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Abstract. We investigate autoresonance (AR) in the system of two 

coupled oscillators. Two classes of autoresonant problems are 

investigated analytically and numerically: (1) a periodic force with 

constant frequency is applied to the Duffing oscillator with slowly 

time-decreasing linear stiffness; (2) the time-independent nonlinear 

oscillator is excited by a force with slowly increasing frequency. In 

both cases, stiffness of the linear oscillator and coupling remains 

constant, and the system is initially engaged in resonance. It is 

demonstrated that in the system of the first type AR occurs in both 

oscillators but in the system of the second type AR in the nonlinear 

oscillator occurs along with irregular small oscillations of the linear 

oscillator 

 

1. Introduction 

 

The phenomenon of the permanent growth of energy in a 

classical anharmonic oscillator subjected to periodic forcing with slow 

variations of forcing and/or resonant frequencies was first used in 

applications to particle acceleration [1, 2]. The term “autoresonance” 

(AR), introduced [3] in the context of cyclotron resonance stability, 

seems to be more convenient in the study of the increasing amplitudes 

of the resonant process.  

Theoretical approaches, experimental evidence and applications 

of AR in different fields of natural science, from plasmas to planetary 

dynamics, have been reported in numerous works (see, e.g., [4 - 6], and 

references therein). Recent advances in the study of AR in two or three 

degree-of-freedom (2D and 3D) are excitations of continuously phase-

locked plasma waves with laser beams [4, 7 - 10], particle transport in a 

weak external field with slowly changing frequency [11, 12], etc.  

The behavior of each oscillator in the multi-dimensional array 

can principally differ from the dynamics of a single oscillator. Below 

we illustrate this effect by an example of the 2D system. 
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2. AR in the system of the first type 

 

In this section the model of two coupled oscillators is considered: 

,cos)()(

,0)(

112
3

0

112111

2

2

2

1
2

tAuuckuutC
dt

ud
m

uucuc
dt

ud
m





              (1) 

where u and u1 correspond to the absolute displacements of the 

nonlinear and linear oscillators, respectively; the parameter C(t) = c0  

(k1 + k2t), k1,2 > 0. The system is assumed to be initially at rest. 

We define the small parameter  as c12/c1 = 2 << 1. Next, 

assuming weak nonlinearity and taking into account resonance 

properties of the system, we redefine the parameters as follows: 

c1/m1  c0/m0 = 2
, 0 = t, 1  0, A = m2

F,  

k1/c0 = 2s, k2/c0 = 22
b, k/c0  8, c12/cr  2r, r = 0, 1.      (2) 

In these notations, the equations of motion are rewritten as: 
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where (1)  s  b1. The multiple scales decomposition [13] is applied 

to construct explicit asymptotic solutions of Eqs. (3). To this end, we 

introduce the complex amplitudes 
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where Y and Y1 are sought in the form of expansions 
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To keep the notations simpler, we employ the transformations 

  s1, r(1)  r(1)/,    (s/3)
1/2

, 

f  F/s, µr = r/s,   b/s
2
, 0() = 1 + ,                      (6) 

Inserting (4) - (6) into (3), after some little algebra we obtain the 

dimensionless equations for the complex slow amplitudes 0 and 1  
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The real-valued amplitudes and phases of oscillations are defined 

as ar = |r|, r = argr, r = 0, 1. The thorough derivation of the leading-

order equations is presented in [14-16]. 

 The following parameters are used for numerical simulations:  

 = 0.05,  = 0.05, µ0 = 0.02, µ1 = 0.25; f = 0.34.             (8) 

It was shown [17] that the system with chosen parameters admits AR. 

Figure 1 depicts the amplitudes of both oscillators.  

 

 
Fig. 1. Amplitudes of oscillations in the systems of the 1

st
 type 

  

It is seen from Fig.1 that the solutions of system (7) can be 

presented in the form  

),(~)()(  rrr                                  (9) 

where )(~  r  represents small fast fluctuations near the respective 

quasi-steady state r , r = 0, 1.  

The states r  can be computed from (7) at “frozen” 0 under the 

conditions 0/  dd r , r = 0, 1. Under these assumptions we obtain 

that 10   , and   

f 0
2

00 )||(  .                                 (10) 

Hence Im 0 = 0, Re 0 = | 0 |; | r | = ra , 01 aa  . It follows from 

(2.13) that   0
2
0a  if f << 20. Note that this asymptotic limit 

was earlier obtained for a single oscillator [17]. 

 

3. AR in the system of the second type 

 

In this section we briefly analyse AR in the system with constant 

parameters driven by an external force with the slowly changing 

frequency. The equations of motion are reduced the form  
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with initial conditions ur = 0, vr = 0 at 0 = 0, r = 0, 1. Reproducing 

transformations (4) - (6) and introducing the variables
)(0  i

rr e  we 

obtain the following equations for the slow complex amplitudes r:  
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with coefficients (6). The real-valued amplitudes ar and phases r are 

defined as ar = |r|, r = argr, r =0, 1.  

 

 
Fig. 2. Amplitudes of oscillations in the systems of the 2

nd
 type 

  

Figure 2 depicts numerical results for the system with parameters 

(8) It is seen that the amplitude of the nonlinear oscillator is very close 

to its analogue presented in Fig.1 but the behavior of the linear 

oscillator drastically differs from regular AR in Fig. 1.  

As shown above, the quasi-steady state 0  is sought as a solution 

of system (12) at “frozen” 0 and d0/d = 0. It is easy to prove that the 

function 0  satisfies the equation analogous to (10), and || 00 a . 

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5



a
0

 

 

0 100 200 300
0

0.2

0.4

0.6

0.8

1



a
1

 

 

NL L

a
0

a
1



 

 

44 
 

If the solution 0 is presented in the form 000

~
  , then the 

equation for 1 can be rewritten as  
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Hence 111

~
  , where 01011 )]/([   . Since 00   , the 

slowly varying function 1  and the corresponding quasi-steady 

amplitude are given by: 

0)(/)( 011   , 0)(/|)(|)( 0111  a    

as   . Dashed lines in Fig. 2 depict the functions 00 a  and

)(/)( 011  a .  

A key conclusion from these results is that the passage through 

resonance in the system of this type does not provide oscillations with 

growing energy in the attached oscillator; furthermore, the amplitude of 

linear oscillations decreases when the frequency detuning increases. 
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