Совместное использование техники сопряженных уравнений и вариационного усвоения спутниковых измерений в ИК-диапазоне в задаче восстановления профилей температуры и влажности атмосферы

А.А. Соколов¹, А.И. Чавро¹, Г.А. Хоменко²

¹ Институт вычислительной математики РАН, 119991 ГСП-1, Москва, Губкина, 8 E-mail: <u>saa@isa.ru</u>, <u>chavro@inm.ras.ru</u>; ² Университет Опалового Берега, Лаборатория ELICO CNRS, LOCL-MREN, 32 авеню Фош, 62930 Вимёро, Франция E-mail: khomenko@univ-littoral.fr

Введение

Современные ИК-радиометры позволяют измерять интенсивность излучения атмосферы и подстилающей поверхности с высокой точностью, однако, для восстановления детальных характеристик системы океан-атмосфера требуется создание и применение новых нелинейных методов.

В данной работе предлагается метод решения обратной задачи определения комплекса метеопараметров по спутниковым измерениям в ИК-диапазоне при помощи комбинации двух методов. Вначале используя решение сопряженной задачи [1, 2] рассчитывается линейный оператор, позволяющий при помощи метода статистической редукции получить оценку восстанавливаемых параметров. Затем решение уточняется при помощи вариационного метода, что позволяет учесть нелинейность задачи и уточнить решение. Исследуется чувствительность решения, полученного при помощи такого комбинированного метода к ошибкам измерительной системы.

Решение прямой задачи

Монохроматическое излучение с частотой ν , приходящее на спутник на высоте h под углом θ , $\mu = \cos\theta$, запишется в виде [2]:

$$I_{\nu}(h,\mu>0) = I_{1} + I_{2} + I_{3} = \varepsilon_{\nu}(\mu)B_{\nu}(T_{0})\exp\left(-\frac{1}{\mu}\int_{0}^{h}k_{\nu}(z'')dz''\right) +$$

$$+\int_{0}^{h}\frac{k_{\nu}}{\mu}B_{\nu}(z')\exp\left(-\frac{1}{\mu}\int_{z'}^{h}k_{\nu}(z'')dz''\right)dz'' +$$

$$+a_{\nu}(\mu)\exp\left(-\frac{1}{\mu}\int_{0}^{h}k_{\nu}(z'')dz''\right) \times \int_{-1}^{0}\mu'\int_{h}^{0}\frac{k_{\nu}(z')}{\mu'}B_{\nu}(z')\exp\left(\frac{1}{\mu'}\int_{z'}^{0}k_{\nu}(z'')dz''\right)dz'd\mu'$$

$$(1)$$

где I_1 - излучение поверхности, I_2 - собственное излучение атмосферы, I_3 - поток отраженного от поверхности излучения атмосферы; $k_{\nu}(z)$ - коэффициент поглощения, $a_{\nu}(\mu)$ - коэффициент отражения, $\varepsilon_{\nu}(\mu')$ - излучательная способность поверхности, T_0 - температура поверхности океана. Функция Планка $B_{\nu}(T)$, входящая в выражение (1) может быть записана:

$$B_{\nu}(T) = \frac{2\pi h_{p} \nu^{3}}{c^{2}} \frac{1}{\exp\left(\frac{h_{p} \nu}{k_{B} T}\right) - 1},$$
(2)

где $k_{\scriptscriptstyle B}$ - постоянная Больцмана, $h_{\scriptscriptstyle P}$ - постоянная Планка, c - скорость света в вакууме.

При получении выражения (1) ослабление излучения аэрозольными частицами и облаками в атмосфере не учитывается.

Если поверхность океана находится в термодинамическом равновесии с атмосферой, то выполняется закон Киргоффа:

$$\varepsilon_{\nu}(\mu) + a_{\nu}(\mu) = 1. \tag{3}$$

Поскольку прибор на спутнике измеряет не монохроматическое излучение в заданном направлении, а поток, и имеет некоторую спектральную характеристику $\xi_i(\nu)$ и диаграмму направленности $g_j(\mu)$ то сигнал, регистрируемый спутником на i-ом измерительном канале в j-м направлении может быть записан:

$$J_{ij} = \int_{0}^{\infty} d\nu \int_{0}^{1} \xi_{i}(\nu) g_{j}(\mu) \varphi_{\nu}(h,\mu) d\mu, \qquad (4)$$

где $I_{\mu}(h,\mu)$ определяется выражением (1).

Из соотношения (2) видно, что зависимость функции Планка $B_{\nu}(T)$ от температуры нелинейная. Зависимость коэффициента поглощения $k_{\nu}(z)$ от температуры и концентрации поглощающих субстанций весьма сложная и, также, нелинейная (см., например, работы [2, 4]). Следовательно, зависимость $I_{\nu}(h,\mu>0)$ от температуры и влажности в (4) также будет нелинейной.

Коэффициент поглощения $k_{\nu}(z)$ рассчитывался методом полинейного счета с использованием базы данных спектральных линий HITRAN [5].

Особое внимание было уделено выбору частот, на которых моделировались сигналы каналов измерения. Использовались полосы поглощения углекислого газа (СО2) и воды (Н2О). Частоты выбирались так, чтобы весовые функции (см. например работы [2, 4, 6]) были информативными в диапазоне высот от 1000 мбар до 50 мбар. В начале было выбрано 60 частот. Поскольку задача некорректная, и при использовании большого количества каналов точность решения резко снижается, то было оставлено 30 наиболее информативных частот, при которых ошибка восстановления методом редукции минимальная.

Решение обратной задачи

Построение линейного оператора прямой задачи с использованием сопряженных уравнений.

Данный подход был предложен впервые в работе [1], а затем опубликован в несколько модифицированном виде в работе [2].

Задача нахождения излучения на спутнике по состоянию атмосферы (прямая задача) может быть сформулирована в эквивалентном виде [1, 2]:

$$\mu \frac{d\varphi}{dz} + k_{\nu} \varphi = F, \tag{5}$$

где
$$\begin{cases} F(z, \mu < \mathbf{0}) = k_{\nu} B_{\nu}(T) \\ F(z, \mu > \mathbf{0}) = k_{\nu} B_{\nu}(T) - \delta(z) \mu \left[\varepsilon_{\nu}(\mu) B_{\nu}(T(z)) + a_{\nu}(\mu) \int_{-1}^{0} d\mu' \, \mu' \varphi_{\nu}(z, \mu') \right], \end{cases}$$
(6)

а $B_{\nu}(T)$ определяется выражением (2). Граничные условия в данном случае запишутся в виде:

$$\phi_{\nu}(h, \mu < 0) = 0
\phi_{\nu}(0, \mu > 0) = 0$$
(7)

Итак, мы получили задачу с нулевыми граничными условиями. Регистрируемый на спутнике сигнал (4) можно записать в виде функционала:

$$J_{p}(\varphi) = \int_{0}^{h} dz \int_{0}^{\infty} dv \int_{-1}^{1} p_{\nu}(z, \mu) \varphi_{\nu} d\mu,$$
 (8)

где

$$p_{\nu}(z,\mu) = \tilde{g}(\mu)\xi(\nu)\delta(z-h),$$

$$\tilde{g}(\mu) = \begin{cases} g(\mu), & \text{при } \mu > 0, \\ 0, & \text{при } \mu < 0. \end{cases}$$
(9)

В рассматриваемом фазовом пространстве скалярное произведение может быть определено таким образом:

$$(\varphi_{\nu}, p) = \int_{0}^{h} dz \int_{0}^{\infty} d\nu \int_{-1}^{1} p \varphi_{\nu} d\mu, \qquad (10)$$

поэтому $J_{p}(\varphi) = (\varphi_{v}, p)$.

Далее оказывается возможным сформулировать и решить сопряженную задачу и найти ее решение:

$$\phi_p^*(z, \mu > 0) = \begin{cases}
\frac{1}{\mu} g(\mu) \xi(v) e^{-\frac{1}{\mu} \int_z^h k_v(z') dz'} & \text{при } z < h \\
0, & \text{при } z = h.
\end{cases}$$
(11)

Функционал \boldsymbol{J}_p может быть представлен в виде:

$$J_p = (\varphi_p^*, F). \tag{12}$$

Расписав последнее выражение, получим:

$$J_{p} = \int_{0}^{\infty} d\nu \int_{0}^{1} d\mu \left[\int_{0}^{h} \varphi_{p}^{*}(z,\mu) k_{\nu}(z,\mu) B_{\nu}(T(z)) dz + + \varphi_{p}^{*}(0,\mu) \mu \left[\varepsilon_{\nu}(\mu) B_{\nu}(T_{0}) + (1 - \varepsilon_{\nu}(\mu)) U_{\nu} \right] \right].$$
(13)

$$U_{\nu} = \int_{-1}^{0} d\mu' \mu' \varphi_{\nu}(z, \mu'), \tag{14}$$

где U_{ν} представляет собой падающий на поверхность Земли поток излучения в ИК-области спектра с верхней полусферы.

Предположим теперь, что функционал (13) соответствует стандартным характеристикам атмосферы.

Из формулы (13) следует что возмущенное состояние системы "подстилающая поверхность-атмосфера" определяется отклонениями от стандартных значений вертикальных профилей температуры T(z) и коэффициента поглощения k_{ν} , а также температуры T_0 , излучательной способности $\varepsilon_{\nu}(\mu)$

подстилающей поверхности и падающего с верхней полусферы потока U_{ν} . Изменением функции $\phi_p^*(z,\mu)$ можно пренебречь.

В функционале (13) это отразится в том, что он несколько изменит свою величину. Выпишем это

$$J_{p} + \delta J_{p} = \int_{0}^{\infty} dv \int_{0}^{1} d\mu \left[\int_{0}^{h} \varphi_{p}^{*}(z, \mu)(k_{v} + \delta k_{v})B_{v}(T + \delta T)dz + + \varphi_{p}^{*}(0, \mu)\mu[(\varepsilon_{v} + \delta \varepsilon_{v})B_{v}(T_{0} + \delta T_{0}) + (1 - (\varepsilon_{v} + \delta \varepsilon_{v}))(U_{v} + \delta U_{v})] \right] =$$

$$= \int_{0}^{\infty} dv \int_{0}^{1} d\mu \left[\int_{0}^{h} \varphi_{p}^{*}(z, \mu)(k_{v}B_{v}(T) + k_{v}\delta B_{v}(T) + B_{v}(T)\delta k_{v} + \delta B_{v}(T)\delta k_{v})dz + + \varphi_{p}^{*}(0, \mu)\mu[\varepsilon_{v}B_{v}(T_{0}) + \varepsilon_{v}\delta B_{v}(T_{0}) + B_{v}(T_{0})\delta \varepsilon_{v} + \delta \varepsilon_{v}\delta B_{v}(T_{0}) + U_{v} + \delta U_{v} - \varepsilon_{v}U_{v} - \varepsilon_{v}\delta U_{v} - U_{v}\delta \varepsilon_{v} - \delta \varepsilon_{v}\delta U_{v}] \right],$$

PNO

$$\delta B_{\nu}(T) = B_{\nu}(T + \delta T) - B_{\nu}(T),$$

$$\delta k_{\nu}(T, q) = k_{\nu}(T + \delta T, q + \delta q) - k_{\nu}(T, q),$$

$$\delta \varepsilon_{\nu}(\mu, V) = \varepsilon_{\nu}(\mu, V + \delta V) - \varepsilon_{\nu}(\mu, V),$$

$$\delta U_{\nu}(T(z), q(z)) = U_{\nu}(T(z) + \delta T(z), q(z) + \delta q(z)) - U_{\nu}(T(z), q(z)),$$
(16)

T(z) и q(z) – вертикальные профили температуры и влажности соответственно.

Проведя линеаризацию функции (16) в окрестности среднего состояния атмосферы и подстилающей поверхности оказывается возможным построить линейный оператор A, связывающий вариации измеряемых сигналов с вариациями искомых характеристик системы океан-атмосфера:

$$\delta J_n \approx A(\delta T_0, \delta T, \delta q)$$

Построенный таким образом линейный оператор A может быть использован для решения обратной задачи. В случае наличия данных наблюдений искомых параметров в виде первых и вторых моментов, оператор, построенный с помощью сопряженных уравнений, позволяет решить обратную задачу методом редукции [7-9].

Метод редукции.

В работах [7-9] были предложены методы решения обратных задач, когда связь между известным случайным вектором $y \in \Re^n$ полученным, например, в результате спутникового эксперимента с погрешностью $v \in \mathbb{R}^n$, и вектором $x \in \mathbb{R}^m$, для которого необходимо получить оценку \mathfrak{E} , задается в виде соотношения

$$y = Ax + v, \tag{17}$$

где A — линейный оператор.

Таким образом, в названных работах речь идет о решении класса линейных обратных задач. Решение задач в работах [7-9] сводилось к построению такого линейного оператора R, подействовав которым на уравнение (17), мы получили бы наилучшую в среднеквадратичном оценку € вектора х. В случае когда $\langle x \rangle = 0$ и $\langle v \rangle = 0$, где $\langle v \rangle$ есть x и v не коррелированны, оператор R можно найти из условия минимума соотношения для среднеквадратичной погрешности решения обратной задачи [7-9]

$$\Phi(R) = M \| (RA - I)x - Rv \|^2, \tag{18}$$

где M – символ математического ожидания. Заметим, что если оператор A известный, то оператор R который в дальнейшем в соответствии с работами [8, 9] будем называть оператором редукции, равен

$$R = FA^*Q^{-1}, \tag{19}$$

где $Q = AFA^* + \Sigma_v$ - ковариационная матрица обобщенной ошибки вектора y, а $F = < x \ x^* > u$ $\Sigma_v = < vv^* >$ - ковариационные матрицы векторов x и v, соответственно. Таким образом, интересующая нас оценка получается из соотношения

$$\mathfrak{L} = R \cdot y \,. \tag{20}$$

Среднеквадратичная априорная погрешность решения обратной задачи определяется соотношением [8-10]

$$h = tr(F - FA^*Q^{-1}AF),$$
 (21)

которое описывает дисперсию вектора погрешности решения обратной задачи.

Постановка вариационной задачи.

Одним из способов решения обратных задач, позволяющим учесть нелинейную связь между предиктором и предиктантом является вариационный метод (см., например, [10]), основанный на минимизации штрафной функции

$$\Phi(x) = \frac{1}{2} \left\{ (x_a - x)^T S_a^{-1} (x_a - x) + (J_p(x) - y)^T S_m^{-1} (J_p(x) - y) \right\},$$
(22)

где где $x = \left(\Delta T_0, \Delta T, \Delta q\right)^T$, x_a - априорная оценка восстанавливаемых параметров, y_m - вектор измерений, $S_a = M\left((x-x_a)(x-x_a)^T\right)$ и $S_m = E\left(\left(J_p(x)-y\right)\left(J_p(x)-y\right)^T\right)$ - ковариационные матрицы вектора измерений и ошибок измерений, а $J_p(x)$ - модель прямой задачи (4). Первое слагаемое функционала гарантирует, что решение будет в окрестности априорной оценки x_a , а второе обеспечивает близость решения прямой задачи к измерению.

Решением обратной задачи будет то значение вектора x, которое доставляет минимум функционалу (22).

Этот минимум может быть найден, например, методом Ньютона [11] или модифицированным методом Ньютона [10].

При решении обратной задачи методом вариационного усвоения данных наблюдений важно насколько близко к истинному значению x выбрано первое приближение x_a . Обычно в качестве x_a берут среднее значение x. Однако среднее значение для некотрых реализаций может находится далеко от истиного значения. В связи с этим предлагается вначале решить линейную задачу методом редукции с линейным оператором, полученым с использованием сопряженных уравнений, а затем это решение взять в качестве первого приближения, с пересчетом матриц S_a и S_m .

Статистические данные

Статистические данные, необходимые для вычисления средних и ковариационных матриц, были взяты из работы [12]. Ансамбль из 6000 мгновенных профилей температуры и влажности и температур поверхности над океаном в средних и экваториальных широтах был разделен на два ансамбля по 3000 векторов – калибровочный и верификационный. По одному ансамблю вычислялись матрицы и средние значения, выбирались информативные частоты, а на другом ансамбле проводилась проверка метода.

Полный вектор x, размерности 23, содержал температуру поверхности, профиль температуры на 11 уровнях и профиль абсолютной влажности той же размерности. Полный вектор был нормирован так, чтобы

его компоненты имели приблизительно равную дисперсию. В качестве вектора измерений J_p был взят вектор, компоненты которого определялись моделью прямой задачи (4), моделирующий спутниковый прибор AIRS. Компоненты вектора J_p случайным образом возмущены для моделирования ошибки прибора. Измерения моделировались при различных частотах и μ =1. Скорость ветра в численных экспериментах была фиксирована и равнялась 10 м/c.

Результаты решения обратной задачи

Для проверки изложенных выше методов был проведен ряд численных экспериментов. При типичных для современных измерительных систем ошибках измерения $\sim 0.2~\rm K$ метод редукции с оператором, построенным при помощи теории сопряженных уравнений, позволил восстановить вертикальный профиль температуры атмосферы с точностью 1,5 градуса, температуру поверхности океана с точностью 0,8 градуса, а содержание водяного пара с точностью до $1~\rm f/kr$.

Применение вариационного метода для уточнения результатов, полученных линейным методом, позволил повысить точность восстановления профиля температуры до $1.2~\rm K$, температуры поверхности до $0.3~\rm K$, а точность восстановления удельной влажности до $0.9~\rm r/kr$.

Поскольку реальная измерительная аппаратура, проводит измерения с ошибками, представляет интерес исследовать, как ошибки аппаратуры будут влиять на погрешность используемых методов. Результаты численных экспериментов представлены на рисунках 1-3. Некоторые результаты приведены также в работах [13, 14].

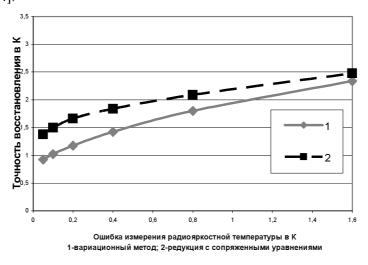


Рис. 1. Точность определения профиля температуры атмосферы T(z)

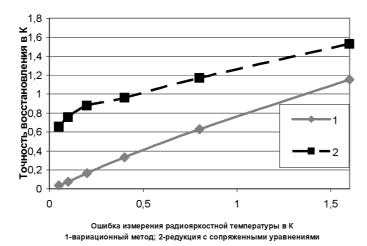


Рис. 2. Точность определения температуры водной поверхности ТО

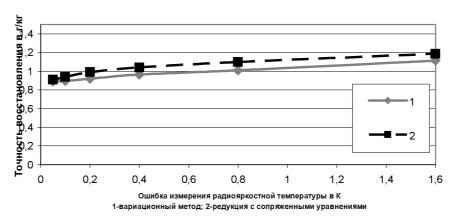


Рис. 3. Точность восстановления профиля влажности атмосферы q(z)

Видно, что использование вариационного метода с начальным приближением, полученным методом редукции, позволяет повысить точность восстановления температуры поверхности и профиля температуры атмосферы на 0.5 К, а профиля влажности атмосферы на 1 г/кг по сравнению с линейной оценкой методом редукции.

Заключение

Применение вариационного метода усвоения спутниковой информации для решения обратной задачи восстановления профиля температуры атмосферы и температуры поверхности океана, когда в качестве нулевого приближения используется решение линейной задачи с минимальной среднеквадратичной погрешностью с использованием техники сопряженных уравнений позволяет значительно повысить точность восстановления температуры атмосферы и поверхности, а также влажности атмосферы, по сравнению с линейным методом.

Настоящая работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований (проект 04-05-64919).

Литература

- 1. *Марчук Г.И*. Уравнение для ценности информации с метеорологических спутников и постановка обратных задач // Космические исследования, 1964. Вып. 3. С.462-477.
- 2. *Marchuk G.I.*, *Chavro A.I.* On the statement and solution of inverse problems in satellite meteorology // Russ. J. Numer. Anal. Math. Modellin., 1998. Vol.13. No.6. P.501-515.
- 3. *Liou K. N.* An Introduction to Atmospheric Radiation. Second Edition // International Geophysics Series, 2002. Vol. 84. 583 p.
- 4. Тимофеев Ю.М., Васильев А.В. Теоретические основы атмосферной оптики // СПб.: Наука, 2003. 474 с.
- 5. Rothman L.S. et al. The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 // Journal of Quantitative Spectroscopy & Radiative Transfer, 2003. №82. P.5–44.
- 6. W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. McMillin. The TIROS-N Operational Vertical Sounder // Bulletin American Meteorological Society, No.58. October 1979.
- 7. *Успенский А. Б.* Обратные задачи математической физики анализ и планирование экспериментов и математические методы планирования эксперимента // Новосибирск: Наука, 1981. С.199-242.
- 8. Пытьев Ю. П. Математические методы интерпретации эксперимента. // М.: Высшая школа, 1989. 352с.
- 9. Пытьев Ю. П. Методы анализа и интерпретации эксперимента // М: Изд-во МГУ, 1990. 288с.
- 10. А. И. Чавро, В. П. Дымников. Методы математической статистики в задачах физики Атмосферы. Курс лекций // М.: ИВМ РАН, 2000. 210 с.
- 11. *Rodgers C.D.* Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation // Rev. Geophys. Space Phys., 1976. 14. P. 609-624.

- 12. F. Chevallier Sampled database of 60-level atmospheric profiles from the ECMWF analyses. //EUMETSAT/ECMWF, SAF programme. Research Report No. 4, 2001.
- 13. Соколов А.А. Сравнение методов решения обратной задачи восстановления характеристик атмосферы по спутниковым измерениям в ИК-диапазоне // Труды международной конференции по измерениям, моделированию и информационным системам для изучения окружающей среды: ENVIROMIS-2004, 17-25 июля 2004. Томск. Россия. С.50.
- 14. *Чавро А.И.*, *Уваров Н.В.*, *Соколов А.А.* Вариационные методы усвоения спутниковой информации с целью определения метеорологических параметров // География и природные ресурсы. Новосибирск, CO PAH, Специальный выпуск "Труды международной конференции по измерениям, моделированию и информационным системам для изучения окружающей среды: Enviromis 2004", 2004. C.58-64.