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The Fate of Compact Object Binaries

CBs emit gravitational waves (GW)!
— orbitial distance decays
— merger inevitable

bad news: No NS merger has been safely
observed so far, only ~10 NS-NS binaries
known, 0 NS-BH binaries known

good news: orbital decay is measured for
the Hulse-Taylor pulsar and precisely
confirms prediction by general relativity

expected merger rate (Abadie 2010):
~ 1E-4 ... 1E-6 per year per galaxy

expected rate of GW observations:
0.1...100 per year

RECENTLY: First GWs from BH-BH
merger observed!!!

(aLIGO Hanford, USA)




Where are heavy elements (e.g. gold) produced?
Origin of ~ half of trans-iron elements still unknown!




Where are heavy elements (e.g. gold) produced?

Origin of ~ half of trans-iron elements still unknown!

=2 nucleosynthesis process is basically known: rapid neutron capture process
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Where are heavy elements (e.g. gold) produced?

Origin of ~ half of trans-iron elements still unknown!

=2 nucleosynthesis process is basically known: rapid neutron capture process
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= BUT: astrophysical site(s) not clearly identified so far!

2 Requirements: High neutron density — high-energy, explosive event
— neutrino-interactions crucial

2 ejecta from CCSNe: favored for decades, but not neutron-rich enough and
too low entropies (at least to produce heaviest elements)

> ejecta from NS-mergers???




What and how many heavy elements are
ejected in which phase of a NS-NS/BH merger?
(Just+ '15, MNRAS 448, 541)
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What and how many heavy elements are
ejected in which phase of a NS-NS/BH merger?

(Just+ '"15, MNRAS 448, 541)
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“ALCAR” Neutrino Transport Module (0. overgauiinger, Janka

15, MNRAS, 453, 3386)
Radiation-hydro with Boltzmann solver too expensive!

Our approach:

2 Two-moment scheme with algebraic Eddington factor (AEF or M1 scheme)

E = ] dQZ(x, n, e, t) «— energy density
F' = /dﬁ T(x, n, e t)n — momentum density
PY = f dQZ(x, n, e, t)n'n’ <— pressure
QY = f dQZ(xz, n, e, t)n'n'n"

HE + V,;FI + V,;(v/E) + (Vu,)P* — (V,v)0(eP*) = C } evolution
WF' + "V, PY + YV, (V'F') + FIVju' — (V,jup)d(eQr) = ¢ equations
PY = PY(E,F') } approximate algebraic

QU = QUME,F) closure relations (e.g. '"M1 closure")




Dynamical ejecta launched during the merger

NS-NS
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Ejecta from the remnant BH-torus system
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Combined nucleosynthesis yields

= DISK ejecta (mainly A~ 90 - 140)
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= nicely recovers the full mass range A > 90

= BH-torus ejecta could be significant
sources of intermediate mass elements
with 90 < A< 140

= observed scatter for 90 < A< 140 maybe
explained by variable ratios of disk and

prompt ejecta masses
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% [Keck /LRIS R-band Imaging &

Gamma-Ray Bursts . =~ .7

> first detected 1967 by VELA satellites ?,.. b . IT _‘ L, s

= since then ~ few 100 suggested possibilities for Soatlane T ’.sg:;:.:'r:
central engines - A, oo

= since BATSE: must be of cosmological origin

= source is moving highly relativistically

= natural suggestion: jet from rotating compact object

= |ong bursts (T>2s): connection to death of massive stars

> short bursts (T<2s) still mysterious, most likely from A S

NS mergers
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Popular central engine scenarios
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= neutrino-pair annihilation

- neutrinos tap gravitational energy of disk
e+-e- pairs thermalize — thermal fireball

- efficiency of converting gravitational energy into
jet energy?

- baryon loading in the funnel?

= Blandford-Znajek process
- B-field taps rotation energy of central BH
— Poynting-dominated jet
- efficient only for large-scale poloidal B-fields
- can large-scale fields be produced and
sustained? MRI? Dynamo?

(Hirose+ '04)

=2 magnetar spin-down emission
- B-field taps rotation energy of central NS
— Poynting dominated jet
- is dipole model appropriate?
- consistent with short burst timescale? - (Metzger+ "11)
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Is neutrino annihilation alone powerful

enough to explain all sGRBs?
(Just+ '16, ApJL 816, 30)

previous works mainly handicapped by complexity of radiation-HD

conditions on the jet: ~104-10°° erg and Lorentz factors M'>10-100

Are necessary condition(s) fulfilled?:

sufficient energy provided by nu-annihilation  and/or
sufficiently small energy loss during expansion

What is the impact of the dynamical ejecta on the jet?




Setup of BH-Torus Models

initial configurations are manually constructed equilibrium tori
with properties given by simulations of NS-NS and NS-BH mergers

dynamical ejecta mapped from SPH merger simulations performed
by A. Bauswein

special relativistic hydrodynamics with pseudo-Newtonian
gravitational potential by Artemova — mimics the ISCO and BH spin

most dominant (electron) neutrino interactions included:

v emission/absorption by nucleons
v neutrino-nucleon scattering
v neutrino-antineutrino annihilation

angular momentum transport: Shakura & Sunyaev a-viscosity

simulations performed in 2D axisymmetry




Model SFHO_145145: NS-NS Remnant

> MOVIE

> dynamical ejecta are almost spherical
— not favorable for jet launch

> annihilation deposits thermal energy into dynamical ejecta

> not powerful enough to launch a jet




Model SFHO_1218: NS-NS Remnant

> MOVIE

> dynamical ejecta are slightly equatorially dominated
— favorable for jet launch

> jetis successfully launched, but only after significant energy input
by annihilation

> in the jet beam, annihilation energy is efficiently converted to
relativistic kinetic energy

> however, during expansion the jet beam dissipates almost all kinetic
energy due to interaction with the cocoon and jet head

> amount of energy not sufficient to explain sGRBs




Model TM1_1451: NS-BH Remnant

MOVIE

dynamical ejecta are ignored since they are almost exclusively ejected
In equatorial plane

thermal fireball is successfully launched
annihilation energy is efficiently converted to kinetic energy

jet can expand almost unimpededly

amount of energy sufficient at least to explain low-luminosity sGRBs




Summary

NS mergers could be efficient "heavy element factories"

using the ALCAR code we performed the first multi-group, neutrino-
transport simulations of post-merger BH-torus systems

combined efecta for both reproduce solar pattern in the full range of 90
<A <240 — NS-mergers may well be main productions sites for all of
these elements!

we also followed the relativistic jet expansion

results suggest that annihilation alone is insufficient and that MHD
processes might be indispensable to explain sGRBs from NS-NS
mergers and high-energy sGRBs from NS-BH mergers!

Exciting prospects: Hopefully very soon we will obtain GWs (and
Kilonovae) from NS-NS/BH mergers — will allow us to test our
models!
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Thank you for your attention!
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Comparison Between M1 and Ray Tracing

Neutrino Field Around Torus
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Appendix: Jet expansion in external medium

Jet’s head & contact
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(Bromberg et. al. '11)
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