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Abstract. In the linear theory of hydrodynamic stability of the Hagen–

Poiseuille (HP) flow in a round pipe, based on periodic disturbances, it 

is stable for any finite threshold Reynolds number thRe  that contradicts 

experimental data. Such disturbances do not correspond to the 

observation data where only quasi periodic disturbances fields (R. J. 

Leite, JFM 1959; D. D. Joseph, N. Y. 1976) are considered. We suggest 

here linear theory based on quasi periodic disturbances. We use energy 

and Galerkin’s approximation methods taking into account existence of 

different periods for different radial modes corresponding to the 

equation of evolution of extremely small axially symmetric velocity 

field tangential component disturbances. Obtained for the HP flow 

linear instability realization minimal value Reth(p)=448 (when 

p=1.527) agrees with the threshold value 420Re th for Tolmin-

Shlihting waves arising in the boundary layer.  
 

1. Introduction 

The problem of understanding of the turbulence arising 

mechanism for the Hagen-Poiseuille (HP)
1
 flow exists more than 

century because of the linear theory result of exponential stability of the 

HP flow with respect to disturbances with extremely small amplitude 

for arbitrary large Reynolds numbers [1-4]. It’s contradiction with 

experiments is explained by an assumption of permissibility of the HP 

flow instability with respect to disturbances of sufficiently large finite 

amplitude [5-10]. At the same time, O. Reynolds noted [1]: high 

sensitivity of Reth may depend on the space-time wave characteristics of 

the disturbances (see [11]). Here, we introduce an additional to the 

Reynolds number parameter p characterizing frequency-wave features 

                                                 
1
 HP flow is a laminar stationary flow of the uniform viscous incompressible 

fluid along the static straight linear and unbounded in length pipe with round, 

same along the whole pipe axis, cross section 
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of the disturbances (similar to ones of [12-16]), and get a finite minimal 

threshold Reynolds number Reth=448 for p=1.53 of linear exponential 

instability. Obtained threshold Reynolds number for linear exponential 

instability for the HP flow is close to  Reth=420 for Tolmin-Shlihting 

(TS) waves arising due to the near boundary action of the molecular 

viscosity [17-19]; also, instability regions bounded by the curves of 

neutral stability are similar. This confirms expected similarity of 

viscous dissipative realization mechanisms of instability for the HP 

flow and for TS waves excitation. In Section 2, the problem under 

consideration is stated. In Section 3, energy approach and Galerkin’s 

method respectively are used to get threshold Reynolds number for HP 

flow linear instability. In Section 4, obtained results are compared 

versus known data, and discussions and conclusions are given. 
 

2. Statement of the problem 

Let us consider representation [4] of the HP flow in the 

cylindrical reference frame ),,( rz : 
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first order and the value N must be considered as infinite to obtain the 

exact solution of (1). 
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3. Energy consideration and galerkin’s method 

Let’s consider evolution of average energy (on the unit of mass): 
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From (1) it is possible to obtain an equation for 1 . When 

)22exp()( 0 nnnn ixiAxA   , we may obtain the following 

criterion of the HP flow linear instability (only when c>0): 
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,...2,1,12,0  kkmnqnm Minimization of EthRe  on the value 

of 1 gives the following representation for criterion of linear instability 

of the HP flow ( ba /min11  , 1,1,11 // jjp nnn   ): 
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 We may consider the more special 

representation with only one free independent parameter pp 2  on 

which we may minimize )(Re
min11

min pEth
 

. Dependence of this function on 

p is presented in Fig.1,b. Thus, only when 0  in (1), it is possible to 

expect realization of the HP flow viscous dissipative instability for 
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Reynolds numbers 
th

Rе Re . Instability of HP flow obviously is not 

realizable in the case of the pure periodic variability of V  along the 

tube (see also (24.7) in [2]) when 01 I and 01  .  

With Galerkin–Kantorovich method, for the coefficients nA , 

from (1),  we get the following dimensionless system of equations: 
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A
2
>0. The value of the absolute minimum 442mineR

~


th
 in (3) is 

reached for ..53.1p  , and close to it 448mineR
~


th  

takes place for 

the same p . 

a) 
 

b) 

Fig. 1. Family of the six curves of neutral stability (with 0
1
 ), 

according to (3) . On Fig..1а), scaled plots of three of them are given 

(they are noted also on Fig. 1b)). Meanwhile, the mean, second from 

below, instability region is bounded by the curve corresponding to the 

value 0 =0.463 (for p=1.527), and the lower one to 0 =1.099 (for 

p=2.239). On Fig.1а), we give overlapping with a figure from [23] (see 

Fig.12 in [23]) under condition that formally,  1/2p=
* . In [23],    

is the wave disturbance number, and 
* is the boundary layer shift 

thickness when streamlining a thin plate. On Fig.1а, points and dashes 

correspond to the experiment [23], and the solid lines correspond to the 

Shlihting theory (the lower, denoted by I) and of Lin (the upper, 

denoted by II). 

 

4.  Discussion and conclusion 

Found value 448mineR
~


th

corresponds to the interval of values 

500300Re  , noted in experimental observation of the threshold 

transition of the laminar resistance law (for a flow in the pipe) to 

another already non laminar (but yet not obviously turbulent) resistance 
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mode [2, 20] and for TS waves in the near wall region of the boundary 

layer [19]. Observed [1,21,22] sensitivity of Reth to the initial 

disturbances dependency (3) on p : Reth in (3) changes nearly 600 

times when p changes from 0,12 to 0,11. In the scaled form, fragments 

of the neutral curve, corresponding to the condition (3) (see Fig. 1b), 

are given on Fig. 1a) in the form of dependency of the value 1/2p on 

Re. They are plotted on the taken from [23] figure (see Fig.12 in [23]), 

on which theoretical (Lin, Shlihting) neutral curves and respective 

experimental data defining instability threshold in a boundary layer, are 

given. Fig. 1a) allows concluding on similarity of the linear dissipative 

instability mechanisms for the HP flow and TS waves excitation. Thus, 

the suggested theory agrees with the observation data and results of the 

non-linear theory.  We are grateful to S.I. Anisimov, G.S. Golitsin, V. 

P. Goncharov, E.A. Novikov, and N.A. Inogamov for useful comments 

and interest to the work. 

 

References 

1. O. Reynolds, Proc. Roy. Soc. (Lond.), 35, 84 (1883).  

2. D. D. Joseph, Stability of fluid motions, Springer- Verlag, Berlin, 

Heidelberg, New York, 1976 ( Moscow, Mir,1981 in Russian).  

3. P.G. Drazin, N.H. Reid, Hydrodynamic stability, Cambridge Univ. 

Press, Cambridge, England, 1981.  

4. L.D. Landau, E.M. Lifshitz, Theoretical physics, vol. 6, 

Hydrodnamics, Moscow, 2006 (in Russian).  

5. S. Grossman, Rev. Mod. Phys. 72, 603 (2000).  

6. R. Fitzegerald, Physics Today, 57, 21 (2004).  

7. H. Faisst, B. Eckhardt, Phys. Rev. Lett., 91, 224502 (2003).  

8. H. Wedin, R. Kerswell, J. Fluid Mech. 508, 333 (2004).  

9. T. M. Schneider, B. Eckhardt, J. A. Yorke, Phys. Rev. Lett., 99, 

034502, 2007.  

10.  J. D. Skufca, J. A. Yorke, B. Eckhardt, Phys. Rev. Lett., 96, 

174101, 2006.  

11.  J.A.Fox, M.Lessen, W.V.Bhat, Phys. Fluids, 11, 1 (1968).  

12.  A.S. Monin, Uspehi fizicheskih nauk, 150, 61, 1986 (in Russian). 

13.  R.R. Kerswell, A. Davey, J. Fluid Mech., 316, 307 (1996).  

14.  D.R. Barnes, R.R. Kerswell, J. Fluid Mech., 417, 103 (2000).  

15.  P. A. Mackrodt, J. Fluid Mech., 73, 153, 1976.  

16.  J.P. Matas, J.F. Morris, E. Guazzlli, Phys. Rev. Lett., 90, 014501 

(2003).  



293 

 

17.  A.S. Monin, A.M. Yaglom, Statistical hydromechanics. Vol. 1, 

Theory of turbulence, Hydrometeoizdat, S.Pb, 1992, 694 p. (in 

Russian).  

18.  B.J. Cantwell, Ann. Rev. Fluid Mech. 13, 457 (1981).  

19.   Yu.S. Kachanov, V.V. Kozlov, V.Ya. Levchenko, Emergence of 

turbulence in the boundary layer, Novosibirsk, 1982. (in Russian).  

20.  S.J. Davies, C.M. White, Proc. Roy. Soc. (Lond. A), А 69, 92 

(1928).  

21.   J. Peixinho, T. Mullin, Phys. Rev. Lett., 96 , 094501 (2006).  

22.   B. Hof, C.W.H. van Doorne, J.Westerweel, F.T.M. Neiuwstadt, 

Phys. Rev. Lett., 95, 214502 (2005).  

23.  Schubauer G.B., Skramstad H.K., NACA Rep.No.909(1948). 


