Радиолокационная съемка и численное моделирование внутренних приливных волн у северо-восточного побережья США

Бондур В.Г.*, Морозов Е.Г.**, Бельчанский Г.И.***, ГребенюкЮ.В.* *ЦПАМ «Аэрокосмос», **Институт океанологии им. П.П. Ширшова РАН, ***Институт проблем экологии и эволюции им.А.Н. Северцова РАН

Район исследований Северо-Восточное побережье США

Территория покрытия района исследований изображениями

Radarsat-1 Standard Beam от 24.06.1997 г. и 13.08.2002 г.

РЛИ от 24.06.97 г

РЛИ от 13.08.02 г

РЛ-изображения от 24.06.97 г. и 13.08.02 с наложенными изобатами

РЛИ от 24.06.97 г

РЛИ от 13.08.02 г

РЛ-изображение от 24.06.1997 г. и увеличенное изображение пакета внутренних волн

РЛ-изображение от 13.08.2002 г. и увеличенные фрагменты изображения, иллюстрирующие пакеты внутренних волн

Увеличенный фрагмент изображение от 13.08.02 на район каньона Хадсона

Фрагмент изображения от 13.08.2002 г. с указанием расстояний между пакетами внутренних волн

Фрагмент изображения с указанием положения линии сечения пакета волн и профиля коэффициента обратного рассеяния вдоль сечения

Радиолокационные изображения Нью-Йоркской бухты, снятые спутником ERS 18.07.92г. и 31.07.95г.

РЛИ от 18.07.92г-100х180 км

РЛИ от 31.07.95г -100х100 км

Изображения Нью-Йоркской бухты, снятые спутником SEASAT 31.08.78г. и радиометром ASTER 08.06.01г.

ОИ Aster 08.06.01 60х180 км

РЛИ Seasat 31.08.78г. 55х75км

Параметры поверхностных проявлений внутренних волн

№	Изображение	Колич.	Расст.	Колич.
	морской	пакетов ВВ	между	волн в
	поверхности		пакетами	пакете
1	SEASAT 1978 г.	1c 3	11-14 км	15 - 20
		2c 2		
2	ERS-1 1992 г.	1c 4	15-30 км	5 - 10
		2c 1		
3	ERS-1 1995 г.	1c 4	24 -34 км	6 - 10
4	RADARSAT	1 c . – 1		7 - 11
	1997 г.			
5	Радиом. ASTER	1c2	16-24 км	8 - 10
	2001 г.	2c2		
6	RADARSAT	1c4	17-32 км	6 - 12
	2002 г.	2c2		

Модельные оценки параметров внутренних волн в Нью-Йоркской бухте

- Для расчетов используется численная модель генерации, распространения и диссипации внутренних волн, которая построена на основе полных уравнений гидродинамики, учитывающих нелинейность волнового процесса, а также турбулентный обмен и диффузию плотности (разработчик модели Власенко В.И.)
- Система уравнений движения, описывающая динамику стратифицированной жидкости на f-плоскости, сводится к уравнениям для функции тока Ψ (Ψz=U, Ψx=-W) и вихря Ω = (Ψxx + Ψzz).

Система уравнений, описывающая внутренние волны :

$$\begin{split} \Omega_t + J(\Omega, \Psi) - f V_z &= \frac{g\rho_x}{\rho_0} + K\Omega_{xx} + K(z)\Omega_{zz} + (K(z)\Psi_{zz})_z + (K(z))_z \\ V_t + J(V, \Psi) + f \Psi_z &= KV_{xx} + (K(z)V_z)_z \\ \rho_t + J(\rho, \Psi) + \frac{\rho_0 N^2(z)}{g} \Psi_x = R\rho_{xx} + (R(z)\rho_z)_z + (R(z)\rho_{0_z})_z \end{split}$$

где Ψ - это функция тока, $(\Psi_z = u; \Psi_x = -w)$, $\Omega = \Psi_{xx} + \Psi_{zz}$ завихренность, (U, V, W) - вектор скорости, N - частота Вяисяля-Брента, ρ - возмущение плотности за счет волнового движения, ρ_0 - средняя плотность, f - параметр Кориолиса, K(z), K, R(z), R - вертикальные и горизонтальные коэффициенты турбулентной вязкости и диффузии плотности, J - якобиан, g - ускорение силы тяжести.

Поле плотности, возмущенное приливной внутренней волной.

Развитие внутренней волны над шельфом в виде пакетов волн большой амплитуды.

