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Abstract. The nonlinear problem of the wave propagation is 

considered. In addition to Kerr nonlinearity the question of the 

existence of concentrated solutions is analyzed for the threshold and 

saturable nonlinearity. It is shown that both in the case of threshold 

nonlinearity, and in the case of saturable nonlinearity solitary waves - 

concentrated solutions of the corresponding wave equations exist. 

 

1. Introduction 

Modern radio communications allows so high increasing of radiated 

signal intensity that it generates modification of medium of propagation 

and the problem of determining the wave field becomes nonlinear. 

Theoretical estimates of the effects of ionospheric plasma heating by 

powerful radiation began to appear long time ago [1]. Experimental 

confirmation of the interaction of powerful shortwave radiation with 

ionospheric plasma at oblique propagation [2, 3,] made more active the 

development of the theory of this interaction [4]. 

As a rule, the theoretical researches of the nonlinear 

propagation of powerful wave beams are restricted by models of local 

nonlinearity. The most commonly used model is the Kerr nonlinearity, 

in which the nonlinear perturbation of the dielectric permittivity is 

proportional to the second degree of the modulus of the wave 

amplitude. This approach allowed us to describe the basic phenomena 

arising at the nonlinear interaction of radiation with the environment. 

However such approach has obvious restrictions. Actually, there is no 

nonlinear effects when the intensity of the wave field is not enough 

powerful. As soon as the wave amplitude exceeds certain threshold 

value, so called "disruption" of the environment takes place and the 

nonlinear dependence of the dielectric permittivity upon the wave field 

amplitude arises. 

Moreover the nonlinear dependence becomes more complex 

with further growth of the intensity. The upper limit of growth of the 

mailto:nat_man@mail.ru


71 
 

dielectric permittivity, namely saturation, is observed for most of the 

real materials. In this case it is reasonable to use a model medium with 

saturable nonlinearity.  

However, this description of the nonlinear interaction of 

radiation with the medium is local. This approach is possible only in the 

case of negligible heat conductivity - when the size of the wave beam is 

much more than the characteristic scale of the thermal diffusion. 

Otherwise, you must take into account the spreading of the electron 

density perturbation from the area of the nonlinear heating. Nonlinear 

effect becomes nonlocal and, in this case, it is necessary to consider the 

solution of the diffusion equation for the dielectric permittivity and the 

solution of the wave equation jointly, as a system.  

 

2. Analysis 

In order to describe the wave field in this small area we use the 

Helmholtz equation for the wave amplitude V. 

02  VkV  ,  

where  k  is the wave number and  ε  is the dielectric permittivity.  

For the small wave intensity the dielectric permittivity depends only on 

the coordinates. Therefore, in order to determine the distribution of the 

wave field in the space, it is enough to solve the linear problem with the 

appropriate boundary conditions. But, for the high wave intensity, the 

dielectric permittivity becomes dependent on the wave amplitude, and 

it is necessary to solve the nonlinear problem for the description of the 

wave propagation. 
 

 
Fig.1. The wave beam and quasi - ray coordinates.  

 

We will consider the propagation of the narrow shortwave beams. Thus 

we will construct the Helmholtz equation solution concentrated in the 

small vicinity of the ray trajectory. In this vicinity, we introduce the 
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orthogonal coordinate system:    is the length of the trajectory arch;  

is the distance along the orthogonal direction to the ray (Fig. 1). We 

represent the complex-valued function  V   in the terms of   

 ikuV exp  , where  u    and     - are real functions.  

In this approach, the derivatives along the trajectory are essentially 

less then the derivatives across the ray direction. Therefore, we can 

write in the main approximation: 
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The electric field heats the environment and creates the perturbation of 

the dielectric permittivity n . For the slightly inhomogeneous 

medium we can write the main approximation and we get the typical 

problem of nonlinear wave propagation. 
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This equation has the first integral. 
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This equation admits the existence of concentrated solutions if 0E , 

provided that the equation   02  xxF   has solutions 0x  and 

00  xx . Without loss of generality, we choose the center of the 

solution 0 . Then 0xu  , when 0 , and 0u  at the infinity. 

The amplitude maximum of the wave beam is 00 xu  , and we can 

write the formal solution. 
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2.1 Kerr nonlinearity 

In particular, if the correction to the nonlinear dielectric 

permittivity has the form 
2

un   , then 
222 )(5.0)( uuF   , 

and the equation has a simple root (Fig. 2).  
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Fig.2. The Ker nonlinearity.  

 

Thus, solution has the form of the simple soliton with the phase 

velocity 
2

05.0 u  .  

It is a well-known solution. This approach allowed us to describe basic 

phenomena arising at the nonlinear interaction of radiation with the 

environment.  
 

2.2 Threshold nonlinearity 

However as mentioned above, such approach has obvious 

restrictions. Actually, there is no nonlinear effects when the intensity of 

the wave field is not enough powerful. As soon as the wave amplitude 

exceeds certain threshold value, there is a "disruption" of the 

environment and the nonlinear dependence of the dielectric permittivity 

upon the wave field amplitude arises. In this case, we can write the 

model of the threshold nonlinearity. The nonlinear perturbation of the 

dielectric permittivity for this situation can be represent by the formula.  

 2222
)( Auuun   ,  x  - is the Heaviside theta function, A 

is the threshold value. 
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the expression (1) results in  the elliptic integral. Nevertheless it is 

obvious (Fig. 3) that in this case, we have also the concentrated solution 

with the phase velocity   2

0

42

0 /5.0 uAu   .  

The concentrated solution with the threshold nonlinearity is very close 

to the usual soliton, but it is somewhat narrower in the center of the 
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beam and it has a "long" tails. The interaction between these beams 

differs from the interaction of the soliton collisions. 

 
Fig.3. The threshold nonlinearity 

 

2.3 Saturable nonlinearity 

The nonlinear dependence becomes more complex with 

magnification of the wave power. The upper limit, of the dielectric 

permittivity is observed for most of real materials. In this case it is 

reasonable to use a model medium with saturable nonlinearity, in which 

the dependence of the dielectric permittivity on the wave intensity is 

described by fractional-linear function [5, 6]. 

The perturbation of the dielectric permittivity  
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Fig. 4. The saturable nonlinearity 

 

We can see from Fig. 4 that it is also possible the existence of the 

concentrated solutions. The phase velocity has the limit  / , 
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when the wave intensity tends to the infinity. In this case, the 

environment becomes linear. However, at any finite amplitude, the 

concentrated solution exists. 
 

2.4 Nonlocal nonlinearity 

The previous descriptions of the nonlinear problems were local. That 

approaches are possible only in the case of negligible heat conductivity, 

when the size of the wave beam is much more than the characteristic 

scale of the thermal diffusion. Otherwise, it is necessary to take into 

account the spreading of the electron density perturbation from the area 

of the nonlinear heating. Nonlinear effect becomes nonlocal [10]. In 

this case for the n , we have to write the diffusion equation.  

The computational solution allow us to assert that the 

concentrated solution exist for any value of the diffusion scale. The 

concentrated solution has not any singularities for any value of the scale 

of the diffusion process and it looks like the soliton but more wide. 

Naturally, the diffusion process enlarges the soliton.  
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