Tiny but Mighty: Neutrinos and Their Role in Neutron-Star Mergers

Oliver Just Max-Planck-Institut für Astrophysik, Garching

German-Russian Seminar for Space Science Berlin, June 2nd 2016

With: H.-Th. Janka, S. Goriely, M. Obergaulinger,

A. Bauswein, N. Schwarz, R. Ardevol,

R.Bollig, T. Melson, and others

European Research Council Established by the European Commission

Max Planck Institute for Astrophysics

The Fate of Compact Object Binaries

- CBs emit gravitational waves (GW)!
 → orbitial distance decays
 - \rightarrow merger inevitable
- bad news: No NS merger has been safely observed so far, only ~10 NS-NS binaries known, 0 NS-BH binaries known
- good news: orbital decay is measured for the Hulse-Taylor pulsar and precisely confirms prediction by general relativity
- expected merger rate (Abadie 2010):
 ~ 1E-4 ... 1E-6 per year per galaxy
- expected rate of GW observations: 0.1...100 per year
- RECENTLY: First GWs from BH-BH
 merger observed!!!

(aLIGO Hanford, USA)

June 2nd, 2016

Russian-German Worksho

Where are heavy elements (e.g. gold) produced? Origin of ~ half of trans-iron elements still unknown!

Where are heavy elements (e.g. gold) produced? Origin of ~ half of trans-iron elements still unknown!

nucleosynthesis process is basically known: rapid neutron capture process

observed solar r-process abundance

Where are heavy elements (e.g. gold) produced? Origin of ~ half of trans-iron elements still unknown!

nucleosynthesis process is basically known: rapid neutron capture process

observed solar r-process abundance

- BUT: astrophysical site(s) not clearly identified so far!
- → Requirements: High neutron density → high-energy, explosive event → neutrino-interactions crucial
- ejecta from CCSNe: favored for decades, but not neutron-rich enough and too low entropies (at least to produce heaviest elements)
- → ejecta from NS-mergers???

What and how many heavy elements are ejected in which phase of a NS-NS/BH merger?

(Just+ '15, MNRAS 448, 541)

What and how many heavy elements are ejected in which phase of a NS-NS/BH merger?

(Just+ '15, MNRAS 448, 541)

June 2nd, 2016

"ALCAR" Neutrino Transport Module (OJ, Obergaulinger, Janka '15, MNRAS, 453, 3386) *Radiation-hydro with Boltzmann solver too expensive!* Our approach:

→ Two-moment scheme with algebraic Eddington factor (AEF or M1 scheme)

$$E = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \qquad \leftarrow \text{energy density}$$

$$F^{i} = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \, n^{i} \qquad \leftarrow \text{momentum density}$$

$$P^{ij} = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \, n^{i} n^{j} \qquad \leftarrow \text{pressure}$$

$$Q^{ijk} = \int d\Omega \,\mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \, n^{i} n^{j} n^{k}$$

 $\partial_t E + \nabla_j F^j + \nabla_j (v^j E) + (\nabla_j v_k) P^{jk} - (\nabla_j v_k) \partial_\epsilon (\epsilon P^{jk}) = C^{(0)}$ evolution $\partial_t F^i + c^2 \nabla_j P^{ij} + \nabla_j (v^j F^i) + F^j \nabla_j v^i - (\nabla_j v_k) \partial_\epsilon (\epsilon Q^{ijk}) = C^{(1),i}$ equations

 $\begin{array}{rcl}
P^{ij} &=& P^{ij}(E,F^i) \\
Q^{ijk} &=& Q^{ijk}(E,F^i)
\end{array}$ approximate algebraic
closure relations (e.g. "M1 closure")

Dynamical ejecta launched during the merger

NS-NS

NS-BH

(Just et. al. '15)

(Hotokezaka et. al. '13)

Ejecta from the remnant BH-torus system

Combined nucleosynthesis yields

→ PROMPT ejecta (mainly A ~ 140 - 210)

→ DISK + PROMPT ejecta

- → nicely recovers the full mass range A > 90
- → BH-torus ejecta could be significant sources of intermediate mass elements with 90 < A < 140</p>
- Observed scatter for 90 < A < 140 maybe explained by variable ratios of disk and prompt ejecta masses</p>

Gamma-Ray Bursts

- ➔ first detected 1967 by VELA satellites
- since then ~ few 100 suggested possibilities for central engines
- → since BATSE: must be of cosmological origin
- source is moving highly relativistically
- natural suggestion: jet from rotating compact object
- → long bursts (T>2s): connection to death of massive stars
- short bursts (T<2s) still mysterious, most likely from NS mergers

Popular central engine scenarios

neutrino-pair annihilation

- neutrinos tap gravitational energy of disk e+-e- pairs thermalize → thermal fireball
- efficiency of converting gravitational energy into jet energy?
- baryon loading in the funnel?

→ Blandford-Znajek process

- B-field taps rotation energy of central BH
 → Poynting-dominated jet
- efficient only for large-scale poloidal B-fields
- can large-scale fields be produced and sustained? MRI? Dynamo?
- ➔ magnetar spin-down emission
 - B-field taps rotation energy of central NS
 → Poynting dominated jet
 - is dipole model appropriate?
 - consistent with short burst timescale?

(Metzger+ '11)

Is neutrino annihilation alone powerful enough to explain all sGRBs? (Just+ '16, ApJL 816, 30)

previous works mainly handicapped by complexity of radiation-HD

- conditions on the jet: ~10⁴⁸–10⁵⁰ erg and Lorentz factors Γ>10-100
- Are necessary condition(s) fulfilled?:
 - sufficient energy provided by nu-annihilation and / or
 - sufficiently small energy loss during expansion
- What is the impact of the dynamical ejecta on the jet?

Setup of BH-Torus Models

- initial configurations are manually constructed equilibrium tori with properties given by simulations of NS-NS and NS-BH mergers
- dynamical ejecta mapped from SPH merger simulations performed by A. Bauswein
- → special relativistic hydrodynamics with pseudo-Newtonian gravitational potential by Artemova → mimics the ISCO and BH spin
- most dominant (electron) neutrino interactions included:

emission/absorption by nucleons

neutrino-nucleon scattering

neutrino-antineutrino annihilation

- angular momentum transport: Shakura & Sunyaev α-viscosity
- simulations performed in 2D axisymmetry

Model SFHO_145145: NS-NS Remnant

MOVIE

- dynamical ejecta are almost spherical
 not favorable for jet launch
- annihilation deposits thermal energy into dynamical ejecta
- not powerful enough to launch a jet

Model SFHO_1218: NS-NS Remnant

MOVIE

- dynamical ejecta are slightly equatorially dominated
 favorable for jet launch
- jet is successfully launched, but only after significant energy input by annihilation
- in the jet beam, annihilation energy is efficiently converted to relativistic kinetic energy
- however, during expansion the jet beam dissipates almost all kinetic energy due to interaction with the cocoon and jet head
- amount of energy not sufficient to explain sGRBs

Model TM1_1451: NS-BH Remnant

MOVIE

- dynamical ejecta are ignored since they are almost exclusively ejected in equatorial plane
- thermal fireball is successfully launched
- annihilation energy is efficiently converted to kinetic energy
- jet can expand almost unimpededly
- amount of energy sufficient at least to explain low-luminosity sGRBs

Summary

- NS mergers could be efficient "heavy element factories"
- using the ALCAR code we performed the first multi-group, neutrinotransport simulations of post-merger BH-torus systems
- → combined ejecta for both reproduce solar pattern in the full range of 90
 < A < 240 → NS-mergers may well be main productions sites for all of these elements!
- we also followed the relativistic jet expansion
- results suggest that annihilation alone is insufficient and that MHD processes might be indispensable to explain sGRBs from NS-NS mergers and high-energy sGRBs from NS-BH mergers!

→ Exciting prospects: Hopefully very soon we will obtain GWs (and Kilonovae) from NS-NS/BH mergers → will allow us to test our models!

Thank you for your attention!

Comparison Between M1 and Ray Tracing

Neutrino Field Around Torus

June 2nd, 2016

Russian-German Workshop

Appendix: Jet expansion in external medium

(Bromberg et. al. '11)

Russian-German Workshop