

Научный центр оперативного мониторинга Земли

Федеральное космическое агентство

А.А. Феоктистов, Н.Н. Новикова, Л.А. Пахомов, П.В. Люшвин, А.И. Захаров, С.И. Мартынов, О.Б. Федичев , А.А. Мирошин

РАЗРАБОТКА СИСТЕМЫ КОСМИЧЕСКОГО МОНИТОРИНГА НЕФТЯНЫХ ЗАГРЯЗНЕНИЙ МОРСКОЙ ПОВЕРХНОСТИ

ОМЗ участвует в работах ΠΟ **OSCSAR** международным проектам И **ERUNET**, выполняемым в соответствии С результатами конкурса предложений П0 созданию сети GMES с Россией и Украиной, который был проведен в 2004 г. Европейским (ESA) космическим агентством И Международной астронавтической федерацией **(IAF).**

В соответствии с программой работ по проекту ERUNET НЦ ОМЗ проводит работы по акватории Черного и Азовского морей, по проекту OSCSAR – по акватории Карского моря.

Nansen Environmental and Remote Sensing Center Edvard Griegsvei 3a N-5059 Bergen, Norway http://www.nersc.no

Nansen International Environmental and Remote Sensing Center 26/28 Bolshaya Monetnaya Str. 197101 St. Petersburg, Russia

http://www.niersc.spb.ru

OSCSAR

Marine Oil Spill Control: SAR monitoring and model prediction

Контроль морских нефтяных загрязнений: мониторинг с использованием данных радиолокаторов с синтезированной апертурой и модель прогноза

консорциум команд:

- Nansen Environmental and Remote Sensing Center (NERSC), Берген, Норвегия
- Institute Francais de Rechercher pour l'Exploitation de la Mer (IFREMER), Плузан, Франция
- Nansen International Environmental and Remote Sensing Center (NIERSC или Нансен-центр), Санкт-Петербург, Россия
- Арктический и Антарктический научно-исследовательский институт (ААНИИ), Санкт-Петербург, Россия
- Институт прикладной физики (ИПФ) Российской академии наук (РАН), Нижний Новгород, Россия
- Морской гидрофизический институт Украинской национальной академии наук (МГИ), Севастополь, Украина
- Государственное конструкторское бюро (ГКБ) ЮЖНОЕ, Днепропетровск, Украина
- Научный центр оперативного мониторинга Земли (**НЦ ОМЗ**), Москва, Россия

Координатор проекта

Stein Sandven

Nansen Environmental and Remote Sensing Center, Bergen, Norway

ERUNET

European-Russian-Ukrainian GMES NETwork for Monitoring of Oil Spills and Oil&Gas Pipelines

Европейско-Российско-Украинская сеть GMES для мониторинга нефтяных загрязнений морской поверхности и нефте- и газопроводов

консорциум команд:

- Joint Research Center (JRC), Испра, Италия
- **REMIFOR**, **Draguinian**, Франция
- Научный центр оперативного мониторинга Земли (НЦ ОМЗ), Москва, Россия.
- Югорский научно-исследовательский институт информационных технологий (ЮНИИИТ), Ханты-Мансийск, Россия
- Экотек-Норд, Москва, Россия
- Природа Государственный научный производственный центр, Киев, Украина
- Одесский национальный университет (ОНУ) им. Мечникова, Одесса, Украина

Координатор проекта

Stanley Morris

Joint Research Center (JRC), Испра,Италия В рамках этих проектов НЦ ОМЗ начал работы по созданию системы мониторинга нефтяных загрязнений морской поверхности. Создаваемая система ориентирована на использование данных радиолокаторов с апертурой (SAR), синтезированной характеризующихся высоким пространственным разрешением, всепогодностью, независимостью ΟΤ условий освещения. Используются данные аппаратуры SAR/ERS-2 и ASAR/ENVISAT.

Количество изображений SAR/ERS-2 и ASAR/ENVISAT, полученных по проекту OS	CSAR
из архива ЕЅА	
По акватории Карского моря	45
Общее количество изображений	109
Количество изображений SAR/ERS-2, ASAR/EN и MERIS/ENVISAT, полученных по проекту EI	IVISAT RUNET
По акватории Черного и Азовского морей	98
no andarophin reproto in risobenoi o mopen	

Схемы дислокации проанализированных изображений по акватории Карского и юго-западной части Баренцева морей.

16 ASAR/ENVISAT IMAGES DISPOSITION CHART 30.06.2004 - 04.07.2004

8 ASAR/ENVISAT IMAGES DISPOSITION CHART 07.07.2004 - 21.07.2004

7 ASAR/ENVISAT IMAGES DISPOSITION CHART 22.07.2004 - 02.08.2004

7 SAR/ERS-2 IMAGES DISPOSITION CHART 04.07.2003 - 28.08.2003

Схемы дислокации части проанализированных изображений по акватории Черного и Азовского морей.

Нормированная плотность распределения нефтяных загрязнений поверхности Черного моря по данным аппаратуры SAR/ERS-2 и ASAR/ENVISAT за 2004 г., полученная специалистами JRC, Испра, Италия и предоставленная координатором проекта ERUNET C. Моррисом.

Полностью автоматические методы идентификации нефтяных загрязнений морской поверхности на основе анализа данных SAR в настоящее время только разрабатываются.

Поэтому на первом этапе создания системы мониторинга в качестве основного метода идентификации в НЦ ОМЗ используется метод экспертной оценки в среде ГИС.

Окончательное решение относительно генезиса каждого слика принимается экспертом-дешифровщиком на основании анализа:

- основных признаков слика (форма, размер, текстура, четкость границы, СКО объекта и фона и т.д.);
- информации о поле поверхностных течений, дислокации возможных источников загрязнения, характеристиках приводного ветра и т.д.

В целях повышения вероятности правильного распознавания сликов техногенного и естественного генезиса основное внимание в НЦ ОМЗ было уделено отработке метода синергического анализа данных SAR и данных видимой и ИК области спектра, с помощью которого эксперт-дешифровщик получает важную дополнительную информацию, используемую при принятии решения относительно генезиса слика.

Использовались материалы квазисинхронной съемки с помощью аппаратуры AVHRR/NOAA и MODIS/TERRA из архива НЦ ОМЗ. Основные дешифровочные признаки нефтяных сликов в каналах видимой и ИК области спектра:

- ослабление отраженной радиации в видимой и ИК областях спектра, что соответствует снижению шероховатости водной поверхности, вызванному ослаблением ветрового волнения;
- отсутствует значимый (более 1°С) прогрев водной поверхности; в противном случае слики, соответствовали бы квази-штилевым условиям (с отсутствием ветрового перемешивания);
- над более теплой морской поверхностью имеет место повышенное содержание водяного пара в атмосфере; над пятнами нефти, особенно в нижнем, наиболее "водном" слое атмосферы наблюдается локальный дефицит водяного парас загрязненной нефтепродуктами поверхности испарение происходит значительно менее интенсивно; это является дополнительным косвенным признаком наличия нефтяных загрязнений на морской поверхности;

• в зоне разлива нефтепродуктов не наблюдаются повышенные, по сравнению с окружающим фоном, значения альбедо гидрозоля и концентрации хлорофилла, наличие которых свидетельствовало бы об отсутствии нефтяных загрязнений, т.к. нефтепродукты интенсивнее, чем вода, поглощают рассеянную в воде солнечную радиацию; кроме того, появляется еще одна оптическая граница раздела (вода – нефтепродукты) дополнительно переотражающая солнечное излучение; в результате в районе нефтяных сликов значения альбедо гидрозоля и концентрации хлорофилла обычно понижены по сравнению с окружающим фоном - это также является дополнительным косвенным признаком наличия нефтепродуктов на морской поверхности.

ОСНОВНЫЕ ПРОБЛЕМЫ, ВОЗНИКШИЕ ПРИ ПРОВЕДЕНИИ СИНЕРГИЧЕСКОГО АНАЛИЗА:

• НЕСОПАДЕНИЕ ВРЕМЕНИ СЪЕМКИ SAR И АППАРАТУРЫ ВИДИМОЙ И ИК ОБЛАСТИ СПЕКТРА (РАЗНЫЕ СПУТНИКИ)

• НИЗКОЕ ПРОСТРАНСТВЕННОЕ РАЗРЕШЕНИЕ ДАННЫХ В ИК ТЕПЛОВОЙ ОБЛАСТИ

Нужна синхронная съемка с достаточно высоким пространственным разрешением в видимой и ИК (включая ИК-тепловую) областях спектра.

Примеры по акватории Черного и Азовского морей (проект ERUNET).

СИТУАЦИЯ 1

УТРЕННЯЯ СЪЕМКА 27 сентября 2004 г.

2 SAR ИЗОБРАЖЕНИЯ

СХЕМА ДИСЛОКАЦИИ 2 SAR ИЗОБРАЖЕНИЙ

АVHRR/NOAA Альбедо на длине волны 0.6 МКМ

ВЫВОД – СИТУАЦИЯ БЕЗОБЛАЧНАЯ ПОЛОСА В ЦЕНТРЕ – КВАЗИШТИЛЕВАЯ (Альбедо гидрозоля в зоне ветра определяется пенной.компонентой)

TM/LANDSAT

AVHRR/NOAA

КАРТА ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ВОДЫ (ТПВ) КАРТА АЛЬБЕДО ГИДРОЗОЛЯ КАРТА АЛЬБЕДО НА ДЛИНЕ ВОЛНЫ 3.7 МКМ

ЛОКАЛЬНЫЙ МАКСИМУМ ТПВ

ЛОКАЛЬНЫЕ МИНИМУМЫ ГИДРОЗОЛЯ И АЛЬБЕДО НА ДЛИНЕ ВОЛНЫ 3.7 МКМ

Заключение эксперта-дешифровщика - генезис слика естественный (контрасты температур и связанных с ними различия влаго и теплообмена между приводной атмосферой и поверхностью воды, а также температурная зависимость вязкости морской воды).

СИТУАЦИЯ 2

УТРЕННЯЯ СЪЕМКА 15 сентября 2004 г

SAR ИЗОБРАЖЕНИЕ

АVHRR/NOAA АЛЬБЕДО НА ДЛИНЕ ВОЛНЫ 0.6 МКМ

ДИСЛОКАЦИЯ ЛИНЕЙНОГО СЛИКА

СИТУАЦИЯ БЕЗОБЛАЧНАЯ

ИНФОРМАЦИЯ О СКОРОСТИ ВЕТРА ПО ДАННЫМ УТРЕННИХ ВИТКОВ АППАРАТУРЫ SSM/I

ИНФОРМАЦИЯ по азовскому ОСЛАБЛЕНИЕ МОРЮ НЕ ВЕТРА К ЮГО-**ПРИВОДИТСЯ** ЗАПАДУ ОТ ввиду ЦЕМЕССКОЙ БОЛЬШОГО БУХТЫ **PA3MEPA** ПИКСЕЛА 5 10 15 Ω meters/second

КАРТА ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ВОДЫ (ТПВ)

AVHRR/NOAA карта альбедо гидрозоля

КАРТА АЛЬБЕДО НА ДЛИНЕ ВОЛНЫ 3.7 МКМ

ЛОКАЛЬНЫЙ МАКСИМУМ ТПВ – ОСЛАБЛЕНИЕ ВЕТРОВОГО ПЕРЕМЕШИВАНИЯ ЛОКАЛЬНЫЙ МАКСИМУМ АЛЬБЕДО ГИДРОЗОЛЯ – НЕТ ОСЛАБЛЕНИЯ НЕФТЯНЫМ ЗАГРЯЗНЕНИЕМ

ЛОКАЛЬНЫЙ МИНИМУМ – СНИЖЕНИЕ ШЕРОХОВАТОСТИ
ЗАКЛЮЧЕНИЕ – СЛИК СВЯЗАН С ЛОКАЛЬНЫМ УМЕНЬШЕНИЕМ СКОРОСТИ ВЕТРА

СИТУАЦИЯ 3

УТРЕННЯЯ СЪЕМКА 26 июня 2004 г

SAR ИЗОБРАЖЕНИЕ

СХЕМА ДИСЛОКАЦИИ SAR ИЗОБРАЖЕНИЯ

АVHRR/NOAA Альбедо на длине волны 0.6 МКМ

ВЫВОД – В РАЙОНЕ СЛИКА СИТУАЦИЯ БЕЗОБЛАЧНАЯ

ИНФОРМАЦИЯ О СКОРОСТИ ВЕТРА ПО ДАННЫМ УТРЕННИХ ВИТКОВ АППАРАТУРЫ SSM/I

В РАЙОНЕ СЛИКА СКОРОСТЬ ВЕТРА ОКОЛО 4-5 M/C

КАРТА ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ВОДЫ (ТПВ)

AVHRR/NOAA карта альбедо гидрозоля

КАРТА АЛЬБЕДО НА ДЛИНЕ ВОЛНЫ 3.7 МКМ

ПОЛОЖИТЕЛЬНАЯ АНОМАЛИЯ ТПВ ОТСУТСТВУЕТ

ПОЛОЖИТЕЛЬНАЯ АНОМАЛИЯ АЛЬБЕДО ГИДРОЗОЛЯ ОТСУТСТВУЕТ

ЛОКАЛЬНЫЙ МИНИМУМ – СНИЖЕНИЕ ШЕРОХОВАТОСТИ

ЗАКЛЮЧЕНИЕ – СЛИК НА СУДОХОДНОЙ ТРАССЕ, ВДАЛИ ОТ БЕРЕГА (ОТСУТСТВУЕТ ВЕТРОВАЯ ТЕНЬ) НА ГЛУБОКОЙ ВОДЕ (НЕТ ЭФФЕКТОВ ТИПА АПВЕЛЛИНГА ИЛИ ВЛИЯНИЯ ОРОГРАФИИ ПОДВОДНОГО РЕЛЬЕФА) ОБЛАДАЕТ ВСЕМИ ПРИЗНАКАМИ НАЛИЧИЯ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ.

Общий вид региона, по которому проводились работы по проекту OSCSAR

Новая Земля

Восточная часть Баренцева моря Остров Вайгач Западная часть Карского моря

Картосхема нефтяных и нефтегазоносных структур на Европейском севере России

Красным прямоугольником выделен район, в котором нефтяная компания ЛУКОЙЛ проводит активные буровые работы.

Более детальное изображение района проведения буровых работ нефтяной компанией ЛУКОЙЛ

Остров Вайгач

Пролив Югорский шар

Печорская губа

Ввиду высокой вероятности облачности в данном регионе удалось выявить только 3 ситуации, пригодные для проведения синергического анализа.

СИТУАЦИЯ 1

4.07.2003. Утренняя съемка района Печорской губы.

Изображение Информация о скорости Схема аппаратуры ветра по данным дислокации SAR/ERS-2. аппаратуры SSM/I изображения (утренние витки). аппаратуры SAR/ERS-2. Surface Wind Speed

Слики наблюдаются вдоль гряды островов и в заливах западнее и восточнее дельты р. Печоры.

Изображение аппаратуры MODIS/TERRA.

Гряда островов закрыта облаками.

> Акватория Печорской губы в основном безоблачна.

Обработка данных аппаратуры AVHRR/NOAA

Стандартная карта альбедо солнечной радиации (0.8 µm), в %.

Альбедо (0.7-0.9 мкм), % 04 июл 2003, 04:51 GMT разм 780х800 100%

10 15 56

r: 13.3 left:274991

Карта радиационной температуры (11 µm), в °С.

Заключение - признаки нефтяных загрязнений морской поверхности не выявлены.

Генезис сликов в заливах западнее и восточнее дельты р. Печоры - влияние: (1) береговой орографии, (2) контрастов температур и связанных с ними различий влаго и теплообмена между приводной атмосферой и поверхностью воды и (3) температурной зависимости вязкости морской воды.

Генезис сликов вдоль гряды островов, отделяющих Печорскую губу от Баренцева моря - ветровая тень от островов, процессы перемешивания вод Баренцева моря и распресненных вод Печорской губы (имеющих разные температуры и разные направления течения), а также различие длины разгона волновых систем в этих водах.

СИТУАЦИЯ 2

2.08.2004 г. Утренняя съемка района острова Вайгач.

Изображение аппаратуры ASAR/ENVISAT и увеличенные фрагменты (контраст фрагментов усилен) Информация о скорости ветра по данным аппаратуры SSM/I (утренние витки). Изображение аппаратуры MODIS/TERRA. Безоблачно.

Остров Вайгач

Стандартная карта альбедо солнечной радиации (0.8 µm), в %. Карта радиационной температуры (11 µm), в °С.

На основании проведенного анализа сделано заключение признаки нефтяных загрязнений морской поверхности не выявлены.

Генезис сликов севернее пролива Югорский Шар квазиштилевые условия.

Генезис сликов южнее пролива Югорский Шар, вероятно, связан с локальным уменьшением ТПВ (и соответствующим увеличением вязкости морской воды). СИТУАЦИЯ 3

2.08.2004. Вечерняя съемка района острова Вайгач.

Изображение аппаратуры ASAR/ENVISAT

Увеличенный фрагмент

Информация о скорости ветра по данным аппаратуры SSM/I (вечерние витки).

Surface Wind Speed

Остров Вайгач Пролив Югорский Шар

Обработка данных аппаратуры AVHRR/NOAA.

Стандартная карта альбедо солнечной радиации (0.8 µm), в %.

Карта радиационной температуры (11 µm), в °С.

Прецизионная карта альбедо отраженной солнечной радиации (0.8 µm), в %

Карта распределения ТПВ, в °С.

Карта альбедо гидрозоля (0.6 µm)

Справа - увеличенный район острова Вайгач

данным аппаратуры MODIS/AQUA/TERRA).

Заключение - признаки нефтяных загрязнений морской поверхности также не выявлены.

Положение полос сликов, идущих от пролива Югорский Шар в юго-западном направлении, в целом, коррелирует с положением более холодных потоков вод Карского моря. Примеры сложных структур сликов в районе судоходных трасс Карского моря (Обская губа и Байдарацкая губа)

Использовались данные аппаратуры SAR/ERS-2 и ASAR/ENVISAT, полученные в облачных условиях; дополнительная информация (кроме данных аппаратуры SSM/I о скорости ветра) отсутствовала.

Район Обской губы и Байдарацкой губы.

На следующих 3 слайдах показана структура сликов, возникающих в акватории Обской губы в результате сложных процессов взаимодействия приливных, ветровых и (возможно) анемобарических волн.

12.08.2004. Утренняя съемка северо-западной части акватории Обской губы.

Схема дислокации изображения аппаратуры ASAR/ENVISAT.

Изображение аппаратуры ASAR/ENVISAT. Информация о скорости ветра по данным аппаратуры SSM/I (утренние витки).

28.08.2004. Утренняя съемка северной части акватории Обской губы.

Схема дислокации изображения аппаратуры ASAR/ENVISAT.

Изображение аппаратуры ASAR/ENVISAT.

Информация о скорости ветра по данным аппаратуры SSM/I (утренние витки).

31.08.2004. Утренняя съемка северо-западной части акватории Обской губы.

Схема дислокации изображения аппаратуры ASAR/ENVISAT. Изображение аппаратуры ASAR/ENVISAT.

Информация о скорости ветра по данным аппаратуры SSM/I (утренние витки).

На следующих двух слайдах видны другие особенности в структуре изображений морской поверхности - севернее Байдарацкой губы.

21.08.2004. Утренняя съемка северо-восточной части акватории Байдарацкой губы.

Схема дислокации изображения аппаратуры ASAR/ENVISAT.

Изображение аппаратуры ASAR/ENVISAT.

Информация о скорости ветра по данным аппаратуры SSM/I (утренние витки).

24.08.2004. Утренняя съемка северной части акватории Байдарацкой губы.

Схема дислокации изображения аппаратуры ASAR/ENVISAT.

Изображение аппаратуры ASAR/ENVISAT.

Информация о скорости ветра по данным аппаратуры SSM/I (утренние витки).

Результаты проведенных исследований позволили более конкретно оценить сильные и слабые стороны метода синергического анализа.

Безусловно, при проведении мониторинга акватории южных морей Российской Федерации синергический анализ может оказаться достаточно эффективным средством, но при выполнении обязательного условия - синхронности съемки (с достаточно высоким пространственным разрешением) в разных областях спектра; частично это уже реализовано на европейском спутнике ENVISAT (аппаратура ASAR и MERIS). Единственный недостаток – в аппаратуре MERIS отсутствуют каналы в ИК тепловой области спектра.

В НЦ ОМЗ уже получены первые изображения аппаратуры MERIS и в ближайшее время планируется проведение первых экспериментов с одновременным использованием данных аппаратуры ASAR и MERIS. Сложные погодно-климатические условия северных широт (высокая вероятность облачности, полярная ночь) резко ограничивают возможности практического использования синергического анализа в условиях Карского моря.

В связи с этим в целях создания "инструмента" для формирования дополнительной информации, используемой экспертом-дешифровщиком при принятии решения относительно генезиса сликов, в НЦ ОМЗ ведутся работы по созданию программного обеспечения автоматического обнаружения нефтяных загрязнений морской поверхности на основе автономного анализа данных SAR.

Работы ведутся в рамках:

- подхода, основанного на применении стандартных процедур;
- подхода, основанного на применении упрощенных эвристических алгоритмов.

Подход, основанный на применении стандартных процедур

Создаваемое программное обеспечение включает известный набор процедур:

1) Радиометрического выравнивания изображений.

Пример радиометрического выравнивания SAR изображения. Аппроксимация профиля полиномом второй степени по однородной части изображения.

2) Оптимального подавление спекл-шума с использованием набора фильтров.

Пример подавления спекл-шума с использованием медианного фильтра.

3) Адаптивного определения оптимальных пороговых значений и выделения границ контуров .

Пример выделения контура слика.

4) Формирования наборастатистическиххарактеристиксликадляпоследующейсупервизируемой классификационной обработки :

- площадь А
- периметр Р
- сложность $C = P / [2 (\pi A)^{0.5}]$
- стандартное отклонение (в децибелах) для пикселов слика и фона
- контраст разность (в децибелах) между уровнем

фона и сигнала

И Т.П.

5) Расчета вероятности отнесения генезиса слика к техногенному или к естественному.

Стандартный подход основан на использовании алгоритмов типа:

- максимального правдоподобия
- минимального расстояния
- расстояния Махаланобиса
- нейронной сети

Начата разработка подхода, основанного на применении упрощенных эвристических алгоритмов.

Алгоритмы основаны на анализе совокупности двумерных графиков рассеяния, особое внимание уделяется анализу области границы сликов.

Основные достоинства разрабатываемого подхода:

- создаваемые процедуры способны работать при использовании ограниченного набора обучающих данных; это особенно важно применительно к условиям Карского моря;
- формируемые в результате выполнения этих процедур двумерные зависимости обеспечивают возможности быстрого "усвоения" полученных результатов экспертом-дешифровщиком.

Задача - глобальное наблюдение атмосферы и подстилающей поверхности Земли, позволяющее систематически получать гидрометеорологическую и гелиогеофизическую информацию в планетарном масштабе. На его борту будет установлен SAR СЕВЕРЯНИН, ширина полосы обзора которого в одном из режимов работы равна 800 км (при разрешении 400 м).

Данные этой аппаратуры могут оказаться крайне полезными в задаче глобального мониторинга морей Европы с целью оперативного обнаружения крупных разливов нефти на морской поверхности.

"Resurs-DK1" spacecraft

THANKS FOR YOUR KIND ATTENTION!СПАСИБО ЗА ВНИМАНИЕ!

