Идентификация фазового состояния воды в облаках

В.И. Сячинов, А.К. Городецкий

Институт космических исследований РАН, 117997 Москва, Профсоюзная, 84/32 E-mails: gora@iki.rssi.ru

В 2004 - 2005 гг. проведены наземные измерения яркости облаков фотометром в области спектра 0.91 - 1.065 мкм. Приводятся результаты определения фазового состояния воды в облаках, дифференцированного по величинам коэффициентов относительной спектральной яркости облаков в полосе поглощения воды 0.97 мкм и льда 1.03 мкм.

Исследования фазового состава облаков дистанционными методами осуществляются в инфракрасном (ИК) и микроволновом (МКВ) диапазонах спектра [1, 2]. В этих исследованиях критериями выделения преобладающего состояния воды в облаках являются соотношения радиационных и радиояркостных температур в спектральных каналах поглощения капельной воды и льда. Проведение синхронных измерений в ИК и МКВ - диапазонах спектра реализуются преимущественно в комплексных экспериментах. Исследования оптических свойств облаков различных типов в ближнем ИК-диапазоне спектра основываются на температурном сдвиге полос поглощения воды и льда при изменении фазового состояния облачных частиц [3, 4].

Наибольший сдвиг этих полос имеет место в интервалах спектра 0.97 - 1.03 мкм, 1.4 - 1.7 мкм и 1.9 - 2.1 мкм. Первоначально со спутника "Космос -320" были проведены измерения отраженной облаками солнечной радиации в полосе поглощения льда 1.03 мкм, интервале сравнения 0.951 мкм и радиационной температуры T_r в области спектра 10.5 - 11.5 мкм [10]. На рис. 1 приведена регрессия между отношением коэффициентов яркости R_{03} = $R(\lambda=0.951)/R(\lambda=1.03)$ и радиационной температурой верхней границы облаков T_r Здесь $R(\lambda=0.951)$ и $R(\lambda=1.03)$ - коэффициенты яркости в интервалах 0.951 и 1.03 мкм.

$$R(\lambda) = \pi B(\lambda, \varphi, \theta) / S_0(\lambda) \cos\theta$$

Здесь S_0 (λ) -поток излучения от Солнца, θ - угол падения солнечных лучей, $B(\lambda, \phi, \theta)$ измеренная яркость в направлении угла рассеяния ϕ .

Из приведенных на рис.1 данных следует, что облакам с отношением $R_{03} > 1$ соответствует область отрицательных значений температуры. При этом значения R_{03} изменялись от 0,4 до 1,4. В результате этих измерений было обнаружено заметное расхождение измеренных и модельных коэффициентов яркости в диапазоне длин волн 0,95-1,03 мкм. Рассмотрение возможных причин усиления поглощения в облаках, коррелированное с спектральным ходом поглощения воды, длительное время не приводило к законченному решению. При этом надо принимать во внимание, что область спектра с длинами волн менее 0,9 мкм является более освоенной и удобной для измерений, чем ближний ИК-диапазон.

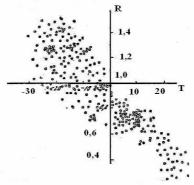


Рис. 1. Регрессия между отношением коэффициентов яркости R_{03} = $R(\lambda$ =0,951)/ $R(\lambda$ =1,03) и радиационной температурой верхней границы облаков T_r

Отметим, что измерения рассеянного облаками излучения в диапазоне до 0,8 мкм [4] обнаруживают поглощение солнечного излучения, вызванное твердыми нерастворимыми компонентами и продуктами сгорания органического топлива. Измерения коэффициентов яркости облаков с высотных самолетов подтверждают возможность разделения ледяных перистых и слоисто-кучевых облаков, основанного на фазовом сдвиге полос воды и льда [5]. Однако данные [5] не включают других распространенных типов облачности верхнего, среднего и нижнего ярусов. Размеры и формы ледяных частиц в перистых и высокослоистых облаках сильно варьируют. Для сопоставления оптических свойств воды и льда в табл. 1 приводятся значения коэффициентов поглощения вещества в сплошном слое.

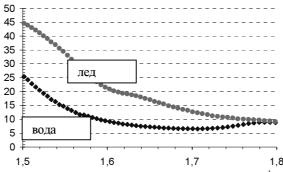
Таблица 1. Коэффициенты поглощения воды и льда

Фаза	Длина волны, мкм				
	0,97	0,98	1,01	1,03	1,065
Вода k, см ⁻¹	0,482	0,482	0,352	0,239	0,148
Лед k, см ⁻¹	0,119	0,143	0,249	0,284	0,212

Значительное влияние на вариации коэффициента яркости облаков оказывают альбедо единичного рассеяния, оптическая толщина и индикатриса рассеяния, а также условия измерений - углы падения солнечного излучения и углы измерения излучения. Для получения достаточных экспериментальных данных были проведены наземные измерения яркости облаков в области спектра 0,91 – 1,065 мкм, позволившие провести анализ зависимости фазового состава облаков различных типов на основе измерений коэффициентов относительной спектральной яркости. Измерения проводились фотометром в интервалах спектра 910 (10) нм, 940 (12) нм, 970 (15) нм, 1010 (16) нм, 1030 (18) нм и 1065 (20) нм (приведены значения центров спектральных интервалов и их полуширины). Отметим, что интервалы спектра 0,91 и 0,94 мкм включены в программу измерений для учета селективного поглощения паром, что дало возможность учесть это селективное поглощение в интервале 0,97 мкм. Результаты измерений приводятся в табл. 2 и 3. В табл. 2 на основе величин коэффициентов относительной спектральной яркости в интервалах спектра 0,97 и 1,03 мкм проведено разделение облаков с различной фазовой структурой (капельной, кристаллической и смешанного типа) и приведены время, приземная температура и углы наблюдения над горизонтом. Результаты измерений, представленные в табл. 2 и 3, получены при углах рассеяния $120-130^{\circ}$ и азимутальных углах $0-20^{\circ}$. В табл. 2 и 3 обозначено $R_{21} = R(\lambda=0.97)/R(\lambda=1.01)$ и $R_{31} = R(\lambda = 1,03)/R(\lambda = 1,01)$ – отношение коэффициентов яркости 0,97 и 1,03 мкм к коэффициенту яркости на длине волны 1,01 мкм. Для капельных облаков $R_{31} > R_{21}$, а для кристаллических $R_{31} < R_{21}$. В табл. 3 приведены данные о количестве серий измерений, относящихся к различному фазовому составу облаков, а также средние величины и вариации коэффициентов относительной спектральной яркости.

Таблица 2. Коэффициенты относительной спектральной яркости различных типов облаков

Дата	Tun	T	Угол	Длина волны, мкм				Фазовое		
дити	облаков	Град.	Град.	0,91	0,94	0,97	1,01	1,03	1,065	Состояние
3.08.05	Кучевое	28^{0}	30	0,84	0,7	0,92	1,0	1,02	1,01	Капли
15.03.05	Высоко- Кучевое	-2 ⁰	40	0,83	0,62	0,93	1,0	1,02	0,93	Капли
14.03.05	Высоко- Кучевое	-2°	40	0,88	0,76	0,93	1,0	0,96	0,89	Смешанный тип
11.03.05	Слоисто-кучевое	-3°	25	0,93	0,84	0,95	1,0	0,97	0,9	Смешанный тип
24.02.05	Слоистое	-6 ⁰	20	0,92	0,83	0,96	1,0	0,91	0,91	Смешанный
28.02.05	Слоистое	-7°	45	0,86	0,73	1,01	1,0	0,92	0,95	Лед
4.03.05	Перистое	-4 ⁰	60	0,98	0,94	1,02	1,0	0,88	0,91	Лед
21.02.05	Слоистое	-10 ⁰	25	0,92	0,83	0,99	1,0	0,95	0,96	Лед


Таблица 3. Коэффициенты относительной спектральной яркости облаков

Фаза	R_{21}	R_{31}	Кол-во серий
Капли	0,92±0,12	1,03±0,05	78
Лед	1,02±0,05	0,93±0,06	34
Смешанный тип	0,94±0,1	0,95±0,05	71

Приведенные данные были дополнены измерениями при углах рассеяния $20\text{-}25^\circ$, при которых индикатриса рассеяния на ледяных частицах имеет значительный пик. По данным [6] при этих углах рассеяния можно ожидать максимальных отличий в коэффициентах яркости ледяных и водяных облаков. Эти различия проявляются в том числе и в виде визуально наблюдаемых явлений в виде гало и области повышенной яркости, расположенной в горизонтальной плоскости. Мы наблюдали явление гало в Москве 21.10.2005 г. при рассеянии на облаках Ast и провели измерения спектрального распределения коэффициентов яркости от этого типа облаков. Для этих измерений среднее значение нормированного коэффициента яркости $R_{23} = R(\lambda = 0.97)/R(\lambda = 1.03)$ равно 0.978.

Следует обратить внимание на то обстоятельство, что явление типа гало является результатом отклонения солнечных лучей при их прохождении внутри кристалла льда. При этом, в зависимости от ориентации граней и оси кристаллической ледяной частицы относительно угла падения лучей возможно многократные внутренние переотражения от граней кристалла. Значительные вариации относительных спектральных коэффициентов яркости облаков являются результатом изменчивости облачных частиц по размерам и вариации индикатрисы рассеяния и оптической толщи облаков. Как правило, значения этих параметров не известны при проведении дистанционных измерений и в качестве модельных величин используются средние статистические значения. По этой причине наиболее надежным методом определения фазового состояния воды в облаках является метод, основанный на характерном отличии производной спектральной яркости $dR(\lambda)/d\lambda$, λ - длина волны. В области спектра 1.5 - 1.7 мкм производная $dR(\lambda)/d\lambda \approx 0$ для водяных частиц и отрицательна для ледяных частиц, при чем это соотношение значений для водяных частиц ($dR(\lambda)/d\lambda \approx 0$) справедливо для оптически толстых облаков в широком диапазоне оптических толщин. Значительные величины коэффициентов поглощения воды и льда в этой области спектра приводят к формированию сильной полосы поглощения в наблюдаемых спектрах рассеяния для перистых облаков (рис.2). Результаты численных расчетов зависимости $dR(\lambda)/d\lambda$ в области 1,65 – 1,70 мкм для типичных облаков Ast и индикатрисы рассеяния C1 показаны на рис. 3.

Приведенные данные свидетельствуют в пользу того, что для оптически толстых облаков t=10-30 измерения коэффициентов яркости $R(\lambda)$ в области 1,5-1,7 мкм облаков верхнего яруса позволяют выделить кристаллические облака от облаков смешанного типа и водяных облаков. При проведении этих расчетов использованы результаты численного решения уравнения переноса излучения [7, 8]. Многократное прохождение лучей внутри кристалла приводит к значительному увеличению объемного коэффициента поглощения в полосах поглощения льда.

 $Puc.\ 2.\ C$ пектральная зависимость коэффициентов поглощения $K(\lambda)\ cm^{-1}\$ воды (- $8^{0}C$) и льда (- $25^{0}C$)

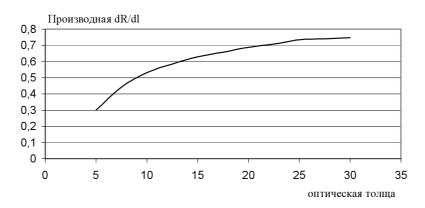


Рис. 3. Зависимость производной $dR(\lambda)/d\lambda$ [мкм⁻¹] от оптической толщины

Поэтому наиболее вероятной причиной полученного в [3] превышения коэффициента яркости в полосе 1,03 мкм является то, что измерения относились к условиям, в которых реализуются отмеченные многократные переотражения лучей внутри ледяных частиц. Увеличение оптического хода внутри ледяной частицы возможно также и для кристаллических частиц с внутренними пустотами. В таких частицах может наблюдаться многократное переотражение лучей, аналогичное ходу лучей в многоходовой кювете. Для оптически тонких перистых облаков верхнего яруса измерения $dR(\lambda)/d\lambda$ в этом диапазоне спектра, также как и в диапазоне 2,0-2.1 мкм, не несут однозначной информации. Определение фазовой структуры облаков с малой оптической толщиной возможно при синхронном измерении интенсивности собственного излучения в диапазоне длин волн 8-20 мкм (или в окне около 5 мкм) в сочетании с измерениями фотометрической высоты облаков в области полосы поглощения кислорода A (0,763 мкм) или полосы углекислого газа 2,01-2,06 мкм. Комплексные измерения собственного уходящего излучения в диапазоне 9-20 мкм и полосе 0,763 мкм были реализованы на спутнике «Космос -1151» и результаты этих исследований приводятся в [9]. Дополнительная информация о характеристиках полосы поглощения 1,03 мкм для ледяных частиц содержится в табл. 4, в которой приводятся результаты измерений спектральной яркости снега в лабораторных и натурных условиях.

Таблица 4. Коэффициенты относительной спектральной яркости снега

Corre		Количество			
Снег	0,97	1,01	1,03	1,065	серий
Лаборат.	1,05±0,05	1,0	0,86±0,04	0,93±0,04	18
Натурн.	1,03±0,05	1,0	0,91±0,04	0,95±0,04	10

Приведенные в табл 4. данные свидетельствуют о том, что полоса 1,03 мкм при достаточной оптической толщине снега проявляется в виде существенного ослабления излучения.

Новые возможности для совместного использования пассивных и активных методов определения фазовой структуры облаков возникают при применении мощных волоконных лазеров на диапазоны спектра полос поглощения воды и льда. В частности для зондирования облаков может быть применен лазер с волокном, активированным Er-Yb на область спектра 1,6 – 1,68 мкм [11].

Выводы

Результаты наземных измерений яркости облаков, проведенные в шести спектральных интервалах, включающих полосы поглощения воды 0,97 мкм и льда 1,03 мкм, дают возможность выделить три фазовых состояния воды в облаках - жидко – капельное, кристаллическое и смешанный тип.

Литература

- 1. Городецкий А.К., Орлов А.П., Сячинов В.И., Матвеев Д.Т. Комплексный метод определения фазового состояния воды в облаках // Физические аспекты дистанционного зондирования системы океан атмосфера. М.: Наука ,1981. С.172-178.
- 2. Башаринов А.Е., Гурвич А.С., Егоров С.Т. Радиоизлучение Земли как планеты. М.:, Наука, 1974.
- 3. *Сячинов В. И.* Определение фазового состояния воды в облаках с ИСЗ " Космос −320" // Изв. АН СССР, Серия Физика атмосферы и океана, 1976. Т.12. №3. С. 326-328.
- 4. *Мельникова И.Н.* Аналитические формулы для определения оптических параметров облачного слоя по измерениям характеристик поля солнечного излучения. Ч. 2. Приложение к экспериментальным данным // Оптика атмосферы и океана. 1992. Т.5. №2. С. 178-185.
- 5. *Knapp H.W. et al.* Discriminating between water and ice clouds using near- infrared AVIRIS measurements // Summaries of the ninth JPL Aerborne Earth Science workshop, 2000, Feb 23-25, JPL.
- 6. Wendling P.W. et al. Scattering of solar radiation by hexagonal ice cristals // Applied Optics, 1979. Vol. 18. № 15. P. 2663-2671.
- 7. Галин В.Я. Алгоритмы решения уравнения переноса излучения для плоской геометрии // Изв. АН СССР, Физика атмосферы и океана, 1970. Т.6. № 12.
- 8. *Галин В.Я., Малкова В.С.* Угловое распределение излучения, выходящего из оптически толстого слоя. Изв. АН СССР, Физика атмосферы и океана, 1971, 7, № 11.
- 9. *Городецкий А.К.*, *Орлов А.П.* Радиационные характеристики облаков // Физические аспекты дистанционного зондирования системы океан атмосфера // М.: Наука, 1981. 216 с.
- 10. Розенберг Г.В., Малкевич М.С., Малкова В.С., Сячинов В.И. Определение оптических характеристик облачности по измерениям отраженной солнечной радиации со спутника "Космос 320" // Изв. АН СССР, сер. Физика атмосферы и океана, 1974. Т.10, № 1. С. 14 -24.
- 11. Bufetov I.A. et al. Yb-, Er-Ib- and Nd-doped fibre lasers based on multi-element fires cladding fibres // Quantum Electronics, 2005. V. 35(4). P. 328-334.