

Faculty of Physics and Astronomy Theoretical Physics IV

Kinetic instabilities and fluctuations in collisionless plasmas

Sergei Vafin

In collaboration with: R. Schlickeiser, P. H. Yoon, and M. Lazar

Future perspectives of space science and space exploration: Berlin 1-4 June 2016

Solar wind at 1 AU

Parameter	Corona	$\approx 0.1 \ \mathrm{AU}$	1 AU
n, $\rm cm^{-3}$	10^{9}	10^{7}	10
T, K	3×10^6	10^{6}	10^{5}
B_0, G	10	0.1	$5 imes 10^{-5}$
ρ_e, cm	5	3×10^2	$1.8 imes 10^5$
$\lambda_{D,e}, \mathrm{cm}$	0.37	2.1	$6.9 imes 10^2$
$\nu_{ee}, \mathrm{s}^{-1}$	2.6	0.15	4.8×10^{-6}
$\lambda_{ee}, \mathrm{AU}$	1.3×10^{-6}	2×10^{-5}	0.6
$\omega_{p,e}, \mathrm{s}^{-1}$	2×10^9	2×10^8	2×10^{5}
$\Omega_e, \mathrm{s}^{-1}$	2×10^8	2×10^6	10^{3}
			\rightarrow

Solar wind temperature anisotropy at 1 AU

Temperature anisotropy of plasma component "a": $A_a = \frac{T_{\perp,a}}{T_{\parallel,a}}$

Parallel plasma beta of plasma component "a": $\beta_{\parallel,a} = \frac{p_a}{p_M} = \frac{n_a T_{\parallel,a}}{B^2/4\pi}$

Observed temperature anisotropy of solar wind protons at 1 AU

P. Hellinger, P. Travnicek, J. C. Kasper, and A. J. Lazarus. J. Geophys. Res., 33:L09101, 2006.

Observed temperature anisotropy of solar wind electrons at 1 AU

S. Stverak, P. Travnicek, and M. Maksimovic et. al. J. Geophys. Res., 113:A03103, 2008.

Bi-Maxwellian velocity distribution function

$$f_a(v_{\perp}, v_z) = \frac{1}{\pi^{3/2} u_{\parallel,a} u_{\perp,a}^2} \exp\left(-\frac{v_{\perp}^2}{u_{\perp,a}^2}\right) \exp\left(-\frac{v_z^2}{u_{\parallel,a}^2}\right) \qquad \qquad u_{\perp,a} = \sqrt{2T_{\perp,a}/m_a}$$
$$u_{\parallel,a} = \sqrt{2T_{\parallel,a}/m_a}$$

Counterstreaming bi-Maxwellian velocity distribution function

$$\begin{split} F_{a}\left(v_{\perp}, v_{z}\right) &= F_{a,\perp}\left(v_{\perp}\right) \sum_{s} \epsilon_{a,s} F_{a,z}\left(v_{z}\right) \\ F_{a,\perp}(v_{\perp}) &= \frac{1}{\pi u_{\perp,a,s}^{2}} \exp\left(-\frac{v_{\perp}^{2}}{u_{\perp,a,s}^{2}}\right) \\ F_{a,z}(v_{z}) &= \frac{1}{\pi^{1/2} u_{\parallel,a,s}} \exp\left(-\frac{\left(v_{z} - V_{a,s}\right)^{2}}{u_{\parallel,a,s}^{2}}\right) \\ \end{split}$$

E. Marsch. Living Rev. Solar Phys., 3:1, 2006.

Firehose and mirror instabilities

Fluctuations in the solar wind at 1 AU

S. D. Bale, J. C. Kasper, G. G. Howes, and et. al. *Phys. Rev. Letters*, 103:211101, 2009.

Total magnetic field fluctuation spectrum and helicity for parallel wave vectors in a magnetized Maxwellian plasma

Vafin, S., Schlickeiser, R., & Yoon, P. H. 2016, Phys. Plasmas, 23, 052106

Total intensity of magnetic field fluctuations

	$T=5.4 \times 10^2 \text{ K}$	$T=5.4 \times 10^3 \text{ K}$
k_{min}	$10^{-2}k_i$	$10^{-2}k_i$
k_{max}	$10^{2}k_{i}$	$10^{2}k_{i}$
w_E^R , erg/cm ³	2×10^{-37}	1.8×10^{-37}
w_B^R , erg/cm ³	9.1×10^{-32}	8.8×10^{-32}

		$T=5.4 \times 10^2 \text{ K}$	$T=5.4 \times 10^3 \text{ K}$
	$\Delta B_L/B_0$	6.8×10^{-13}	8×10^{-13}
4	$\Delta B_R/B_0$	6.9×10^{-12}	6.8×10^{-12}

$$B_0 = 4.3 \times 10^{-5} G$$

 $k_i = \omega_{p,p}/c = 1.38 \times 10^{-7} \text{ cm}^{-1}$

S. D. Bale, J. C. Kasper, G. G. Howes, and et. al. *Phys. Rev. Letters*, 103:211101, 2009.

Vafin, S., Schlickeiser, R., & Yoon, P. H. 2016, Phys. Plasmas, 23, 052106

Amplification of fluctuations by plasma instabilities

Figure 6. Same as Fig. 5, but A = 2. Black: $t = 1.6 \times 10^4$ s, $\Delta(10^{-3}k_i, 1.5k_i) \simeq 1.7 \times 10^{-12}$. Blue: $t = 1.6 \times 10^5$ s, $\Delta(10^{-3}k_i, 1.5k_i) \simeq 4.7 \times 10^{-8}$. Red: $t = 3.6 \times 10^5$ s, $\Delta(10^{-3}k_i, 1.5k_i) \simeq 0.1$.

Figure 9. Same as Fig. 8, but A = 0.5. Black: $t = 4.3 \times 10^4$ s, $\Delta(10^{-3}k_i, 2k_i) \simeq 6.6 \times 10^{-12}$. Blue: $t = 4.3 \times 10^5$ s, $\Delta(10^{-3}k_i, 2k_i) \simeq 1.7 \times 10^{-8}$. Red: $t = 1.1 \times 10^6$ s, $\Delta(10^{-3}k_i, 2k_i) \simeq 0.1$.

$$I_B^{L,R}(k,t) = \frac{\alpha_{L,R}(k)}{2\gamma(k)} \left(e^{2\gamma(k)t} - 1\right)$$

S. Vafin, R. Schlickeiser, and P. H. Yoon, submitted to ApJ

Summary and conclusions

1. Instabilities:

1.1 Counterstreams have a dramatic effect on the instability conditions comparing to bi-Maxwellian plasmas without counterstreams.

1.2 The new results point out to a full potential explanation of the observed temperature anisotropy of the solar wind at 1 AU.

2. Fluctuations:

2.1 Electromagnetic fluctuations in an isotropic magnetized Maxwellian plasma for parallel wave vectors: the ratio $\delta B/B_0$ can be as high as 10⁻¹².

2.2 The fluctuations can be drastically amplified by plasma instabilities up to level $\delta B/B \sim 0.1$ on time scales less than the traveling time of the solar wind from the Sun to 1 AU.

Instability conditions

Fluctuation theory

Kinetic equation for electric field fluctuations:

$$\frac{\partial S_{ij}^s(\vec{k})}{\partial t} = \alpha_{ij}^s(\vec{k}) - \mu_{ij}^s(\vec{k})S_{ij}^s(\vec{k})$$

$$\alpha_{ij}^{s}(\vec{k}) = \frac{4\pi K_{ij}[\vec{k}, \varpi_{s}(\vec{k})]}{\left|\frac{\partial \Lambda[\vec{k}, \varpi_{s}(\vec{k})]}{\partial \varpi_{s}(\vec{k})}\right|^{2}}, \quad \mu_{ij}^{s}(\vec{k}) = -2\Gamma_{s}(\vec{k}).$$

Magnetic field fluctuations:

$$S_{ij}^{Bs}(\vec{k}) = \langle \delta B_i^s(\vec{k}) \delta B_j^{s*}(\vec{k}) \rangle = \frac{c^2}{|\omega|^2} \epsilon_{iab} \epsilon_{jcd} k_a k_c S_{bd}^s(\vec{k})$$

R. Schlickeiser and P. H. Yoon, Phys. Plasmas, 22, 072108 (2015)

Amplification of fluctuations by plasma instabilities

$$I_B^{L,R}(k,t) = \frac{\alpha_{L,R}(k)}{2\gamma(k)} \left(e^{2\gamma(k)t} - 1\right)$$

S. Vafin, R. Schlickeiser, and P. H. Yoon, submitted to ApJ

Ordinary (O-) mode instability

Alfvén instability

Fluctuation spectrum of the Left-handed polarized waves

Vafin, S., Schlickeiser, R., & Yoon, P. H. 2016, Phys. Plasmas, 23, 052106

Fluctuation spectrum of the Right-handed polarized waves

 $\beta = 0.1$

 $V_A/c = 10^{-4}$

 $k_i = \omega_{p,p}/c = 1.38 \times 10^{-7} \ {\rm cm}^{-1}$

Vafin, S., Schlickeiser, R., & Yoon, P. H. 2016, Phys. Plasmas, 23, 052106