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Abstract. The energy principle of convective structures formation in a 

layer of viscous incompressible fluid uniformly heated from below is 

proposed. It is offered to use an elementary cylindrical convective cell 

which parameters are determined in the following article. The results of 

experiments on the determination of the oil movement in the 

elementary cell convective velocity are presented. 

1. Introduction 

First mathematical description of equilibrium of the horizontal 

layer of fluid heated from below with the free boundaries was proposed 

by Lord Rayleigh in 1916 [1,2]. Critical numbers: the Rayleigh number 

Rmin = 657.51 and the wavenumber kmin = 2.221 were found as a 

solution of this problem for the main perturbation (n = 1 )  and the 

Prandtl number Pr ≈ 1 in the spermaceti thin layer. 

In [2-4] it is shown that solutions describing the horizontal and 

vertical velocity components inside the cell, as a result of certain 

geometric transformations may form convective horizontal shafts, 

square convective cells or regular polygons. These structures tend to 

completely fill the surface of the convective layer and ensure maximum 

heat transfer between the boundaries of the layer. 

From our point of view, the principle of polygonal convective 

structures formation shouldn’t be the geometric, but an energy one [5], 

which states that the higher temperature of the tank bottom with the 

appropriate temperature gradient leads to the convective cells amount 

increasing with the shapes close to a polygonal (especially hexagonal) 

making heat exchange between lower and top boundaries more 

efficient. To implement this principle of polygonal convection cells 

generation it is necessary to introduce the concept of an elementary 
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convective cell which under dense packing form the polygonal 

convective structure. The vertical velocity component of the elementary 

convective cell is described by the cylindrical Bessel function of the 

first kind of zero order [5] and the physical properties of the proposed 

cell correspond to the experimental data obtained in small containers 

[6].  

2. Theory of the elementary convective cell with free boundaries [5] 

To describe the convective processes in a horizontal layer of a 

viscous, incompressible fluid heated from below let’s take the initial 

system as the Navier-Stokes equations in the Boussinesq 

approximation, recorded for the dimensionless perturbation v, T  and 

dimensionless variables: 

v v , vz z z
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transverse Laplacian, z-axis points upward, perpendicular to the layer 

boundaries 0z   and 1z  ,  
13R g h 


   - the Rayleigh 

number, g – gravitational acceleration, directed against the axis z , 
1P    - the Prandtl number,   and   - the kinematic viscosity and 

thermal conductivity of fluid,   - the coefficient of volume thermal 

expansion of fluid,  v v ,v ,r z T  - the perturbation of velocity, 

pressure and temperature respectively.  

To determine the "normal" perturbations the equations (1) (2) 

must be supplemented by the boundary conditions. We consider free 

cell boundaries, i.e. shear stresses and temperature perturbations at the 

boundaries both equal zero: v 0, 0r z T    . These requirements 

are provided by the following equations at the layer boundaries 0z   

and 1z  : 
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Equations (1) and (2) have partial solutions, which describe the 

temporal dynamics of the vertical velocity’s and temperature’s 

perturbations in the axially symmetric cylindrical cell: 

           0 0v , , v , , ,z r rr z t z J k r T r z t z J k r   (4), (5) 

where at the right sides the multiplier  exp t  is omitted,   - the 

eigenvalues characterizing the change in time perturbations (4), (5); 

 v z  and  z  - perturbations’ amplitudes of the vertical velocity 

and temperature respectively;  0J x  - the Bessel functions of the first 

kind of zero-order of the argument x ; rk  - the radial wave number 

characterizing  perturbations  dependence  on  the  transverse 

coordinate r . 

From the boundary conditions (3) one can obtain the conditions 

imposed on the vertical velocity and temperature perturbations’ 

amplitude: 

   v 0 v 1 0, 
   

   
2 2

2 2

v 0 v 1
0, 0 1 0

z z
 

 
   

 
      (6) 

From (6), as shown in [3], the vertical velocity and temperature 

perturbations’ amplitudes can be represented as a simple harmonics: 

       v ,z A sin n z z B sin n z       (7) 

where 1,2,3,...n   - integers, A  and B  - constant coefficients. 

On the strength of (4), (7) and the fluid incompressibility 

condition it follows that the expressions for the vertical  v , ,z r z t  and 

radial  v , ,r r z t  velocities of convective flow in the cell, multiplying 

by e t , can be represented as such expressions: 

       1

0 1v ,v cos .z r r r rA sin n z J k r An k n z J k r       
(8) -

(9) 

The solution (9) corresponds to the physically reasonable 

boundary conditions on the axis of the cell ( 0r  ) and on its outer 

boundary ( cr R ) stating that the radial velocity of the fluid must be 

equal to zero. From this we can determine the value of the radial wave 

number: 
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1

1,r i ck R   (10) 

where cR  - convective cell radius divided by the depth of the layer,  

1,i  - i  - th zero of the Bessel function of the first order, 1,2,3,....i  . 

In particular, the first five zeros of Bessel functions are defined as 

follows [7]: 
1,1 3.832  ; 

1,2 7.016  ; 
1,3 10.173  ; 

1,4 13.324  ; 

1,5 16.471  . 

Note that the solution (4) is also obtained in [6,8,9]. E.g., in [8] it 

is shown that the radial wavenumber is determined as the ratio of the 

critical wavenumber 2.682a   of the asymmetric boundary conditions 

problem (the notation of the cited work is kept) to the depth of the 

layer: rk a h . 

3. Experimental data and the velocity of convective heat transfer in 

a cell measurement 

During examination of the Benard cells the question of the 

magnitude of the horizontal velocity of convective flow on the cell 

surface is important. To determine its value a series of experiments 

have been carried out in which used vacuum oil ВМ - 5 (2 ml of the 

weight 1.8 g) and a small amount of aluminum powder (0.056 g) were 

utilized to create Benard cells. The oil was heated from below by an 

electric furnace, the temperature was maintained at about 130 ± 1°С at 

the bottom of the container. The probe made of two parallel cylindrical 

thin wires of 0.04 mm diameter copper was lowered vertically in one of 

the cells on the top half of the radius. The length of one probe was 

4.3 mm and the other was 5.4 mm. These probes were attached to a 

metal rod, which was located a protractor to determine the angle of 

deflection of the longer probe when they were shortly immersed in the 

oil.  

As seen from the experimental data, after dipping the probe into 

the cell at the half of the radius the deflection angle about 1±0,1º is 

formed. Long probe’s calibration was carried out using a vertical jet of 

water flowing freely from a tap. Adjusting the water flow from the tap 

and measuring the diameter of the water jet, mass of the water and 

water’s flowing time it is possible to calculate the flow velocity: 

2 1= 4 / ( )VV M d t  
 (11) 
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where M  - mass trapped in the water tank, d  - diameter of the water 

jet,   - density of water, t  - time of water leakage into the tank. 

The angle of deflection of a long probe immersed into the water 

jet perpendicular to the cylindrical surface corresponds to the flow 

velocity calculated on the formula (11). To clarify the analytic 

dependence of the probe’s deflection angle from the water flow rate, 

let’s assume that the probe has a cylindrical shape. In this case, the 

resistance force of the probe to the oncoming flow of water per unit 

length is defined by Stokes - Oseen formula [10]: 

1 1( (7,406 ))4 V V eV lnF R     (12) 

where    - the dynamic viscosity of water, 
1

pe V r VV dR    - 

Reynolds number. 

Using the experimental data for the water and taking into account 

the fact that the water velocity into the oil velocity transition factor is 

determined by the rate  / / 10.0V Oil Oil V V OilV V       the 

convective oil velocity dependence from the probe’s angle of deflection 

was plotted.  

 

The Fig. 1 

shows that 

the velocity 

of the oil 

flow on the 

surface of 

the convec-

tive cell at 

half radius 

from the 

axis is 

about 

0.02OilV 

 cm / sec. Fig. 1. Convective water velocity dependence from 

the probe’s angle of deflection. 

Another method for changing the mass transfer rate is based 

on a visual determination of the velocity chosen particles (look at 

the Fig. 2) from the axis position in the cell. The measurements 

were performed using a time - lapse video scan. The Fig. 3 shows 
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an example of measuring the velocity of particles chosen from the 

position in the cell. Estimates show that this speed determined by 

the value about 0.43OilV   cm/sec. 

  

Fig. 2. Type of convective cells 

and location of markers. 

Fig. 3. Horizontal velocity particle 

with a radius of cell Rc = 1,14 mm. 
Conclusions 

An energy principle of convective cells formation in a layer of 

viscous incompressible fluid with uniform heating from below is 

proposed in this paper. The parameters of the convection cell are 

determined. The velocity of oil flow on the surface of the convective 

cells has been measured and consist value for different sizes from 

0.02OilV  cm / sec to 0.43OilV  cm / sec. 

Sources 

1. Bernard H. Revue generale des Sciences, pures et appliques. - 1900. 

2. Strutt J. W. Phil. Mag., 1916, V. 32, p. 529 - 546.  

3. Gershyni G.Z., Guhovitskiy E.M. Convective stability of 

incompressible fluid. – M: Science, 1972. – p. 393.  

4. Chandrasekhar S. Hydrodynamic and hydromagnetic stability, 1970 

– p. 657.  

5. Bozbiei L.S. Conference of Young Scientists and Specialists; 

IPMash of Ukraine, - Х, Kharkov, 2013, p. 29.  

6. Koschmieder E.L., Prahl S.A. J. Fluid Mech., 1990. 7. Royal Society 

Mathematical Tables: V.  

7. Bessel functions, P. Ш. Zeros and associated values. Cambridge: 

Cambridge Univ. Press, I960.  

8. Zierep J. Z. Agev. Mah. Mech. Bd. 39, Nr. 7/8, 1958.  

9. Zierep J. Beitr. Phys. Atmos. 30, P. 215 - 222.  

10. Pavlov V.N., Krushanovskuy A.S. Problems of friction and wear. – 

K.: Techniques. - 2009. 


