ВЛИЯНИЕ КУБИЧЕСКОЙ НЕЛИНЕЙНОСТИ НА ХАРАКТЕРИСТИКИ БЕЗОТРАЖАТЕЛЬНОГО РАСПРОСТРАНЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ С МЕЛКОМАСШТАБНЫМИ СТРУКТУРАМИ

Н.С.Ерохин, В.Е.Захаров, Н.Н.Зольникова, Л.А.Михайловская

E-mail: nzolnik@iki.rssi.ru

Аннотация. Рассмотрено безотражательное прохождение поперечной электромагнитной волны через слой неоднородной плазмы с мелкомасштабными структурами большой амплитуды (включая области непрозрачности плазмы) при учете влияния кубической нелинейности. Показано, что при учете кубической нелинейности возможно точное решение одномерной задачи о нелинейном просветлении неоднородной плазмы.

1. Введение

В настоящей работе проведен анализ точно решаемых моделей, которые описывают резонансное туннелирование электромагнитной волны через толстый слой неоднородной плазмы с мелкомасштабными структурами большой амплитуды при наличии областей непрозрачности. В рамках точно решаемой модели проведен учет роли кубической нелинейности и на основе расчетов установлена возможность численных полного просветления градиентных барьеров. Показано, что при наличии в линейной задаче областей непрозрачности плазмы, в которых эффективная диэлектрическая проницаемость отрицательна, за счет нелинейности происходит уменьшение толщины зон непрозрачности и высоты волновых барьеров. Наибольший эффект реализуется в областях, где безразмерный волновой вектор достаточно мал и, соответственно, амплитуда волны имеет сильный всплеск с ростом на порядок величины и более. Представлены аналитические модели, описывающие эффект просветления плазмы, изучены возникновение сильных всплесков волнового поля в некоторых слоях при соответствующем выборе параметров задачи, нелокальная исходных связь между пространственными профилями волнового вектора и эффективной диэлектрической проницаемости плазмы, что существенно меняет традиционные представления о динамике волн в неоднородных средах.

2. Результата анализа

В случае электромагнитной волны s-поляризации в плазме без внешнего магнитного поля либо при распространении волны поперек однородного внешнего магнитного поля в магнитоактивной плазме ДЛЯ волнового поля используем стандартное представление $E(x,t) = Re [F(x) exp(-i \omega t)]$, где ω частота волны, а функция F(x) удовлетворяет следующему уравнению Гельмгольца $d^2F / dx^2 + k_0^2 \epsilon_{ef}(x) F = 0$, где $\epsilon_{ef}(x)$ эффективная диэлектрическая проницаемость плазмы (квадрат показателя преломления), определяемая компонентами тензора диэлектрической проницаемости. Введем безразмерный волновой вектор $p(\xi) = c k_x(x) / \omega$ и переменную $\xi = k_0 x$. Точное решение уравнения Гельмгольца записываем в виде

 $F(\xi)=F_0 \; exp[\; i \; \Psi(\xi) \;] \; [1/p(\xi)]^{-1/2} \; , \ \ d\Psi/d\xi=p(\xi), \; F_0=const.$

Тогда с учетом эффективная диэлектрическая проницаемость $\varepsilon_{ef}(x)$ связана с безразмерным волновым вектором $p(\xi)$ следующим нелинейным уравнением

$$\varepsilon_{f}(\xi) = [p(\xi)]^{2} + (d^{2}p / d\xi^{2}) / 2p - 0.75(dp / d\xi)^{2} / p^{2}.$$

Эффективная диэлектрическая проницаемость плазмы с учетом кубической нелинейности имеет вид $\varepsilon_n(\xi) = \varepsilon_L(\xi) + \chi |A|^2$, где для упрощения анализа полагаем, что параметр нелинейности χ постоянен, а $\varepsilon_L(\xi)$ линейная часть эффективной диэлектрической проницаемости.

Рассмотрим безотражательное туннелирование поперечной электромагнитной волны через слой плазмы, занимающий область $0 \le \xi \le b$, который слева ($\xi = 0$) и справа ($\xi = b$) граничит с вакуумом. Одной из моделей, обеспечивающих на границах плазменного слоя условия безотражательной сшивки с падающей из вакуума ($\xi < 0$) и уходящей вправо от плазменного слоя ($\xi > b$) волнами, является р(ξ) = 1 – 0.5 f(ξ) [1 – соз ($\gamma \xi$)], где f(ξ) ограниченная функция, $\gamma = 2\pi / b$. Множитель [1 – соз ($\gamma \xi$)] обеспечивает выполнение условий безотражательной сшивки поля

волны на границах плазма-вакуум. В качестве примера исследуем следующий вариант выбора функции f(ξ)

 $f(\xi) = 0.25 \ \mu [1 + 0.5 \cos(\gamma \xi) - \cos(2\gamma \xi) - \cos(3\gamma \xi) + 0.5 \cos(5\gamma \xi)],$

описывающий мелкомасштабную модуляцию плотности плазмы в слое, которая определяет профили волнового вектора p(ξ) и функций $\varepsilon_n(\xi)$, $\varepsilon_L(\xi)$. Приведем результаты расчетов в случае следующего выбора исходных параметров b = 30, μ = 0.6, χ = 0.1. Графики функций $p(\xi)$ и функций $\varepsilon_n(\xi)$ приведены ниже на рис.1. Согласно рис.1 в центральной части неоднородного плазменного слоя наблюдается корреляция положения экстремумов этих функций. В слое волновой вектор $p(\xi) \leq 1$, а нелинейная эффективная диэлектрическая проницаемость плазмы всюду положительна. т.е. области непрозрачности отсутствуют. Минимальное значение $\varepsilon_n(\xi)$ равно 0.105 при $\xi = 5.61, 24.39$ и еще в двух точках.

Для сравнения на рис.2 представлены графики линейной $\epsilon_L(\xi)$ и нелинейной $\epsilon_n(\xi)$ эффективных диэлектрических проницаемостей плазмы.

133

Согласно графикам рис.2 линейная эффективная диэлектрическая проницаемостей плазмы $\varepsilon_{L}(\xi)$ имеет в плазменном слое четыре области непрозрачности, в частности, ε_L(5.61) ≈ - 0.148. Для экстремумов $\varepsilon_L(\xi)$ и $\varepsilon_n(\xi)$ наблюдается корреляция их положений в неоднородном плазменном слое. По всей толщине плазменного слоя выполняется неравенство $\varepsilon_L(\xi) < \varepsilon_n(\xi)$. Описанная картина резонансного туннелирования электромагнитной волны через градиентные барьеры получается и для ряда других значений исходных параметров задачи, а также при выборе функции f(ξ) с более сложным пространственным профилем, например, вместо косинусов могут быть использованы функции типа ступенек. Представляет интерес также анализ в последующих работах резонансного туннелирования электромагнитных волн при введении в функцию f(ξ) стохастической компоненты, например, набора пространственных гармоник со случайными фазами.

3. Выводы

В настоящей работе на основе точного решения уравнения Гельмгольца аналитически и численно исследован эффект резонансного туннелирования электромагнитной волны через слой неоднородной плазмы с мелкомасштабными неоднородностями плотности, которые могут включать и зоны непрозрачности плазмы, при учете вклада кубической нелинейности в эффективную диэлектрическую проницаемость плазмы. При этом вид пространственного профиля неоднородности плазмы зависит от свободных параметров, определяющих глубину модуляции волнового вектора и диэлектрической проницаемости плазмы, размеры мелкомасштабных структур плотности, толщину слоя неоднородной плазмы, субслоев непрозрачности. Поскольку связь волнового вектора p(ξ) с диэлектрической проницаемостью плазмы $\epsilon_{f}(\xi)$ описывается нелинейным дифференциальным уравнением второго порядка, в задаче возникают существенно нелокальные соотношения между профилями $p(\xi)$ и $\varepsilon_f(\xi)$ за счет присутствия в плазме субволновых структур большой амплитуды.

На основе точно решаемой модели показано, что возможность резонансного туннелирования волны (просветление градиентных волновых барьеров в плазменном слое) сохраняется и при учете кубической нелинейности. При этом за счет нелинейности могут исчезнуть области непрозрачности, в которых эффективная диэлектрическая проницаемости плазмы была отрицательна, а высота градиентных барьеров уменьшается. В частности, суммарная толщина зон непрозрачности в профиле $\varepsilon_L(\xi)$ может достигать (30-50) % и более. Для достаточно малой нелинейности ее вклад в $\varepsilon_f(\xi)$ становится существенным в субслоях плазмы, где волновой вектор за счет неоднородности мал, а амплитуда волны резко увеличивается. Таким образом благодаря нелинейности и резонансному туннелированию электромагнитная волна может распространяться через толстые слои неоднородной плазмы без отражения с генерацией в некоторых субслоях сильных всплесков электромагнитного поля.

Здесь важно указать и следующее. Для плазменной неоднородности, включающей случайную компоненту, можно ожидать сохранения рассмотренного выше эффекта просветления волновых барьеров. Однако анализ этой задачи будет проведен в последующих работах.

Необходимо отметить, что рассматриваемые точно решаемые модели уравнения Гельмгольца позволяют выявить новые качественные особенности в динамике волновых процессов в неоднородной плазме с мелкомасштабными структурами достаточно большой амплитуды, а также они могут демонстрировать новые интересные возможности практических приложений при контролируемых изменениях параметров плазмы и волн (см., например, [1-10]). Это представляет большой интерес и для развития новых методов дистанционного зондирования объектов через плотную плазменную оболочку, для генерации электромагнитных волн в неоднородной плазме пучками заряженных частиц и передачи сигналов через слои плотной плазмы, например, от антенн с плотной плазменной оболочкой в космической плазме.

Литература

[1]. A.M.Dykhne, A.K.Sarychev, V.M.Shalaev. Phys. Rev. B. 2003, v.67, 195402.

[2]. Шварцбург А.Б. УФН. 2005, т.175, № 8, с.833.

[3]. E.Fourkal, I.Velchev, C.V.Ma, A.Smolyakov. Physics Letters A. 2007, v. 361, p.277.

[4]. Н.С.Ерохин, В.Е.Захаров. Доклады Академии наук. 2007, т. 416, № 3, с.1.

[5]. М.В.Давидович. Радиотехника и электроника. 2010, т.55, № 4, с.496.

[6]. S.V.Nazarenko, A.C.Newell, V.E.Zakharov. Physics of Plasmas. 1994, v.1, № 9. p.2827.

[7]. Б.А.Лаговский. Радиотехника и электроника. 2006, т.51, № 1, с.74.

[8]. А.С.Шалин. Письма в ЖЭТФ. 2010, т.91, № 12, с.705.

[9]. А.А.Жаров, И.Г.Кондратьев, М.А.Миллер. Физика плазмы. 1979, т.5, вып.2, с.261.

[10]. А.Н.Козырев, А.Д.Пилия, В.И.Федоров. Физика плазмы. 1979, т.5, вып.2, с.322.