ФИЗИЧЕСКИЕ ОСНОВЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ТЕХНОСФЕРЫ ИЗ КОСМОСА

В.К. Шухостанов, А.Г. Цыбанов, Л.А. Ведешин

Отделение «Диагностика и безопасность техносферы» РАЕН E-mail: shuhostanov@list.ru; vp@diatech.ru

Фундаментальной основой дистанционного зондирования является взаимодействие электромагнитных волн солнечной радиации с геосистемой. Под геосистемой, применительно к объектам техносферы, понимается система промышленных объектов — объектов искусственного происхождения — нефтегазопродуктопроводы, мосты, тоннели, плотины, дороги т. д., находящихся во взаимодействии как между собой, так и с объектами природной сферы (растительность; почва; водные; горные образования и т. д.). Следствием такого взаимодействия является пропускание и рассеяние солнечной радиации в видимом и ближнем инфракрасном диапазоне, а в области тепловой радиации - собственное излучение и пропускание [1]. Таким образом, основой для полноценного решения задач дистанционного исследования объектов техносферы из космоса является измерение различных количественных характеристик поля электромагнитного излучения.

Природные и искусственные образования отражают солнечную радиацию определенным, характерным только для них образом. На рис. 1 представлены спектральное распределение нормальной плотности потока солнечного излучения на верхней границе атмосферы и спектральная характеристика абсолютно черного тела с температурой 6000 К [2].

Рис. 1. Спектральное распределение нормальной плотности прямой солнечной радиации на верхней границе атмосферы (1) и абсолютно черного тела (2) с температурой 6000 К

Для дистанционных методов зондирования практический интерес представляет область приблизительно 300 нм – 20 м, так как коротковолновая часть излучения Солнца (~ 300 нм) рассеивается и поглощается в верхних слоях атмосферы, а радиоволны длиной 20–30 м экранируются атмосферой [3]. Распределение солнечной радиации в диапазоне

ДДЗ неравномерно — примерно 95 % энергии распределено в диапазоне 300–2400 нм, 99 % — в диапазоне 150–400 нм с максимумом излучения вблизи длины волны ~ 500 нм.

В видимом диапазоне длин волн наибольший интерес с точки зрения дешифрирования объектов техносферы представляет процесс отражения, так как собственное излучение практически отсутствует. Рассмотрим наиболее важные и необходимые характеристики отражения.

Спектральное альбедо — характеристика отражения, определяющая долю отраженной радиации.

В общем случае

$$W_{\lambda} = \frac{F_{\lambda}}{R_{\lambda}},\tag{1}$$

где F_{λ} и R_{λ} — соответственно поток радиации, отраженный поверхностью, и падающий поток.

Интегральное альбедо

$$W = \frac{\int_{0}^{\infty} W_{\lambda} R_{\lambda} d\lambda}{\int_{0}^{\infty} R_{\lambda} d\lambda}.$$
(2)

Коэффициент спектральной яркости показывает отношение яркости в данном направлении (υ , ϕ) к яркости в том же направлении ортотропной поверхности в определенном интервале длин волн (λ , λ + d λ) при данных условиях освещения:

$$r_{\lambda}(\upsilon, \varphi) = \frac{A_{\lambda}(\upsilon, \varphi)}{A_{\lambda}^{0}(\upsilon, \varphi)},$$
(3)

где $A_{\lambda}(\upsilon, \phi)$ — яркость в данном направлении, $A_{\lambda}^{0}(\upsilon, \phi)$ — яркость в том же направлении ортотропной поверхности.

Соответственно интегральный коэффициент яркости находится как

$$r(\upsilon, \varphi) = \frac{\int_{0}^{\infty} A_{\lambda}(\upsilon, \varphi) d\lambda}{A_{\lambda}^{0}(\upsilon, \varphi) d\lambda}$$
(4)

Следует более подробно остановиться на типах отражающих поверхностей. Кроме вышеуказанной ортотропной (отражающей по закону Ламберта) поверхности, различают также зеркальную, антизеркальную и комбинированную поверхность [3]. Поверхность, отображающая зависимость коэффициента спектральной яркости от направления визирования, характеризует индикатриса отражения. На рис. 2 изображены виды индикатрис отражения различных типов поверхностей [3].

Индикатрисы неортотропных типов отражающих поверхностей можно аппроксимировать комбинацией полусферы и эллипсоида [4].

Согласно [4], для реальных земных образований обычно полуоси эллипсоида, лежащие в вертикальной и горизонтальной плоскости, равны, а отношение большой полуоси и полуоси, лежащей в вертикальной плоскости, находится в интервале 5–1.

ФИЗИЧЕСКИЕ ОСНОВЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ТЕХНОСФЕРЫ ИЗ КОСМОСА

Рис. 2. Вид индикатрис различных типов поверхностей: а — ортотропная, б — зеркальная, в — антизеркальная, г — комбинированная

На тип индикатрисы отражения влияет шероховатость поверхности. Для оценки шероховатости поверхности применяются критерий Рэлея и критерий Шифрина [5].

Согласно критерию Рэлея, поверхность считается гладкой, если

$$h \le \frac{\lambda}{16\cos\theta},\tag{4}$$

где *h* — высота шероховатости, θ — угол падения радиации.

Критерий Шифрина характеризует степень шероховатости

$$\eta = 2h\cos\theta/\lambda,\tag{5}$$

где п — коэффициент шероховатости.

Рассмотрим факторы, влияющие на поле отраженной радиации геосистемы.

С изменением зенитного расстояния Солнца величина спектрального альбедо меняется по следующему закону, характеризующему *дневной ход альбедо* [6]:

$$K_{\lambda}(z_0) = \frac{W_{\lambda}(z_0)}{W_{\lambda}(z_0 = 40^0)}.$$
(6),

Исследования [7] изменения дневного хода альбедо, осредненного в интервале $\lambda = 0,5 \div 1,0$ мкм в зависимости от зенитного расстояния Солнца, показали, что величина спектрального альбедо имеет тенденцию к возрастанию с увеличением зенитного расстояния Солнца. Наибольшие изменения альбедо относятся к большим z_0 (~ 700). Кроме того, альбедо существенно изменяется при наличии облачности в зависимости от соотношения прямой и рассеянной радиации (S_{λ}/D_{λ}).

Экспериментальные данные [1] показывают, что оптимальное время измерений составляет от 11 до 14 ч.

Очевидно, что, чем меньше облачность, тем выше альбедо,— это показано на рис. 3 на примере интегрального альбедо травяного покрова.

Спектральные характеристики поверхностей в сильной степени зависят от влажности поверхности. На рис. 4 показано изменение коэффициентов спектральной яркости искусственных эталонов при разной влажности [1]. Применялись текстильные эталоны серого цвета, средний коэффициент отражения которых составляет около 5 %.

Из рис. 4 видно, что наибольшие изменения коэффициента спектральной яркости происходят в примерно до 900 нм, вблизи длины волны 900 нм влажность практически не влияет на коэффициент спектральной яркости.

Рис. 3. Зависимость альбедо A от высоты Солнца h_0 при различной облачности

Рис. 4. Изменение коэффициентов спектральной яркости искусственных эталонов при разной влажности

Для качественной интерпретации космических снимков необходимо проведение расчетов характеристик радиации, отраженной различными искусственными образованиями, для чего нужно определить яркость искусственных образований, учитывая [3]:

• солнечное излучение на земной поверхности при различных толщинах атмосферы и длинах волн (табл. 1 и 2, [3]).

• пропускание рэлеевской (рис. 5а) и замутненной (рис. 5б) атмосферы [9].

Для расчета интенсивности излучения, достигшего космического аппарата представим модель [10], изображенную на рис. 6.

Рис. 5. Пропускание рэлеевской (а) и замутненной атмосферы (б)

ФИЗИЧЕСКИЕ ОСНОВЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ТЕХНОСФЕРЫ ИЗ КОСМОСА

Таблица 1

Таблица 2

....

	Lo.		.K		£4.	
b, sans	8+-1-1 x x 10011-1	A ₁ takin	8e H-5 8	h, nem	Br-14-2 11 11 14814-1	
0.400-0.405	1742	0.550-0.555	1948	0.800-0.810	1190	- 2
0.405-0.400	1896	0.555-0.560	1918	0.810-0.820	1128	- 6
0.410-0.415	1920	0.550-0.585	1904	0.820-0.830	1148	- 6
0.415-0.420	1912	0,565-0,570	1900	0.830-0.840	1100	- 34
0.430-0.425	1,894	0.570-0.575	1014	0.840-0.850	1071	- 24
0.425-0.430	1760	0.575-0.580	1914	0.850-0.860	1051	- 0
0.430-0.435	1740	0,580-0,585	1904	0.860-0.870	1021	- 9
0.415-0.440	1880	0,585-0,590	1904	0.870-0.880	1008	- 0
0.440-0.445	2080	0,590-0,595	1896	0.880-0.890	993	- 9
0.445-0.450	3140	0,985-0,600	1810	0.890-0.900	963	- 2
0.430-0.455	2178	0,600-0,610	1802	0.900-0.910	927	
0.455-0.460	2178	0,610-0,620	1764	0,910-0,920	914	- 33
0.460-0.465	2145	0,620-0,630	1732	0,920-0,930	859	- 33
11.465-0.470	21.50	0,830-0,640	1690	0,930-0,940	871	- 33
0.470-0.415	2140	D,640-D,650	1661	0,940-0,950	8.53	- 13
0.415-0.480	2160	0,650-0,660	1638	0,950-0,960	825	- 33
11.480-0.485	30944	0,660-0,670	1622	0,960-0,970	815	- 33
0.485-0.490	2000	0,670-0,680	1.581	0,970-0,980	809	- 6
0.490-0.495	2040	0,680-0,690	1539	0,980-0,990	268	- 8
11.495-0.500	2060	0,690-0,590	14995	0.981-5,000	754	- 3
11.500-0.505	1990	0,700-0,710	1504	1,000-1,010	7.563	- 3
0.505-0.510	1960	0,710-0,720	1441	1,010-1,020	715	- 6
0.510-0.515	1930	0,720-0,730	1420	1,020-1,030	702	- 3
0.515-0.520	1920	0,730-0,740	1,390	1,030-1,040	68T	- 13
0.520-0.525	1930	0,740-0,750	1347	1,040-1,050	673	
0.525-0.530	1930	0,793-0,760	1359	1,050-1,060	-660	
0.530-0.535	1970	0,360-0,720	1.298	1,060-1,070	6-85	
11,535-0,540	1980	0,770-0,780	1.253	1,070 - 1,080	6.53	
0,540-0,545	1990	0,780-0,790	1.238	1,080-1,090	619	
0,545-0,550	1950	0,795-0,800	1208	1,090 - 1,100	605	

A. Adding					
22022		4	3	*	
0.40-0.42	1332.225	952,550	687,590	905,6815	366,1872
0,42-0,44	1429,875	10985,075	845,4875	645,1875	495,225
0,44-0,45	1715.850	1374,075	1102.090	882,3375	707,9625
0,46-0,48	1778,625	1475,2125	1334,1129	1018,350	845,975
0,48-0.50	1701,900	1450,800	1234,575	1053,225	\$96,2879
0,50-0,52	1674,000	1450,800	1255,500	1066,100	\$41,625
0.52-0.54	1632.190	3429,875	1252.0125	1095,075	999,0625
0,54-0,56	1706,875	1913,579	1339,200	1185,750	1049,7373
0.56-0.58	1653,075	1454,750	1297,350	1150,875	1018,350
0,58-0,60	1677,4879	1506,600	1353,150	1217,1379	1091,5873
0,60-0,62	1558,9125	1408,950	1272.9975	1150,875	1099,275
8,62-0,64	1527,525	1408,950	1297,350	1396,2125	1102,050
0,64-0,96	1344, 9625	1440,3375	1342,6875	1252,0125	1168,3125
0,66-0,68	1436,850	1356,6375	1283,480	1213,850	1147,3875
0,68-0,70	1381,050	1314,7835	1255,300	1196,2125	1140,4125
0,70-0,72	1321,7625	1268,9625	1210,1625	1161,3175	1112,5125
0,72-0,74	1265,9625	1220,625	1178,375	3136,925	1098,5625
1,74-0,76	1306,675	1175,2875	1143,990	1112,5125	1061,125
1,76-0,78	1147,3875	1119,4875	1091.3875	1063,6875	1005,7875
0,78-0,80	1147,3875	1119,4875	1095,075	1070,0625	1046,250
0,80-0,85	1029,310	1309,980	990,490	972,315	954,080
0,850,90	934,885	910,015	896,985	883,835	\$70,480
0,90-0,95	818,865	809,100	T99,335	789,570	779,805
8,95-1,00	764,450	757,485	790,510	343,535	736,560
1,00-1,5	459,513	457,6995	415,885	454;0725	452,759

Рис. 6. Модель для расчета полной измеряемой яркости

Полная измеряемая яркость на борту космического аппарата представляет собой сумму яркости поверхности Земли, отражающей солнечное излучение, и яркости атмосферы, рассеивающей солнечное излучение в направлении измерения.

Плотность потока солнечного излучения на земной поверхности [3]:

$$E_{h} = \sin h \int_{\lambda_{\min}}^{\lambda_{\max}} E_{0}(\lambda) P_{h}(\lambda, H) d\lambda, \qquad (7)$$

где $E_0(\lambda)$ — спектральная плотность потока солнечного излучения на верхней границе атмосферы при нормальном падении лучей; $P_h(\lambda, H)$ – коэффициент пропускания атмосферы на длине волны для высоты Солнца h.

Если принять, что спектральный коэффициент отражения $r(\lambda)$ зависит только от длины волны и измерение излучения проводится в направлении надира, то яркость земной поверхности L_s , обусловленная отраженным ею излучением [3],

$$L_{s} = \frac{1}{\pi} \sin h \int_{\lambda_{\min}}^{\lambda_{\max}} E(\lambda) P_{h}(\lambda, H) P_{\lambda_{i}}(H) r(\lambda) R(\lambda) d\lambda \ [\text{Bt·m}^{-2} \cdot \text{cp}^{-1}], \tag{8}$$

где $P_{\lambda_i}(H)$ — коэффициент передачи атмосферой солнечного излучения, отраженного от Земли; $R(\lambda)$ — спектральная характеристика соответствующего измерительного канала.

Яркость отраженного атмосферой излучения определяется, как:

$$L_{A} = \frac{1}{\pi} \int_{\lambda_{\min}}^{\lambda_{\max}} E(\lambda) r_{h}'(\lambda) R(\lambda) d\lambda \quad [BT \cdot M^{-2} \cdot cp^{-1}],$$
(9)

где $r'_h(\lambda)$ — спектральный коэффициент отражения атмосферы (рис. 7) [11].

Таким образом, полная измеряемая яркость определяется выражением:

$$L = \frac{1}{\pi} \int_{\lambda_{\min}}^{\lambda_{\max}} E(\lambda) R(\lambda) [P_h(\lambda, H) P_{\lambda_i}(H) r(\lambda) \sin h + r'_h(\lambda)] d\lambda.$$
(10)

Подводя некоторые итоги, следует сказать, что была проведена работа по описанию некоторых основных и существенных физических характеристик с целью использования их в дальнейшем для исследования дистанционного зондирования объектов техносферы из космоса. Необходимо отметить, что исследование объектов техносферы из космоса является новым и малоизученным направлением в области обработки данных дистанционного зондирования. На данный момент ощущается нехватка фундаментальных исследований спектральных характеристик промышленных объектов, а класс «техносфера» отсутствует вообще, в отличие от объектов естественного происхождения. В связи с этим настоящая работа проведена на теоретической базе практически без подкрепления полевыми исследованиями, но, тем не менее, обозначено направление дальнейших исследований. Не проведена работа по изучению собственного теплового излучения объектов техносферы и внутренних процессов взаимодействия света и твердого тела, связанных с излучением энергии. В дальнейшем большое внимание следует уделить моделированию процесса переноса солнечной энергии через атмосферу и изучению количественных характеристик процессов пропускания и поглощения солнечной радиации атмосферой.

Литература

1. Методика каталогизации спектральных характеристик объектов земной поверхности: Итоговый отчет о работах, выполненных по направлению 5 РГДЗ за 1981–1985 гг. М., 1987.

2. Глаголев Ю.А. Справочник по физическим параметрам атмосферы. Л.: Гидрометеоиздат, 1970.

3. Мишев Д. Дистанционные исследования земли из космоса. М.: Мир, 1985.

4. Космическая фотосъемка и геологические исследования. Л: Недра, 1975.

5. Шифрин К.С. К теории альбедо // Тр. ГГО. 1953. Вып. 39. С. 101.

6. Исследование природной среды с пилотируемых орбитальных станций. Л: Гидрометеоиздат, 1972.

7. Грищенко Д.Л. Зависимость альбедо моря от высоты Солнца и волнения земной поверхности // Тр. ГГО. 1959. Вып. 90.

8. Мелешко К.Е. Изучение спектральных коэффициентов яркости природных объектов в полевых условиях // Исслед. оптич. свойств природ. объектов и их аэрографич. изображения. Л.: Наука, 1970.

9. *Янишевский Ю.Д.* Вопросы методики измерений пиранометрии и рассеяния радиации в Павловске // Тр. ГГО. 1951. Вып. 26. С. 88.

10. Manual of Remote Sensing. American Society of Photogrammetry. Falls Churich. Virginia, 1975.

11. Fraser R.S. Computed Intensity and Polarization of Light Scattered from the Earth and Overlying Aerosols // J. Opt. Soc. Am. 1964. V. 54. N 2.