Probing planetary interiors by spacecraft orbital observations

Alexander Stark, Jürgen Oberst, Frank Preusker, Klaus Gwinner, Gregor Steinbrügge, Hauke Hussmann

Introduction

- How to study interiors of terrestrial planets and satellites?
 - Seismicity
 - Gravity field
 - Radar Sounding
 - Rotation
 - Tidal deformation
- Which instruments can be used?
 - Seismometer (Apollo@Moon | InSight@Mars)
 - Radio Science (GRACE@Earth | GRAIL@Moon, etc.)
 - Subsurface Radar (RIME@JUICE)
 - Laser Altimeter (MESSSENGER@Mercury | LRO@Moon)
 - Cameras (Dawn@Ceres/Vesta | Rosseta@GC)

Gravity anomalies in Earth's gravity field from GRACE data (Credit: NASA)

Introduction

Water

Ocean

- spacecraft observations: Mariner 10 & MESSENGER
- high density:

 5425 kg/m^3

- dipole magnetic field
- distance to Sun:

46 – 70 Mio. km

orbital period

88 days

rotation period

59.6 days

Mercury color image, MESSENGER FlyBy 1 (14.01.08) Image credit: NASA/JHU APL/ CIW

3:2 Spin-orbit resonance

 rotation is coupled to the orbital motion through strong tidal torque exerted by the Sun

 $3 \times rotation period$

= 2 × orbit period

3 × 58.65 days = 2 × 87.98 days

Longitudinal Librations

- Small librations (rotational oscillations) in longitude on orbital period
- Mantle (black line) is in some places ahead or lagging the uniform rotation of the core (red line)
- Amplitude of librations linked to interior structure (450 m at equator)
- → High libration amplitude indicates decoupled mantle and core

Peale's Experiment

- Peale experiment (devised almost a half century ago by Stanton J. Peale, Icarus, 1972)
- inference of Mercury's interior from measurements of its gravity field and rotation by an orbiting spacecraft
- relevant rotational parameters are the amplitude of physical librations, the obliquity of rotation axis, and gravity field asymmetry

$$\left(\frac{C_m}{B-A}\right) \left(\frac{B-A}{MR^2}\right) \left(\frac{MR^2}{C}\right) = \frac{C_m}{C} < 1$$

libration
amplitude × gravity
field × obliquity
spin axis

A < B < C principal axes of inertia of the planet

 C_m polar moment of inertia of the mantle

MESSENGER Mission

- NASA Discovery Mission
- orbit insertion: 18.03.2011
 (after a 6 year journey)
- first s/c orbiting Mercury (Mariner 10 flybys in 1974)
- 4 years of operation (04.2015)
- elliptic, polar orbit
- 7 scientific instruments MDIS (Mercury Dual Imaging System) MLA (Mercury Laser Altimeter)

Image credit: NASA/JHU APL/ CIW

MESSENGER Data – Mercury Laser Altimeter

coverage after 3 years of observations

MESSENGER Data – Imaging System

Beethoven Basin

Preusker et al., LPSC, 2012

01.05.2016

Mercury

Co-registration Method

 laser altimeter profiles and digital terrains models derived from stereophotogrammetry (stereo DTMs) form complementary data sets

Stark et al.

GRL

2015

Co – registration method

 minimization of height differences between laser spots r_{LA} and stereo DTM r_{DTM} in a least-squares sense

$$\sum [r_{\text{DTM}}(\lambda_{\text{LA}}(\boldsymbol{p}), \phi_{\text{LA}}(\boldsymbol{p})) - r_{\text{LA}}(\boldsymbol{p})]^2 \to \min.$$

DTM heights @ location of laser spot – laser spot heights

- weighting of observations by the uncertainty of laser altimeter measurement (spacecraft altitude, off-nadir pointing)
- non-linear model is solved iteratively until improvement in the RMS height residuals was at the centimeter level

Rotational parameters

rotational parameter	literature value	Stark et al., 2015 (Celest. Mech. Dyn. Astr.) [predicted]	Stark et al., 2015 (GRL) [measured]
rotation rate	6.1385025 °/day ^a	6. 1385068 °/day	6. 13851804°/day
obliquity	$2.04 \pm 0.08'$ ^b	-	$2.029 \pm \mathbf{0.085'}$
libration amplitude	38.5 ± 1.6" ^b	-	$\textbf{38.9} \pm \textbf{1.3''}$

^a IAU report (Archinal et al., Celest. Mech. Dyn. Astr., 2011) ^b Earth-based radar (Margot et al., JGR, 2012)

- → Earth-based observations of Mercury's rotation (Margot et al., 2012) could be confirmed
- → Mercury rotates faster than expected! Maybe long-period libration cycle of (12 years) caused by perturbations of Mercury's orbit by Jupiter

Implications on interior - Moments of inertia

- rotational parameters provide constrains on moments of inertia of the planet
 - from libration amplitude \rightarrow equatorial asymmetry

$$\frac{B-A}{C_{\rm m}} = (2.206 \pm 0.074) \times 10^{-4}$$

– from obliquity \rightarrow polar moment of inertia of the whole planet

$$\frac{C}{MR^2} = 0.346 \pm 0.011$$

- from gravity field (Mazarico et al., JGR, 2014) \rightarrow J₂ and C₂₂
- → from all values one can compute the ratio between the polar moment of inertia of the planet and the mantle (Peale's experiment)

$$\frac{C_{\rm m}}{C} = 4C_{22} \frac{MR^2}{C} \frac{C_{\rm m}}{B-A} = 0.421 \pm 0.021$$

Implications on Mercury's interior

- homogeneous layers without compression
- results in agreement with more realistic calculation (Hauck et al., JGR, 2013)

 \rightarrow core makes up 70% of mass and about 50% of volume of Mercury

- spacecraft observations:
 Voyager & Galileo
- Iow density:

 1939 kg/m^{3}

- dipole magnetic field
- distance to Jupiter:

1 Mio. km

orbital and rotation period:

7.15 days

Laplace resonance

 Coupled orbital motion of Jovian moons

Ganymede: 1 revolution

- = Europa: 2 revolutions
- = Io: 4 revolutions
- Forced eccentricities of Io and Europa
- High tidal dissipation in interior → volcanism on Io, water oceans on Europa and Ganymede?

Credit: Wikimedia Commons

Tides

- Moon's shape deforms during one orbital cycle
- Deformation can be expressed in terms of Love numbers:
 k₂: gravity field variation
 h₂: shape deformation
 l₂: horizontal deformation
- measurement of the tidal amplitude gives Love numbers, which are dependent on interior structure and rheology

Credit: http://www.astronomynotes.com/solarsys/s14.htm

Ganymede Tides

JUICE Mission (JUpiter ICy moons Explorer)

- ESA L-class mission
- Launch: 2022
- Arrival at Jupiter: 2030
- Ganymede orbit: 2032
 - polar, circular orbit (500 km)
- 11 scientific instruments

GALA (GAnymede Laser Altimeter)

Image credit: ESA

Ganymede JUICE Data – Ganymede Laser Altimeter

Image credit: NASA/DLR

Ganymede Laser profiles – Cross over

Measurement of Tidal Amplitude

$$du = \frac{h_2}{g} (\Phi_1(r, \theta, \phi, t_1) - \Phi_2(r, \theta, \phi, t_2))$$

Observed range = difference

Tidal potential at t1

- uncertainty of h_2 measurement: $\Delta h_2 = 0.026$
- expected value h₂ = 1.3
 → 2 % uncertainty

Steinbrügge et al., PSS, 2015

Ganymede Implications on interior structure

- thickness of the ice shell can be measured to ± 20 km
- confirm existence of water ocean

Image credit: ESA

Thank you for

your attention!

