

An Arctic Analog to Europa: Signs of Life on the Ice

Damhnait Gleeson Europa Lander Workshop - February 11th 2009

BEAR Team

Steve Grasby

Benoit Beauchamp

Alexis Templeton Katherine Wright

Bob Pappalardo

John Spear Chase Williamson Canadian Geological Survey

University of Calgary

University of Colorado

Jet Propulsion Lab

Colorado School of Mines

Europa's habitability

Ocean chemistry

After Zolotov & Shock, 2004

Sulfur-rich material 1.4 1.2 Europa icy 1.0 reflectance O sulfuric acid hydrate 0.6 natron 0.4 Mg hexahydrate 0.2 epsomite 0.0 **└** 1.0 1.5 2.0 2.5 wavelength (μ m)

From McCord et al., 1998 and Carlson et al., 1999

Mobile ice or partial melt

Association of sulfur-rich material with geologic features

Borup Fiord Pass

1km Sulfur-rich deposits

Elemental sulfur (S^0) , gypsum (CaSO₄.2H₂0) and calcite (CaCO₃) are precipitated onto the ice all and

Borup Fiord Pass as a Europa analog

	BORUP FIORD PASS	EUROPA
REMOTE SENSING	Sulfur-rich materials on ice	Probably a combination of sulfur-bearing materials and ice
ASTROBIOLOGY	Extreme environment hosting psychrophilic organisms which metabolize sulfur	Any life existing on Europa would operate at similar temperatures and could utilize similar metabolic pathways

Overview of the research

Objectives:

- 1. To utilize the field site as a spectral analog for Europa's non-ice materials, and to explore change detection strategies for a future Europa mission.
- 2. To investigate the geomicrobiology of the spring system, with the intention of furthering our knowledge of microbially mediated sulfur cycling in cold environments.

Approach:

- 1. Identify sulfur compounds on the ice in satellite imagery, and map their distribution. Then produce a sulfur classifier to run onboard EO1, allowing autonomous detections to be made and temporal coverage of the spring system to be obtained.
- 2. Carry out a series of targeted culturing experiments to search for active microbes in the system and compare successful cultures to community structure of field samples, identifying key players and their metabolic pathways.

S^o as a biosignature

- Estimates of total sulfur in the system come from field measurements of sulfide and sulfate
- Sulfur-Rhmb (S⁰) has a very narrow stability field
- Under environmental conditions (0° C and pH of 8-9), sulfur is predicted to be stable in the form of gypsum (CaSO₄.2H₂O) or HS⁻ depending on redox conditions

Identifying & mapping sulfur species

Collecting field data

Mapping the deposits using spectral endmembers

Field data vs. satellite data as endmembers

Identification of other S species

Change detection at Borup Fiord Pass

2007.09.11

Satellite imagery of Borup Fiord Pass, Hyperion data from EO-1 and results from a sulfur classifier run onboard, after Castano et al, 2007

An hypothesized model of the system

Environmental microbial diversity

- Diverse but not greatly so
 - subzero temperatures
 - dominant sulfur-chemistry
- Candidates for sulfur-cyclers
 include:
 - Thiomicrospira arctica
 - Loktanella salsilacus
 - Deltaproteobacteria
 - Epsilonproteobacteria

Sulfide gradient tubes inoculated with Borup Fiord deposit material show S° production

Slush agar overlayer

Elemental sulfur

— Sulfide plug

Sulfur biomineralization occurring within enrichments

Central mass of sulfur

Filaments

Cells

Biomineralized sheaths

Central mass of S surrounded by radiating filaments and sheaths

Stained cells showing up under fluorescence

S nucleation occurring along sheaths

- Charles

Sulfur globules visible along filaments

16s rRNA sequences from stable consortia within the enrichments

BF06-4a

Conclusions from Borup Fiord Pass

- Strong evidence for microbial mediation of the extensive sulfurrich deposits at Borup Fiord Pass has been provided by experiments targeting microbes engaged in S⁰ production, which are producing biomineralized sulfur-structures.
- These seasonal sulfur-rich deposits can be detected and monitored autonomously over the course of the season using strategies which are being developed for future Europa missions.
- Despite differences in temperature and radiation environment, the deposits at Borup Fiord Pass are the nearest terrestrial field analog we have to the "non-ice" materials at Europa, and our study of this analog site will inform efforts to identify these materials and investigate their potential to contain biosignatures.

Open questions/future work

- Is the microbially induced S⁰ distinguishable from abiotically produced sulfur?
- What is the preservation potential of these deposits and the biomineralized structures within them?
- What biosignatures would be generated under simulated Europa conditions?
- Are temperatures and mixing effects affecting the shapes and locations of absorption features?

Implications for a Europa lander

Sulfur-rich deposits could be used to narrow the search for biosignatures

Microscopic imager would be necessary to distinguish morphological biosignatures

Thanks to:

- Canadian Polar Continental Shelf project
- The Planetary Society
- Lewis & Clark Fund for Exploration and Field Research in Astrobiology
- NASA Astrobiology Institute Director's Discretionary Fund

Cells associated with the above structure, seen under fluorescent light Cells associated with the above structure, seen under fluorescent light

Field spectra from Borup Fiord

Ice & snow

Elemental sulfur

Sulfates in the deposits

Gypsum (CaSO₄.2H₂O)

Bassanite $(CaSO_4.1/2H_2O)$