Результаты атмосферной коррекции данных космомониторинга высокотемпературных аномалий

С.В. Афонин, В.В. Белов

Институт оптики атмосферы СО РАН, 634055 Томск, пр. Академический, 1 E-mail: <u>belov@iao.ru</u>

В данной работе по спутниковым измерениям *NOAA* восстановлены яркостные характеристики двух малоразмерных стационарных высокотемпературных объектов (расположенных на территории Томской области) с использованием оперативной информации о реальных оптико-метеорологических и геометрических условиях спутниковых наблюдений.

Введение

При дистанционном зондировании подстилающей поверхности из космоса решается актуальная задача оперативного обнаружения очагов пожаров в лесах и на промышленных объектах. При этом важно обнаружить пожар еще на ранней стадии развития (площадь менее 5–10 га), когда его ликвидация ещё не требует больших усилий. В настоящее время для глобального мониторинга лесных пожаров широко используются приборы NOAA/AVHRR со спектральными каналами $\lambda = 0.63$ мкм (№1), 0.84 мкм (№2), 1.6 мкм (№3а), 3.75 мкм (№3), 10.8 мкм (№4) и 12.0 мкм (№5) а также прибор EOS/MODIS (36 спектральных каналов), имеющие максимальное пространственное разрешение (IFOV) порядка 1 км². В этом случае требуется применение надежных алгоритмов автоматического распознавания на спутниковых ИК-изображениях малоразмерных высокотемпературных аномалий площадью менее 0.1% от IFOV. Для достижения максимальной точности решения этой задачи целесообразно проведение атмосферной коррекции спутниковых инфракрасных измерений с использованием информации о метеорологических и аэрозольных характеристиках атмосферы с учетом геометрии наблюдений.

Анализ литературных данных об алгоритмах детектирования очагов пожаров из космоса [см., например 1–3] позволяет сделать следующий вывод. В большинстве применяемых на практике алгоритмах детектирования пожаров используется решающее правило $P\{x\} > dP$, где величина dP является пороговым значением функции $P\{x\}$, а ее параметры $\{x\}$ обычно являются спутниковыми измерениями альбедо и яркостных температур (или их функциями). Значения порога dP устанавливаются фиксированными или могут быть определены на основе статистических характеристик, вычисленных для $\{x\}$ в окрестности потенциального пожара. В наиболее простом варианте в качестве $\{x\}$ используют яркостную температуру T_3 3-его канала ($\lambda = 3.75$ мкм) и разницу температур dT_{34} в каналах №3 и №4. Однако, используемые на практике алгоритмы фактически не учитывают в явном виде оптико-геометрические условия проведения спутниковых измерений.

В Институте оптики атмосферы СО РАН проводятся работы по изучению искажающего влияния атмосферы на результаты мониторинга подстилающей поверхности из космоса [см., например, 4–9]. В данной работе сделана попытка определения по спутниковым измерениям *NOAA* яркостных характеристик двух расположенных на территории Томской области малоразмерных стационарных высокотемпературных объектов с использованием оперативной информации о реальных оптико-метеорологических и геометрических условиях спутниковых наблюдений.

Восстановление из космоса яркостных характеристик малоразмерного очага пожара

Сформулируем из [9] основные соотношения алгоритма восстановления из космоса яркостных характеристик малоразмерного очага пожара. Пусть на некотором участке подстилающей поверхности (ПП) площадью S_0 , соответствующей углу поля зрения радиометра, и температурой T_0 есть малоразмерный очаг пожара площадью S_F ($S_F \ll S_0$) и температурой $T_F > 600K$.

Интенсивность І, восходящего потока теплового излучения можно записать следующим образом:

 $I_{\lambda} = B_{\lambda}(T_{\lambda}), \qquad I_{\lambda} = I_{HOT} + I_{BG}, \quad (1)$

где $B(T_{\lambda})$ – функция Планка, T_{λ} – радиационная температура теплового излучения; I_{HOT} – интенсивность ослабленного атмосферой излучения очага, I_{BG} – интенсивность излучения фона.

Вклад теплового излучения в измеряемую интенсивность *I*^λ можно записать в виде:

$$I_{HOT} = B_{HOT} P_{\lambda}, \quad B_{HOT} = R(\theta) \varepsilon_{\lambda}^{F} B_{\lambda}(T_{F}), R(\theta) = S_{F}/S_{0}(\theta),$$

где $P_{\lambda} = exp\{-\tau_{\lambda}/cos(\theta)\}$ – пропускание атмосферы, τ_{λ} – оптическая толщина атмосферы, θ – угол сканирования оси прибора, $\varepsilon_{\lambda}^{F}$ – излучательная способность теплового источника.

Вклад фона в измеряемую интенсивность I_{λ} можно представить в виде суммы четырех слагаемых:

$$I_{BG} = I_{SRF} + I_{ATM} + I_{RFL} + I_{SCT},$$
(2)

где I_{SRF} – вклад ослабленного атмосферой теплового излучения поверхности, I_{ATM} – вклад теплового излучения атмосферы, I_{RFL} – вклад отраженных от поверхности падающих на нее потоков теплового и солнечного излучений, I_{SCT} – вклад рассеянных атмосферой потоков теплового и солнечного излучений.

Отметим, что

$$I_{SRF} = (1 - R(\theta)) \varepsilon_{\lambda}^{0} B_{\lambda}(T_{0}) P_{\lambda}, \qquad (3)$$

где $\varepsilon_{\lambda}^{0}$ – излучательная способность ПП, T_{0} – фоновая температура ПП.

Для иллюстрации приведенных выше физических характеристик в таблице 1 представлены результаты численного моделирования для условий наблюдений в Томске (май-сентябрь 1999 г.).

Visibility (Vis)	I _{BG}	P_{λ}	$ au_{\lambda}^{ m aer}$	Относительный вклад в I _{BG} (%)		
VISIDINUY (VIS)				$I_{\rm SRF}$ + $I_{\rm ATM}$	$I_{ m RFL}$	I _{SCT}
mol (no aerosol)	0.46435	0.74648	0	89.77	10.22	0.02
40 km, <i>rur</i>	0.46510	0.73267	0.01867	88.58	9.95	1.47
40 km, <i>urb</i>	0.46356	0.72971	0.02272	88.96	9.83	1.21
20 km, <i>rur</i>	0.46592	0.71791	0.03902	87.35	9.68	2.97
10 km, <i>rur</i>	0.46691	0.68934	0.07963	85.07	9.19	5.74
5 km, <i>rur</i>	0.46854	0.64510	0.14596	81.33	8.45	10.21
2 km, <i>rur</i>	0.47356	0.53298	0.33688	71.06	6.67	22.27
2 km, <i>urb</i>	0.45236	0.49339	0.41407	77.14	5.25	17.60
mol vs 2 км <i>rur</i>	+1.98 %	- 28.60%				
mol vs 2 км <i>urb</i>	- 2.58 %	- 33.90%				

Таблица 1.

С точки зрения корректного учета оптико-геометрических условий наблюдений задачу обнаружения из космоса малоразмерного высокотемпературного объекта следует решать путем восстановления в 3-ем канале AVHRR ($\lambda = 3.75$ мкм) интенсивности B_{HOT} :

$$B_{HOT} = (I_3 - I_{BG}) / P_3, \tag{4}$$

где I_3 – измеряемая интенсивность теплового излучения, а величины I_{BG} и P_3 вычисляются на основе априорной оптико-метеорологической информации.

В этом случае решающее правило обнаружения очага лесного пожара из космоса $B_{HOT} > dB$ будет независимым от оптико-геометрических условий наблюдений. Для достижения этой цели необходима информация о характеристиках подстилающей поверхности, об оптических и метеорологических параметрах атмосферы.

Результат атмосферной коррекции спутниковых данных в задаче обнаружения малоразмерных высокотемпературных объектов из космоса

Рассмотренный в разделе 1 подход к атмосферной коррекции результатов мониторинга из космоса высокотемпературных объектов (BTO) был применен на практике для обработки спутниковых данных NOAA/AVHRR. На рисунке 1 представлен фрагмент изображения, полученного утром (в 07:56 местного времени) 21 мая 2001 года со спутника *NOAA*–14.

Рис. 1. Фрагмент спутникового изображения двух высокотемпературных объектов L1 и L2, P0 – точка характеризуется безоблачной ситуацией; спутник NOAA–14, дата – 21.05.2001, местное время – 07:56; спектральные каналы AVHRR – 0,63 мкм (№1) и 3,75 мкм (№3)

На фрагменте (канале 3) в точках *L1* и *L2* хорошо наблюдаются два стационарных высокотемпературных объекта (petroleum gas flare). Наблюдение этих объектов из космоса характеризуется достаточно сложными оптическими условиями, так как в окрестностях точек *L1* и *L2* присутствует

разорванная облачность. При этом, из визуальных данных следует отметить более высокую оптическая плотность облачности именно вокруг точки *L1*.

На изображении также выделена точка *P0*, которая характеризуется безоблачными условиями спутниковых измерений. Полученные в её окрестности данные позволяют осуществить оценки метеорологических параметров атмосферы (вертикальные профили температуры и влажности) и фоновой температуры подстилающей поверхности.

Характеристики измерений в точках *L1*, *L2* и *P0* (альбедо *A1*, *A2* и яркостные температуры *T3*, *T4*, *T5*) представлены в таблице 2.

Tourr	Характеристики измерений						
ТОЧКИ	A1, %	A2, %	Т3, К	Т4, К	Т5, К		
	8.38	8.80	293.03	259.25	256.89		
L1	8.59	8.79	273.72	260.06	258.19		
	1.35	1.20	4.51	3.27	3.16		
	5.77	6.40	322.61	268.42	266.16		
L2	5.78	6.09	276.91	266.80	264.84		
	1.06	1.11	8.03	2.61	2.50		
	3.02	3.84	281.34	280.00	278.98		
P0	2.98	3.73	280.22	279.86	278.93		
	0.11	0.09	0.46	0.15	0.14		

Таблица 2. Характеристики измерений прибором AVHRR/NOAA для точек L1, L2 и P0

Для каждой точки вторая строка – это среднее значение характеристики (для «окна» 9×9 пикселей) и третья строка – её СКО.

Анализ данных таблицы 2 совместно с [1-3] позволяет сделать вывод, что детектирование объекта L2 за счет высокого значения яркостной температуры $T_3 = 322$ К будет успешным для большинства используемых на практике спутниковых алгоритмов детектирования очагов пожаров. В то же время автоматическое обнаружение объекта L1 не может быть реализовано из-за достаточно низкого значения T_3 = 293К и относительно высокой величины альбедо $A_1 = 8.38$ % в канале 1 AVHRR.

Тематическая обработка представленного на рис.1 фрагмента спутникового изображения осуществлялась следующим образом.

1. Для задания параметров метеорологического состояния атмосферы были использованы ближайшие к точке *P0* вертикальные профили температуры и влажности (рис.2), полученные на основе данных атмосферного зондировщика TOVS/NOAA.

Рис. 2. Вертикальные профили метеорологических параметров атмосферы в окрестности высокотемпературных объектов L1 and L2

2. Оценка фоновой температуры подстилающей поверхности (ТПП) T_0 осуществлялась в точке *P0* одноканальным (используя выражение 2) с использованием спутниковых метеорологических данных *TOVS/NOAA* и двухканальным способом [11] по инфракрасным измерениям 4-го и 5-го каналов AVHRR. В результате было получено значение $T_0 \approx 283$ К.

3. По измерениям AVHRR, используя модели атмосферного аэрозоля и облачности [12] совместно с методикой [9, 10], были определены оптические параметры атмосферы.

4. Выполнены оценки характеристик I_{BG} и P_3 , требуемых для восстановления яркостных характеристик ВТО и определены значения B_{HOT} (см. выражение 4) в точках L1 и L2 (табл. 3):

Точки	I ₃ интенсивность излучения объекта мВт/(м ² стер см ⁻¹)	тз ^{аег} аэрозольная оптическая толщина	Р ₃ функция пропускания	I _{BG} интенсивность излучения фона мВт/(м ² стер см ⁻¹)	В _{нот} интенсивность излучения объекта мВт/(м ² стер см ⁻¹)
L1	0,5032	2,64	0,0545	0,2602	4,4587 (355,5 K)
L2	1,6500	1,11	0,2511	0,2965	5,3903 (358,8 K)

Таблица 3. Результаты восстановления интенсивности теплового излучения ВТО

Восстановленные значения B_{HOT} эквивалентны значениям радиационной температуры излучения, превышающим 355К (82°С), что позволяет уверенно подтвердить наличие высокотемпературных объектов как в точке L2, так и в точке L1.

Восстановленные значения B_{HOT} превышают уровень насыщения для канала 3 прибора NOAA/AVHRR. Поэтому для оценки точности восстановления B_{HOT} нами был проведен анализ спутниковых данных прибора MODIS (Moderate Resolution Imaging Spectroradiometer), у которого порог насыщения для канала 21 ($\lambda = 3.96 \,\mu\text{m}$) превышает 400К. Анализ данных MODIS для условий высокой прозрачности показал, что измеряемые значения T_{λ} для объектов L1 and L2 близки между собой при близких оптических условиях наблюдения, а их величина может достигать 355-360 К. Эти данные позволяют сделать вывод о том, что восстановление B_{HOT} было осуществлено с хорошей точностью.

Заключение

Таким образом, несмотря на сложные оптико-геометрические условия наблюдений, за счет проведения атмосферной коррекции удается решить проблему автоматического обнаружения высокотемпературных объектов типа *L1*, если:

 оценить на основе наземных[и спутниковых данных реальную на момент проведения спутниковых измерений исходную информацию (оптико-метеорологические параметры атмосферы, значения фоновой ТПП);

вычислить методами численного моделирования на основе исходной оптико-метеорологической информации требуемые характеристики (1) – (3);

• определить из выражения (4) интенсивность высокотемпературного объекта.

Литература

1. Спутниковый мониторинг лесных пожаров в России. Итоги. Проблемы. Перспективы = Satellite Monitoring of Forest Fires in Russia. Results. Problems. Perspectives // СО РАН. ИОА. ГПНТБ. Ред. В.В. Белов // Новосибирск, 2003. Сер. Экология. Вып. 70. 135 с.

- Kaufman Y.J., Justice C.O. MODIS ATBD: Fire Products (Version 2.2, Nov. 10, 1998), EOS ID#2741, 1998. 77 p.
- 3. Boles S.H., Verbyla D.L. Comparison of three AVHRR-based fire detection algorithms for Interior Alaska // Remote Sensing of Environment, 2000. Vol.72. № 12. P.1–16.
- 4. *Афонин С.В.* Разработка и применение атмосферной радиационной модели для определения температуры поверхности океана по данным спутникового зондирования: Дис. ... канд. ф-м. н. // Томск, 1987. 192 с.
- 5. Афонин С.В., Белов В.В., Макушкина И.Ю. Моделирование рассеянного аэрозолем восходящего теплового излучения с учетом температурных неоднородностей на поверхности. Часть 3. Мелкомасштабные высокотемпературные аномалии // Оптика атмосферы и океана, 1997. Т. 10. № 2. С.184–190.
- 6. Белов В.В., Афонин С.В., Гриднев Ю.В., Протасов К.Т. Тематическая обработка и атмосферная коррекция аэрокосмических изображений // Оптика атмосферы и океана. 1999. Т. 12. № 10. С. 991–1000.
- Belov V.V., Afonin S.V. Distorting effect of the atmosphere in satellite monitoring of small-sized hightemperature anomalies. // Proceedings of International Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII (AeroSense 2002). Orlando, USA, 2002. Proc. SPIE. Vol. 4725. P. 471–478.
- Белов В.В., Афонин С.В. Роль атмосферной коррекции в задаче космомониторинга малоразмерных (subpixel) высокотемпературных объектов на подстилающей поверхности // Международный симпозиум стран СНГ по атмосферной радиации "МСАР-2". СПб., 2002. С. 96–97.
- 9. Афонин С.В., Белов В.В. Информационно-методические основы построения эффективных систем спутникового мониторинга лесных пожаров // Вычисл. технологии. 2003. Т. 8, спец. вып. С. 35–46.
- 10. Афонин С.В., Белов В.В., Белан Б.Д., Панченко М.В., Сакерин С.М., Кабанов Д.М. Сравнение спутниковых (AVHRR/NOAA) и наземных измерений характеристик атмосферного аэрозоля // Оптика атмосферы и океана, 2002. Т.15. № 12. с. 1118–1123.
- 11. Price, J. C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer // Journal of Geophysical Research, 1984. 89, 7231-7237.
- 12. Kneizys F. X., Shettle E. P., Anderson G. P., Abreu L. W., Chetwynd J. H., Selby J. E. A., Clough S. A., Gallery W. O. User Guide to LOWTRAN-7, ARGL-TR-86-0177. ERP № 1010 // Hansom AFB, MA 01731.