Спектрофотометрический комплекс для исследования свечений верхней атмосферы с борта международной космической станции

Беляев Б.И., Катковский Л.В., Синельников В.М.,

Сосенко В.А.,

Хвалей С.В.

НИИ Прикладных физических проблем им. А.Н. Севченко Белгосуниверситета г. Минск, Республика Беларусь

sens@niks.by

Наименование работы и задачи исследований

Разработке и изготовлению подлежит научная аппаратура – спектрофотометрический комплекс, предназначенный к установке на Российский сегмент Международной Космической Станции для проведения исследований пространственновременных и спектральных характеристик оптических свечений верхних слоев атмосферы в космическом эксперименте (КЭ) – «Глобальный мониторинг состояния атмосферы путем измерения интенсивностей эмиссий гидроксила и атомарного кислорода с целью разработки эмпирической модели мезосферы для прогнозирования геофизических катастроф» (шифр «Гидроксил»).

Разработчик и изготовитель НА – Научно-исследовательский институт прикладных физических проблем им. А.Н.Севченко Белорусского государственного университета, постановщик КЭ – Институт земного магнетизма, ионосферы и распространения радиоволн Российской академии наук, ответственный за реализацию КЭ – РКК «Энергия» им. С.П. Королева.

Основными научно-техническими задачами КЭ «Гидроксил» являются:

выявление статистически значимых закономерностей долговременной изменчивости гидроксильного излучения в области длин волн 840-1040 нм на высотах 80-93 км и излучения зеленой линии атомарного кислорода (λ=557,7 нм) на высотах 88-105 км и их связи со структурными параметрами атмосферы;

• создание эмпирической модели, описывающей распределение интенсивности гидроксильного и кислородного излучений в зависимости от гелио- и геофизических условий;

• разработка методов применения данных по гидроксильным и кислородным эмиссиям для задач прогнозирования землетрясений и предупреждения о чрезвычайных ситуациях, связанных с некоторыми типами природных и техногенных катастроф.

Линии гидроксильных свечений и их интенсивность при наблюдении в лимб

Схема проведения космического эксперимента «Гидроксил»

Полос	Лин	λ,	Δλ	Интенсивнос
а, ОН(v′,	ИЯ	НМ	, HM	ть при наблюдении
O H (6,	P ₁	839,9	1,	в лимо, Кредей
2)	P ₃	846,5	Ø,	3,5
OH(7,	P ₁	888,5	P,	6,0
3)	P_3	895,8	P,	5,5
OH(8,	P ₁	943,9	Ø,	7,5
4)	P ₃	951,9	P,	7,0
	P_4	956,5	P,	17,5
OH(3,	P ₁	987,2	P,	17,5
0)	P ₂	991,5	P,	17,5
	P_3	996,3	Ø,	11,0
OH(9,	P ₁	1008,	ð ,	10,5
5)	P ₄	1022,	Ø,	7,0
OH(4,	P ₁	1037,	б,	35,5

Геометрические параметры КЭ «Гидроксил»

Параметр	Значение
Радиус Земли R ₃ , км	6400
Высота орбиты Н, км	400
Высота нижней границы слоя наблюдения h ₁ , км	80
Высота верхней границы слоя наблюдения h ₂ , км	110
Угол от надира α ₁ , соответствующий <i>h</i> ₁ , град	72,35
Угол от надира α ₂ , соответствующий h ₂ , град	73,21
Линейный угол поля зрения по вертикали 2ω, град	0,86
Неопределенность ориентации осей Δ, град	0,1-1,0
Наклонение оси прибора вниз от местного горизонта γ, град	17,2
Угол при отклонении поля зрения вниз на 0,1°, α <u>,</u> град	72,25
Высота нижней границы слоя при отклонении оси вниз <i>h_</i> , км	76,39
Угол при отклонении поля зрения вверх на 0,1°, α ₊ , град	73,31
Высота верхней границы слоя при отклонении оси вверх <i>h</i> ₊ , км	113,42
Дальность до центра слоя наблюдения (лимба) R, км	2013

Средняя спектральная плотность энергетической яркости свечений газовых компонент атмосферы при условии наблюдения в надир с усреднением по Δλ = 0,25 мкм

Исходные данные для спектрофотометрического комплекса СФК по данным ТЗ

N⁰	Параметр	Значение для ОН	Значение для кислорода О
1	Спектральный диапазон	840 - 1040 нм, полосы: ОН(v′,v)	557,7 нм 0 ¹ S = 0*
		OH(6,2)-(839-850)OH(3,0)-(947-1000)OH(7,3)-(888-900)OH(9,5)-(994-1025)OH(8,4)-(940-965)OH(4,1)-(1015-1040)	
2	Спектральное разрешение	0,5 нм; для разрешения вращательной структуры Р-ветвей полос не хуже 0,2 нм	0,5 нм
3	Интенсивность эмиссий	отдельных линий в полосе при наблюдении в направлении лимба в максимуме видимого слоя: 1 – 5 Крэлей	10 – 12 Крэлей при наблюдении в направлении лимба
4	Интенсивность фона (непрерывность спектра), регистрируемая в направлении лимба	до 300 – 400 Рэлей/нм	
5	Высота в атмосфере излучающего слоя	80 – 93 км	88 – 110 км, (85 – 105 км) Δ <i>h</i> = 10 км
6	Пространственное разрешение по высоте (при наблюдении в лимб)	1 км (точность абсолютной привязки высоты не хуже 1 км)	1 км
7	Поле зрения вдоль щели, ориентированной вдоль радиуса Земли	4 °	4 °
8	Поле зрения поперек щели, ориентированной вдоль радиуса Земли	0,1°	0,1°
9	Ориентация оптической оси	17,5° вниз от местного горизонта, точность ориентации осей ± 1 °	1 - 1 - Lastrown

•Спектрофотометрический комплекс (СФК) состоит из блока оптических датчиков (БО) и блока электроники (БЭ). БО устанавливается на иллюминаторе РС МКС и состоит из: модуля спектрального изображения МСИ, модуля регистрации свечения МРС.

Оптическая схема полихроматора спектрометра с вогнутой отражательной решеткой

Расчеты спектральных и временных параметров БО СФК

Отношение сигнал/шум:

$$S/N = \frac{\frac{1}{16} P_{\lambda} N_{0} \frac{D_{_{\rm BX}}^{2}}{f_{_{\rm BX}}^{2}} \eta_{\lambda} (\Delta a)^{2} Q_{\lambda} T}{\left[\frac{1}{16} (P_{\lambda} + P_{\lambda}^{\rm b}) N_{0} \frac{D_{_{\rm BX}}^{2}}{f_{_{\rm BX}}^{2}} \eta_{\lambda} (\Delta a)^{2} Q_{\lambda} T + I_{\rm d} T + N_{\rm r}^{2}\right]^{1/2}}$$

Время экспозиции:

$$T = \frac{SNR^2}{2I_{\rm S}} \left| \left(1 + \frac{I_{\rm d}}{I_{\rm S}} \right) + \sqrt{\left(1 + \frac{I_{\rm d}}{I_{\rm S}} \right)^2 + \frac{4N_{\rm r}^2}{SNR^2}} \right|$$

где $SNR \equiv S/N$ - отношение сигнал/шум, I_d - темновой ток, N_r - шум считывания в $e^{-/1}$ пиксель,

I_s - ток полезного сигнала (е/ (пиксель-с)) вычисляется по следующей формуле:

$$I_{\rm S} = \frac{1}{16} P_{\lambda} N_0 \frac{D_{\rm BX}^2}{f_{\rm BX}^2} \eta_{\lambda} \left(\Delta a\right)^2 Q_{\lambda}$$

Значения параметров МСИ СФК для регистрации гидроксильных эмиссий

Параметр	Значение
Диаметр входного объектива	> 1,5 см, (2,5 см)
Фокусное расстояние входного объектива	>4,8 см
Относительное отверстие вх. об.	<0,5
Пространственное разрешение	<1 км
Спектральный диапазон	840 – 1040 нм
Спектральное разрешение	0,2 нм
Размер пикселя	24 мкм
Количество пикселей по вертикали	> 30 (128)
Количество пикселей по горизонтали	1000
Ширина входной щели	> 25мкм
Высота входной щели	>0,8 мм (3,2 мм)
Линейная дисперсия	0,12 мм/нм
Расстояние до источника	2000 км
Мгновенный угол поля зрения одного пикселя	2,9·10 -2 град
Минимальный угол поля зрения по вертикали	0,86/3,0 град.
Средний КПД оптического тракта спектрометра	0,2
Средняя яркость отдельной линии в полосах ОН при наблюдении в лимб	1000 Рэлей
Средняя квантовая эффективность ПЗС матрицы	0,2
Средний темновой ток (при <i>t</i> = - 25°С)	1 e ⁻ / (пиксель·с)
Средний шум считывания	6 е-/пиксель
Средний ток полезного сигнала (входного потока излучения)	3,6 e ⁻ / (пиксель·с)
Время экспозиции для отношения сигнал/шум =3	13 c

Значения параметров МРС СФК для регистрации эмиссии атомарного кислорода

Параметр	Значение
Диаметр входного объектива	> 1,5 см, (2,5 см)
Фокусное расстояние входного объектива	>4,8 см
Относительное отверстие вх. об.	<0,5
Пространственное разрешение	<1 км
Размер пикселя	24 мкм
Количество пикселей по вертикали	> 30 (128)
Количество пикселей по горизонтали	4-8
Полуширина спектрального фильтра на длине волны 557,7 нм	0,5 нм
Средний КПД оптического тракта	0,8
Средняя яркость линии на длине волны 557,7 нм при наблюдении в лимб	10 КРэлей
Квантовая эффективность ПЗС-матрицы на длине волны 557,7 нм	0,3
Средний темновой ток (при <i>t</i> = - 25°C)	1 <i>е</i> -/ (пиксель-с)
Средний шум считывания	6 е-/пиксель
Средний ток полезного сигнала (входного потока излучения)	216 <i>е</i> -/ (пиксель-с)
Время экспозиции для отношения сигнал/шум =10	0,6 c

Блок оптический СФК (экспериментальный образец)

Блок электроники СФК (экспериментальный образец)

Блоки оптический и электроники СФК

Блок оптический СФК со снятыми крышками

Контрольно-поверочная аппаратура для лабораторных испытаний

Функциональная схема и общий вид метрологического комплекса «Камелия-М»

 I – монохроматический осветитель (1 – лампа ТРУ 1100-2350, 2 – монохроматор МДР-23, 3 – коллиматорное зеркало, 4 – плоские поворотные зеркала);
II – компаратор спектральной плотности энергетической яркости (5 – монохроматор МДР-23, 6 – модулятор, 7 – блок приемников, 8 – сферическое зеркало);
III – опорный источник (9 – образцовая светоизмерительная лампа);
IV – диффузный излучатель (10 – фотометрическая сфера, 11 – лампы КГМ24-150, 12 – калиброванные диафрагмы);
V – белый осветитель (13 – лампа КГМ12-150); VI – калибруемый прибор

Функциональная схема блоков имитаторов, совмещенных с комплексом «Камелия-М»

Общий вид монохроматического осветителя

Спектр гидроксила – характер изменения выходного сигнала вдоль строки приемной ПЗС матрицы МСИ

Волновое число, см-1

0.2

Типичные высотные распределения объемной эмиссии и концентраций возбужденных молекул гидроксила ОН и атомарного кислорода

Вид изображения (компьютерная эмуляция), получаемого модулем МСИ: по оси *x* – развертка спектра, по оси *y* – высотное распределение свечения, градациями цвета показана интенсивность эмиссий

Длина волны, нм

Вид изображения (компьютерная эмуляция), получаемого модулем МСИ: на левом рисунке видна траектория движения звезды относительно прибора, излучение которой находится в «зашкале», справа – изображение, скорректированное путем вычитания излучения звезды

Спасибо за внимание !!!

