A fully relativistic twisted accretion disc around a Kerr black hole

V．Zhuravlev ${ }^{1} \quad P$ ．Ivanov ${ }^{2}$
${ }^{1}$ Moscow State University
${ }^{2}$ Lebedev Physical Institute

July 1， 2011

Overview of previous analytical studies

- Bardeen \& Petterson (1975) - a first quantitative study, the disc is considered as a collection of "rigid" rings, the equations obtained are however quantitatively wrong, say, they do not conserve angular momentum.
- Petterson $(1977,1978)$ Hatchett, Begelman \& Sarazin (1981) — twisted coordinate systems were considered for Newtonian discs, the equations are improved but not quite...
- Papaloizou \& Pringle (1983) - a first correct consideration. It was shown that one has to consider velocity/density perturbations in a self-consistent picture. It was stressed that these perturbations determine evolution/shapes of stationary configurations for nearly Keplerian, low viscosity discs.

Overview of analytical previous studies

- Papaloizou \& Lin (1995) - bending waves, the case of low viscosity.
- Ivanov \& Illarionov (1997) - stationary solution, low viscosity and post-Newtonian corrections, it was found that a low viscosity stationary disc exhibits radial oscillations instead of alignement with the equatorial plane in case of disk gas rotating in the same sense as the black hole.
- Demianski \& Ivanov (1997) - a full system of equations with post-Newtonian corrections describing a low viscosity twisted disc.
- Lubow, Ogilvie \& Pringle (2002) - time dependant evolution of such discs.

Overview of analytical previous studies

The previous studies showed that a nearly Keplerian twisted disc has two different types of time evolution and stationary configurations for $\alpha>h / r$ and $\alpha<h / r$, where α is the well known Shakura-Sunyaev parameter.
h / r is assumed to be small, it is of the order of $10^{-2}-10^{-3}$.

Overview of analytical previous studies

The case of $\alpha>h / r$
In this case a stationary twisted disc always aligns with the equatorial plane of a rotating black hole at radii smaller than or of the order of

$$
R_{1} \sim \alpha^{2 / 3} a^{2 / 3}(r / h)^{4 / 3} R_{g}
$$

where R_{g} is the gravitational radius, a is the rotational parameter of the black hole.

Overview of analytical previous studies

The case of $\alpha>h / r$
In this case a stationary twisted disc always aligns with the equatorial plane of a rotating black hole at radii smaller than or of the order of

$$
R_{1} \sim \alpha^{2 / 3} a^{2 / 3}(r / h)^{4 / 3} R_{g}
$$

where R_{g} is the gravitational radius, a is the rotational parameter of the black hole.

The time evolution has a character of diffusion, with characteristic time scale

$$
t_{1}=\alpha(r / h)^{2} \Omega^{-1}
$$

where the Keplerian angular frequency $\Omega=\sqrt{G M / r^{3}}, M$ is the mass of the black hole.

Overview of previous analytical studies

The case of $\alpha<h / r$
When a>0 a stationary twisted disc experiences radial oscillations of its inclination angle β (The angle between a unit vector normal to the disc's rings and the equatorial plane of the black hole). When $a<0$ it aligns with the equatorial plane. The scale of oscillation/alignement
$R_{2} \sim a^{2 / 5}(r / h)^{4 / 5} R_{g}$

Overview of previous analytical studies

The case of $\alpha<h / r$
When $a>0$ a stationary twisted disc experiences radial oscillations of its inclination angle β (The angle between a unit vector normal to the disc's rings and the equatorial plane of the black hole). When $a<0$ it aligns with the equatorial plane. The scale of oscillation/alignement
$R_{2} \sim a^{2 / 5}(r / h)^{4 / 5} R_{g}$

The time evolution is wave-like with a characteristic time scale of order of the 'sound' time scale
$t_{2} \sim(r / h) \Omega^{-1}$

Metric

The Kerr metric of a slowly rotating black hole in the linear approximation in rotational parameter a $a \ll 1$:
$d s^{2}=(1-2 M / R) d t^{2}-(1-2 M / R)^{-1} d R^{2}-R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)+4 a \frac{M}{R} \sin ^{2} \theta d \phi d t$

Let us change to the "isotropic" radial coordinate:
$R=R_{I}\left(1+\frac{M}{2 R_{I}}\right)^{2}$
and get a metric with the spacial line element proportional to the Cartesian spatial line element:
$d s^{2}=K_{1}^{2} d t^{2}+2 a r^{2} K_{1} K_{3} d \phi d t-K_{2}^{2}\left(d r^{2}+d z^{2}+r^{2} d \phi^{2}\right)$

Twisted coordinates

$$
\left(\begin{array}{c}
\tau \\
r \cos \psi \\
r \sin \psi \\
\xi
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \gamma & \sin \gamma & 0 \\
0 & -\sin \gamma & \cos \gamma & \beta \\
0 & \beta \sin \gamma & -\beta \cos \gamma & 1
\end{array}\right)\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right)
$$

(1) $|\beta(\tau, r)| \ll 1, \gamma(\tau, r)$ are functions to be determined
(2) $\Psi_{1}=\beta \cos \gamma, \Psi_{2}=\beta \sin \gamma \quad \Longrightarrow \quad \mathbf{W}=\beta e^{i \gamma}$
(3) change to $\varphi=\psi+\gamma$
(1) $Z=\beta \sin \psi=\Psi_{1} \sin \varphi-\Psi_{2} \cos \varphi, \quad U=\dot{Z}, \quad W=Z^{\prime}$

Equations of motion

Relativistic hydrodynamics

The law of mass conservation:

$$
\left(\rho U^{i}\right)_{; i}=0
$$

The law of energy-momentum conservation:

$$
T_{; k}^{i k}=0
$$

Both laws of consevation are splitted on unperturbed and perturbed parts. It may be shown that in the linear approximation in angle β equations describing the unperturbed part can be reduced to the ones of the Novikov-Thorne model.

$$
\begin{aligned}
& T^{i k}=(\epsilon+p) U^{i} U^{k}-p g^{i k}+T_{\nu}^{i k}-U^{i} q^{k}-U^{k} q^{i}, \\
& g^{i k}=\operatorname{diag}\{1,-1,-1,-1\}, \quad \epsilon=\rho+\epsilon_{t h}
\end{aligned}
$$

The viscous part is $T_{\nu}^{i k}=2 \eta \sigma^{i k}$
The shear tensor is $\sigma^{i k}=\frac{1}{2}\left(U_{i j}^{i} P^{j k}+U_{i j}^{k} P^{j i}\right)-\frac{1}{3} U_{i j}^{j} P^{i k}$
The projection tensor is $P^{i k}=g^{i k}-U^{i} U^{k}$
q^{i} is the energy flux, η is the dynamical viscosity

A reduced system of equations

- Consider an isothermal density vertical distribution

$$
\rho=\rho_{c} \exp \left(-\frac{\xi^{2}}{2 h^{2}}\right)
$$

- The velocity perturbations have now the form

$$
v^{\varphi}=\xi\left(A_{1} \sin \varphi+A_{2} \cos \varphi\right) \quad v^{r}=\xi\left(B_{1} \sin \varphi+B_{2} \cos \varphi\right)
$$

- Let us introduce complex notation

$$
\mathbf{A}=A_{2}+i A_{1}, \quad \mathbf{B}=B_{2}+i B_{1} \quad \text { and } \quad \mathbf{W}=\beta e^{i \gamma}
$$

A reduced system of equations

The "horizontal" part of twist equations can be rewritten as

$$
\begin{gathered}
\dot{\mathbf{A}}-(i-\alpha) \Omega \mathbf{A}+\frac{\kappa^{2}}{2 \tilde{\Omega}} \mathbf{B}=-\frac{3}{2} i \alpha K_{1}\left(U^{\tau}\right)^{2} U^{\varphi} \Omega \mathbf{W}^{\prime} \\
\dot{\mathbf{B}}-(i-\alpha) \Omega \mathbf{B}-2 \tilde{\Omega} \mathbf{A}=-(i+\alpha) U^{\varphi} \Omega \mathbf{W}^{\prime}
\end{gathered}
$$

Characteristic frequencies of a slightly perturbed free circular motion in the Schwarzschild metrics are

$$
\Omega=R^{-3 / 2}, \quad \kappa^{2}=R^{-3}\left(1-\frac{6}{R}\right), \quad \tilde{\Omega}=\frac{R-3}{R^{2}(R-2)^{1 / 2}}
$$

A reduced system of equations

The "vertical" part of twist equations can be rewritten as

$$
\begin{aligned}
\dot{\mathbf{W}}-i \Omega_{L T} \mathbf{W}+ & \frac{3}{2} \alpha \delta^{2} \frac{K_{1}^{2}}{K_{2}} U^{\varphi}\left(U^{\tau}-K_{1}\left(r K_{2}\right)^{1 / 2} \frac{U^{\varphi}}{D}\right) \mathbf{W}^{\prime}= \\
& \frac{\delta^{2} K_{1}^{3} U^{\varphi}}{2 r^{1 / 2} K_{2}^{3 / 2} D} \frac{\partial}{\partial r}\left\{r^{3 / 2} K_{2}^{1 / 2} \frac{D}{K_{1}^{2} U^{\tau} U^{\varphi}}\left((i+\alpha) \mathbf{B}+\alpha U^{\varphi} \mathbf{W}^{\prime}\right)\right\}
\end{aligned}
$$

which contains an additional characteristic frequency of the problem, namely, the Lense-Thirring frequency

$$
\Omega_{L T}=\Omega-\Omega_{\perp}=2 a R^{-3}
$$

where Ω_{\perp} is the frequency of a free vertical harmonic oscillations in the equatorial plane of the Kerr black hole.

$$
\delta(r)=h(R) / R=\delta_{*} K_{1}^{3 / 5} K_{2}^{1 / 20}\left(U^{\tau}\right)^{-4 / 5} D^{1 / 5} r^{1 / 20}
$$

and

$$
D=1-\frac{\sqrt{6}}{\sqrt{R}}-\frac{\sqrt{3}}{2 \sqrt{R}} \ln \frac{(\sqrt{R}-\sqrt{3})(3+2 \sqrt{2})}{(\sqrt{R}+\sqrt{3})} .
$$

Note that $D\left(R=R_{m s}\right)=0$.

An equation for stationary shapes

Setting all time derivatives in the twist equations to zero we get

$$
\frac{K_{1}}{R^{1 / 2} D} \frac{d}{d R}\left(\frac{R^{3 / 2} D}{K_{1} U^{\tau}} f^{*}(\alpha, R) \frac{d \mathbf{W}}{d R}\right)-3 \alpha U^{\tau}\left(1-D^{-1}\right) \frac{d \mathbf{W}}{d R}+\frac{4 i a}{\delta^{2} K_{1}^{3} R^{3} U^{\varphi}} \mathbf{W}=0
$$

where $*$ stands for the complex conjugate and

$$
f(\alpha, R)=\left(1+\alpha^{2}-3 i \alpha K_{1}^{2}\right) \frac{R(i-\alpha)}{\alpha R(\alpha+2 i)-6}+\alpha
$$

The solutions have two independent parameters

$$
\begin{gathered}
\alpha \quad \rightarrow[0,1] \\
\tilde{\delta}=\delta_{*} / \sqrt{|a|} \quad \rightarrow(0, \infty)
\end{gathered}
$$

Analytical solution: an almost inviscid case

Let us set formally $\alpha=0$,

$$
\frac{d}{d R}\left(b \frac{d}{d R} \mathbf{W}\right)+\lambda \mathbf{W}=0
$$

thus obtaining
where $b \propto D, \lambda \propto D / \delta^{2}$

Close to $R_{m s} \quad \Longrightarrow \quad x=R-R_{m s}$ and $\quad D \simeq x^{2} / 72$

The twisted disc near $R_{m s}=3 R_{g}$ is described by

The regular solution of (*) gives a boundary condition at $R_{m s}$

$$
\begin{equation*}
\frac{1}{x^{2}} \frac{d}{d x} x^{2} \frac{d}{d x} \mathbf{W}+\chi x^{-4 / 5} \mathbf{W}=0 \tag{*}
\end{equation*}
$$

$$
\mathbf{w}=C x^{-1 / 2} J_{5 / 6}\left(5 / 3 \sqrt{\chi} x^{3 / 5}\right)
$$

The analytical solution: an almost inviscid case

The analytical solution for the shape of twisted accretion disc for $a>0$ and $\tilde{\delta} \ll 1$

Close to $R_{m s}$

$$
\begin{gathered}
\mathbf{W}=C_{1} x^{-1 / 2} J_{5 / 6}\left(5 / 3 \sqrt{\chi} x^{3 / 5}\right) \\
\mathbf{w} \approx \frac{C_{2}}{(\lambda b)^{1 / 4}} \cos \left(\int_{R_{m s}}^{R} \sqrt{\lambda / b} d R+\phi_{W K B J}\right)
\end{gathered}
$$

WKBJ-oscillations in the relativistic region

For $R \gg R_{m s}$

$$
\mathbf{w}=C_{3} x_{1}^{3 / 2}\left(A_{1} J_{-3 / 5}\left(C_{4} R^{-5 / 4}\right)+A_{2} J_{3 / 5}\left(C_{4} R^{-5 / 4}\right)\right)
$$

Resonant solutions: a self-warping disc or a tilting doll

The relation between inclination angles at $R_{m s}$ and far from the black hole

$$
\mathbf{W}_{\infty}=C_{\text {tot }}(\tilde{\delta}) \mathbf{W}_{0}
$$

Average behaviour

$$
C_{t o t} \sim \tilde{\delta}^{43 / 30}
$$

$C_{\text {tot }} \rightarrow 0$ at discrete values of

$$
\tilde{\delta}_{k} \simeq \frac{\pi}{2}(73 / 30+2 k)
$$

$k=0,1,2, \ldots$

Numerical results

Figure: Upper panel: $\tilde{\delta}={ }^{\mathrm{k} 1} 0^{-2}, \alpha=0,10^{-4}, 10^{-3}, 10^{-2}$. The right plot $\beta(R)$, the left plot - projection of the unit vector perpendicular to the disc rings onto the equatorial plane Lower panel: the same as the upper one but for larger $\alpha=0.05,0.1$, 0.2 and 1 .

Numerical results

Figure: $\beta(R)$ for $\tilde{\delta}=0.1$ and $\alpha=0,10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$ and 1 .

Numerical results

Figure: $\beta\left(R=R_{m s}\right)$ as a function of $\tilde{\delta} . \beta(R=\infty)=1, \alpha=0,10^{-4}, 10^{-3}, 10^{-2}$.

Numerical results

Figure: Levels of constant $\beta\left(R=R_{m s}\right)$ on the plane $(\tilde{\delta}, \alpha), \beta(R=\infty)=1$.

Summary

- Dynamical equations describing the evolution and stationary configurations of a fully relativistic thin twisted disc have been derived assuming $\beta \ll 1$ and $a \ll 1$
- For the simple Novikov-Thorne model of a flat disc with a constant value of the Shakura-Sunyaev parameter α equations can be further simplified. The final twist equations are formulated for three complex variables W, A \& B determining the geometry of the disc and shear velocities induced by warp. Under certain assumption \mathbf{A} can be expressed through \mathbf{B}, and the disc dynamics can be described by a pair of equations for \mathbf{W} and \mathbf{B}.
- The stationary configurations can be fully described by two parameters - α \& $\tilde{\delta}=\delta_{*} / \sqrt{a}$.
- An analytical theory of stationary disc has been constructed for the case a >0 \& $\tilde{\delta} \ll 1$. The disc exhibit prominent oscillations of the inclination angle with R which can grow indefinitely while $\tilde{\delta} \rightarrow 0$. Also there are specific "resonant" solutions for discrete values for $\tilde{\delta}$.
- For a moderate value of the viscosity parameter α the Bardeen-Petterson effect is absent. The disc remains to be twisted in the vicinity of a black hole. The disc can align with the equatorial plane of a black hole only in the case of a large value of α and a sufficiently small $\tilde{\delta}$.

Remarks

Possible further developments.

- Time-dependant solutions of twist equations - temporal activity of accretion discs in relativistic regime. Quasi-normal modes with $\omega \ll \Omega$.
- One may include the next order terms in h / r in equations. This must be related to twisted slim discs. The problem of peculiarity near the last stable orbit $R_{m s}$ should be considered.
- Generalisation of stationary solutions up to $a \sim 1$.
- Feedback effects of warp and twist: self-irradiation of the disc, vertical structure modified by shear velocities etc.
- Calculation of light curves, spectral features and other observational manifestations for particular astrophysical sources.

