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Abstract. Finite motion of electrons after instantaneous switching on of 

an external positive point-like charge is considered. The trapped parti-

cle distribution function averaged over periods of the motion is deter-

mined. Contribution of these electrons to the total perturbation of plas-

ma density is calculated. It is shown that the trapped particle contribu-

tion dominates at small distances from the charge, whereas it is negligi-

ble at large distances.  

 

                                             1. Introduction 

 

Shielding of a charge in a plasma is usually described by Debye 

formula. As is known, the derivation of the Debye expression is based 

on linear approximation. A possible formulation of the problem pre-

sumes instantaneous appearance of an external point-like charge in a 

uniform isotropic plasma [1]. At long times, solution of the problem 

yields the Debye formula for the electrostatic potential. However, ac-

cording to this formula, intensity of the electric field takes very large 

values in the vicinity of the charge thereby contradicting to applicabil-

ity of the perturbation theory. Another possible way to calculate the 

spatial dependence of the self-consistent electrostatic potential consists 

in a nonlinear analysis of equilibrium states of the plasma, for example, 

similarly to calculations carried out in [2]. However, in doing so, distri-

bution function of particles moving on finite orbits remains undeter-

mined. Thus, the description of the nonlinear shielding in collisionless 

plasmas is an open question up to now.  

In this paper, a method for computing the trapped particle distri-

bution within the framework of a nonlinear approach to the initial value 

problem [1] is suggested. Although such a rigorous analysis of the 

problem becomes too difficult, it is still possible to find some averaged 

asymptotic trapped particle distribution at long times. The technique in 

use is similar to the method utilized in the work [3], wherein averaged, 

so called “ergodic”, distribution function has been found in application 
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to collisionless damping of a finite amplitude wave. The main idea of 

the method is that the motion of charged particles may be considered in 

a given field of the wave. Thereafter, their averaged distribution func-

tion is found and used in computations of the moments of the distribu-

tion function appearing in the equations for the electric field. Below, it 

is shown that such an approach is also well justified as applied to stud-

ies of the shielding phenomena in collisionless plasmas.  

     

      2. Formulation of the problem and basic equations 

 

Similarly to the problem formulated in [1], let us assume that an 

external point-like charge appears in a plasma at the instant of time  

t=0. After relaxation of transient wave processes, the state of the plasma 

tends to some asymptotic equilibrium. It is rather difficult to describe 

entirely the plasma dynamics at all times. Because of this, we will be 

interested mainly in this steady state. The manner to find distribution 

function of free (passing) particles moving infinitely is well known [2]. 

However, it is not easy to determine the trapped particle distribution.   

At small distances from the charge, according to the Debye ex-

pression, the electrostatic potential is approximated by the Coulomb 

formula  = Q/r. Assuming that nonlinear shielding, as well as the line-

ar one, does not lead to any significant deviation from Coulomb's law at 

these distances, let us presume that the field remains Coulomb's at any 

instant of time. As we will see later, this assumption is really justified, 

since corrections to the Coulomb's expression caused by weak shielding 

of the charge must be small at the distances less or of the order of De-

bye length. Moreover, as is shown below, the trapped particles contrib-

ute substantially to plasma density perturbation just at small distances 

from the charge. Thus, the problem is reduced to the calculation of the 

trapped particle distribution in the Coulomb field.   

Here, for definiteness, let us consider the shielding of a positive 

point-like charge Q by plasma electrons under assumption of immobile 

ions. Assuming the instantaneous appearance of the external charge, we 

will calculate the trapped electron distribution function. For brevity, the 

following units of measurement are utilized  
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where the conventional notation is in use, except for c, i.e. n0 is the un-

perturbed plasma number density, p = (4e
2
n0/m)

1/2
 is the electron 

plasma frequency,  c  is a typical value of electron velocity, the choice 

of which can be specified in correspondence with a form of unperturbed 

distribution function f0,  d is the effective Debye length,    is the elec-

trostatic potential, W is the energy of electron, and M is its angular 

momentum.   

The motion of a particle in a central field is well studied (e.g. in 

[2]). It is important that corresponding equations of motion can be con-

veniently reduced to the following equations describing the motion in 

radial direction with one degree of freedom  

 

 

 

where  vr  is radial velocity, and   

                                          
is the effective potential taking into account the action of centrifugal 

force. Corresponding Vlasov equation reads  

                           
As an initial condition, any isotropic in velocity space distribution func-

tion f0 (u), u = |v| can be given, for example, mono-energetic distribu-

tion f0 = (1/4)(u-1) or Maxwellian one.   

 

         3. Ergodic trapped electron distribution function 

 

         If  necessary, the Vlasov equation can be solved rigorously. Phys-

ical interpretation of the solution is as follows. At  t=0, the energy of an 

electron decreases sharply by the value (r0), where r0 =r(0)  is the ini-

tial position of the electron, i.e. W=Ɛ- (r0),  at  t>0, where Ɛ  is the ini-

tial kinetic energy of the particle. The energy of the trapped electrons 

becomes negative W<0. As the frequency of electron oscillations in the 

effective potential well depends on the energy, a phase mixing process 

takes place (for more detail see, e.g. [3]). As time is going, the trapped 

particle distribution function becomes strongly oscillating in phase 

space. However, averaged over time, so called “ergodic”, distribution 
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does not depend on time. The ergodic distribution function can be 

found by means of the following procedure of averaging       

 
In essence, this procedure is similar to the averaging carried out in [3]. 

The distinctions are caused by the different spatial dependencies of the 

electrostatic potential of the plane wave [3] and the effective potential 

under consideration. In addition, the effective potential depends on the 

parameter M.  Taking into account the interrelation between the energy 

of a particle before, W= Ɛ, and after the appearance of the external 

charge Ɛ  = W + Q/r = Q/r - w, (w = -W > 0), and changing the integra-

tion variable r for , we come to the following result 

 
where f0 (Ɛ) is the unperturbed distribution function, and Ɛ = Q/r - w  

are, respectively, the maximum and minimum initial kinetic energies of 

the trapped electrons at turning points of trajectory  for a given value of  

M. The physical meaning of the averaging may be interpreted as fol-

lows. Every electron is moving along a spatially limited trajectory. In 

some sense, the averaging “washes out” the individual particle along 

the trajectory in accordance with relative residence time in every point 

of the trajectory.  

  

                      4. Electron number density 

 

Going to the integration variables  W  and  M, it is not difficult to 

express the electron density n in the form  (see e.g. [2] for detail) 

 
where Ɛ = v

2
 /2= M

2
/2r

2 
. At  t  , the steady state distribution 

function of free particles is determined by the boundary condition at 

infinity f(r  ) = f0 , so that the density of the free particles can be 

easily found similarly to the calculations carried out in [2]. In particu-

lar, in the case of the mono-energetic f0 , taking into account the addi-

tional restriction for the free electrons W>0, it is easy to obtain the ex-

pression for the perturbation of the free electron density     
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For the trapped electrons, one need to take into account the additional   

restriction  W < 0 , (w = -W > 0)  and the limitations  connected with 

the positiveness of the radicand in the denominator of the expression 

for ergodic trapped electron distribution. Then, the integration leads to 

the result  

                      
where the function  I=I(a)  is defined by  

                 
These expressions determine dependence of the trapped particle density 

on the value of the electrostatic potential as well as on the specific form 

of the undisturbed distribution function. Integration in the last formula 

leads to a rather awkward expression. However, it is not hard to exam-

ine the behavior of  nT  at small and large . The calculation is particu-

lar simple in the case of mono-energetic distribution        

 
Therefore, the trapped electron density is very small far from the exter-

nal charge, while in the vicinity of the charge it takes large values. The 

corresponding consequences are discussed in the next section.  

  

   5. Trapped electron contribution to plasma density perturbation 

 

Here, we will not be concerned with spatial dependence of the 

self-consistent electrostatic potential described by a solution of the cor-

responding Poisson equation. Nevertheless, it is of interest to compare 

the contributions of the trapped and free  electron populations to the 

total plasma density perturbation, i.e. to the right-hand side of the Pois-

son equation  

 
 

At large distances from the external charge ( << 1), neglecting the 

small  nT  and expanding  the square root,   we come to linear equation.  

Its solution is given by Debye formula.   However, at small distances  
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( >> 1), the linearization is not justified. Moreover, the trapped elec-

tron contribution proportional to 3/4
 exceeds the free electron density 

perturbation. Since both of the terms are less than  ,  the nonlinear 

shielding of the external charge must be weaker than the Debye shield-

ing.  

                     6. Discussion and conclusions 

 

          A way to determine contribution of the trapped particles to the 

perturbation of the plasma density has been suggested. The trapped 

electron density has been calculated on the basis of the concept of er-

godic distribution arising in the course of evolution of the trapped parti-

cle distribution in the Coulomb field. It can be shown that, at these dis-

tances, the dependence nT  3/4
 takes place also in the case of Maxwel-

lian distribution f0, and hence, this scaling is quite general in nature. 

Since the nonlinear plasma response is less than the linear analogue, it 

is natural to expect a certain displacement of the region of the Debye's 

exponential decrease in the electric field intensity toward larger radial 

distances. The developed approach and found expressions for the 

trapped particle number density may be applied to studies of nonlinear 

shielding of small charged bodies in collisionless plasmas. 
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