.2cm), we can see
that the aforementioned boundary lies in the region of particle volume density values
of 0.15%. Now we shall analyse the dependence of extinction values for a disperse
medium on the number N of particles in a unit volume (the countable density),
rather than on the particle volume density C. It can be seen from Figure 10.13
that in this case the boundaries mentioned lie in the range of N, = 500-550 dm >
for both types of disperse medium. That is, they virtually coincide. In its turn,
quantity N, determines the average distance between particles as d ~ N 173,
Therefore, now we can characterize the aforementioned boundary by the distance
between particles, i.e. by d ~ 1.5\

Thus, from the analysis of experimental data and from theoretical calculations it
follows, that the radiative transfer theory in the tenuous medium approximation
satisfactorily describes electromagnetic properties (the average values) of a discrete
disperse medium with absorbing scatterers, provided that the distance between
particles d > 1.5\, In the case where d < 1.5\, the experimental data principally
differ from calculated data. For example, for the particle volume density
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Figure 10.13. The extinction coefficient (), radiobrightness temperature (75) and backscat-
tering cross-section (opg) of disperse water drop media as functions of the volume
concentration (C) and the number density (N): (1) experimental data; (2) theoretical
results; (3) data for medium N;; (4) data for medium N,.

C =4.5% (d=0.9)\) the distinction for the radiobrightness temperature equals
86K, and for the extinction value —6.5dB. As far as the backscattering is
concerned, here the experimental and theoretical data (in the cold layer approxima-
tion) essentially (by about 10dB) differ throughout the range of particle densities.
Now, using the experimental data, we shall estimate the disperse medium parameters
for the particle volume density value C = 4.5% (d = 0.9)).

The electrodynamical parameters have been estimated by means of a specially
developed technique of complex combining the data of active and passive measure-
ments for the same investigated medium (Cherny and Sharkov, 1991a). In this
case the expressions for radiobrightness temperature were obtained in the ‘pure’
absorption approximation (see Chapter 9). It is important to note that the
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inclusion of the integral term into the transfer equation that describes the ‘internal
re-scattering’ in a layer does not essentially change the spectral characteristics of a
medium in the case of absorbing scatterers considered. This follows from the com-
parison of calculations with the results of solving a similar problem by the double
spherical harmonics method and by the Monte Carlo method. Of importance is the
fact that, for indicated values of density of particles in a medium, the electro-
dynamical parameters of a disperse medium have essentially changed as compared
to calculated values (for a tenuous medium) obtained in the single-scattering
approximation. So, the scattering albedo of a unit volume of disperse medium N,
decreased three times (from the value of 0.63 down to 0.22). The extinction and
absorption coefficients, on the contrary, increased about 1.5 times (from the value of
0.63 up to 0.94cm ') and three times (from the value of 0.23 up to 0.73cm™}),
respectively. And the scattering coefficient value decreased twice in this case (from
the value of 0.40 down to 0.21cm™"). The result considered indicates that for the
disperse dense medium with absorbing scatterers the interaction of particles results,
primarily, in growing absorption in a medium and, therefore, in increasing its
thermal radiation and, in addition, in decreasing scattering properties of a medium.

10.6.4 Fluctuation mode of extinction

It is important to note that in the same paper Cherny and Sharkov (1991a) have
demonstrated experimentally the principal change of the character of the fluctuation
mode of extinction in a dense medium. This effect is visually illustrated in Figure
10.14, which presents the registograms of an external harmonic signal transmitted
through the medium, this signal being considered at an intermediate frequency. The
fluctuations of intensity of transmitted radiation are observed in the form of mirror-
symmetrical amplitude modulation of the signal. The measurements were carried out
with extinction recording by exposure to microwave radiation. It can easily be seen
that the statistical characteristics of a signal sharply change in the case of two
distinguishing densities. One of the possible physical causes, explaining fluctuations
of radiation transmitted through a medium, could be associated with changing the
countable number of particles in the volume under study. We shall indicate,
however, that this is not the case.

So, we shall consider, for example, in accordance with the Bouguer law, the ratio
of intensities of external radiation, weakened by a medium, for different time instants

(/) = exp(m, — 1) (10.74)
or
Ty — T :1n (11/12)7 (1075)

where 7, and 7, are opacities of an investigated disperse medium at different time
instants. Since in the single-scattering approximation for a medium with a mono-
chromatic spectrum of particles we have 7 = QE7rr2Ns (here s is the linear size of a
medium), one can write the following finite-difference relation:

(AN/N) = (A7/7)=(1/7)In(I;/1,). (10.76)
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(b)
Figure 10.14. The photographic registrograms of a signal (at intermediate frequency)
transmitted through a water drop medium with volume concentrations 0.28% (a) and
4.5% (b).
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Figure 10.15. The statistical characteristics of radiation intensity of a signal transmitted
through a water drop medium: (a) the density function (experimental histograms) with two
volume concentrations: (1) 0.28%; (2) 4.5%; (b) the scintillation index m* as a function of the
volume concentration and of the distance between particles.

Proceeding from this relation, we shall estimate the maximum value of (AN/N)
for the volume density of particles of a disperse medium C = 4.5%, at which
(Iax/Imin = 6.1, and the quantity 7 = v/4.34 = 3.34 represents the average value
of opacity. Substituting this value into (10.76), we find (AN/N) = 54%, but this
is impossible, since the particle density fluctuations in a disperse flow do not exceed
2% with the probability of 0.95. Thus, a sharp growth of the variance of fluctuations
of a medium’s extinction are not determined by fluctuations of the number of
particles in the flow, but has another physical nature.

We pay attention to the principal point that, as the density of particles increases,
the character of fluctuations also changes. So, the probabilistic distribution of
intensity of a signal, transmitted through the investigated medium at C = 0.28%,
has a prominent normal character, whereas at C = 4.5% the intensity fluctuations
are distributed according to the normal logarithmic law (Figure 10.15). This
circumstance is clearly exhibited on registograms in visual observation as well
(Figure 10.14). For the mentioned volume density values and, accordingly, for
(d/X\) ~ 1.5 the so-called scintillation index sharply increases (Figure 10.15(b)).
The latter characteristic is often used in optical observations, which gave rise to
the term. However, the mentioned characteristics do not provide a detailed picture
of the distribution of fluctuations over the scales of interactions (see Chapter 2). Let
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Figure 10.16. The structure function of intensity fluctuations for a signal transmitted through
a water drop medium with three volume concentrations: (1) 0.28%; (2) 1.5%; (3) 4.5%.

us consider the behaviour of a structural function expressed in terms of spatial
coordinates. The transition from spectral-temporal coordinates ¢ and f to a
spatial-frequency presentation of R and k (the spatial-wave number) (see Chapter
5) can be accomplished based on the hypothesis of ‘freezing’ inhomogeneities in a
moving flow:

R=Vik="" (10.77)

where V' is the particle flux velocity in the direction perpendicular to radiation
transmission. Figure 10.16 presents the structural function of intensity fluctuations
for three values of volume density of a disperse medium. Now we shall analyse the
behaviour of a structural function, which represents the mean square of the
magnitude of an increment of the fluctuation component /(R) of intensity I(R)
(Rytov et al., 1978):

D(Ry, R,) = ([I(Ry) = I(R,)[*). (10.78)

If the studied spatial field has the character of locally homogeneous one, i.e.
depending only on the difference of scales of interactions R = R; — R,, then the form
of a structural function can be essentially simplified:

D(R) = 2[B(0) — B(R)), (10.79)

where B(R) is the spatial correlation function (see Chapter 2 and 5). The important
property of a structural function consists in the fact that it excludes from considera-
tion the large-scale inhomogeneities L. In our case the latter represent the char-
acteristic size of a particle flux. The correlation function takes into account
fluctuations of any scale in equal measure. For this reason the use of a structural
function is physically justified in those cases where we are interested in the fluctua-
tions on scales much smaller than L.
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For C =0.28% and C = 1.5% the rapid saturation of a structural function
takes place on scales of the order of R = 3cm. For C = 4.5% the form of a struc-
tural function essentially differs from previous cases. Here both the internal
(I = 1.5cm) and the external (L, = 12cm) scale of inhomogeneities is clearly
exhibited, and in the interval of /0 < R < L, the structural function grows as
D ~ R*3. The limiting value of a structural function (in the saturation region) is
equal to a double value of the variance of fluctuations.

Thus, the analysis shows that for the volume density of particles C = 4.5%
(d =0.9)) the scattering of electromagnetic radiation in a medium occurs on
spatial inhomogeneities whose scale lies in the interval between [, = 1.5cm and
Ly, = 12cm, which is much greater than the size of particles (the diametre is
0.3cm) and the distance between them (4 =0.7cm). This fact, in its turn,
confirms the existence of collective effects in scattering. The circumstance that the
intensity fluctuations are distributed according to the normal logarithmic law and
the spectrum of fluctuations and a structural function can be described by well-
known exponential laws of ‘—5/3 and ‘2/3’, respectively, indicates to the
turbulent-vortex character of fluctuations with quasi-vortex inhomogeneities.
Therefore, the discrete disperse medium for d < A\ can be considered to acquire
the properties of a continuous randomly inhomogeneous medium, in which the
spatial fluctuations of dielectric permittivity take place (Rytov et al., 1978).

© 1 (d \ (53

101
®) 1F

102

@ 1|

103 F,Hz | !
1 10
k= —2EF, cm™!
v

Figure 10.17. Normalized Doppler spectra of backscattering signal from a disperse medium
with three volume concentrations: (a) 0.28%; (b) 1.5%; (c) 4.5%; (d) 4.5% in bi-logarithmic
coordinates. Vp = 1.7m/s; V' =2m/s.
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Consider now the results, obtained by means of the Doppler scatterometre, in
the mode of observation of microwave radiation backscattering by the same disperse
medium (Cherny and Sharkov, 1991b). Figure 10.17 presents the Doppler spectra of
a scatterometric signal backscattered by a disperse medium. The measurements were
carried out in such a manner that the moving flux of particles had a velocity
component in the direction of the instrument. As a result, the power of radiation
scattered by particles lies in the spectrum of a scattered signal at the Doppler
frequency fp determined by the velocity component in the direction of instrument
/b =2vp/A, which is clearly seen for the particle volume density C = 0.28%.
However, as the particle density grows (Figure 10.17(b),(c)), the form of a
spectrum essentially changes and, along with the Doppler components, the
additional component appears in the spectrum, which is concentrated near ‘zero’
frequencies (for C = 4.5%). The appearance of ‘zero’ frequencies in a spectrum in
the case of moving scatterers can be physically related to the loss of temporal
coherence of the scattered signal. This makes impossible the phase detection of a
signal with the purpose of obtaining information on the object velocity based on the
Doppler effect.

The presentation of results in the bilogarithmic coordinate system (Figure
10.17(c)) reveals an interesting point — the spectrum of an ‘incoherent’ component
obeys the exponential law of ‘—5/3” in the frequency band of 20-200 Hz. Moreover,
the range of spatial frequencies k, where the spectrum obeys the ‘—5/3” law in the
backscattering mode, is exactly the same as in the case of radiation transmission
within the line-of-sight limits (by exposure to microwave radiation) (see Figure
10.16). It can be supposed that, both in the bistatic and in the scatterometric
mode of measurements, the fluctuations of intensity have an identical nature. The
exponential law in the spectrum of scattering, as well as the gamma distribution of
intensity amplitudes, can be treated as the result of scattering from the fractal,
geometrically bound structure (or from a turbulent-vortex space) in a volume
body of discrete flow (Lakhtakia et al., 1987; Varadan et al., 1983).

The analysis of calculated and experimental data indicates that there exists a
quite specific (critical) value of the distance between absorbing scatterers
(d/)\ < 1.5), which makes a basic rearrangement of both average values of electro-
dynamical parameters, and the fluctuation mode.

It is of interest to compare the experimental results with the electrodynamically
closely dense medium condition, obtained theoretically in the book by Rytov et al.
(1978):

no > 1, (10.80)

where n is the average density of scatterers and « is the polarizability of particles,
which in the Rayleigh approximation is equal to

a=rE-1)/E+2), (10.81)

where e is the complex dielectric constant of the scatterer’s material. Condition
(10.80) describes physically the contribution of induced dipoles, closest to an
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original particle, to the effective field. So, taking into account, for a critical value of
d=15\,n=26 cm3, we have

nla] =12 x10° < 1.

Thus, long before satisfying the condition (10.80) the dense discrete medium basic
changes its properties and becomes similar, in a certain sense, to a continuous
medium with fluctuating parameters.

It is interesting to note that seemingly similar physical structures (a set of hollow
aqueous spheres) manifest themselves, however, in a quite opposite manner: even a
compact, dense packing of scatterers of such a type does not make any noticeable
contribution to the electrodynamics of a system, owing to a very weak effect of
interaction between single structures. Each of hollow aqueous spheres represents
an almost black-body emitter, which does not possess any noticeable scattering
properties and does not interact with surrounding components of a system (Raizer
and Sharkov, 1981).






