Calculations of supernova spectra, taking into account time-dependent NLTE processes for multiply charged ions in the Sobolev approximation.

M.Sh.Potashov

S.I.Blinnikov, P.V.Baklanov, A.A.Andronova

marat.potashov@gmail.com

ITEP

SN 1987A

$H\alpha$ line is weak, SN1999em, day 37

Dessart, L., Hillier, J. 2005, CMFGEN

Time dependent effects

 Utrobin, V. U., Chugai, N. 2002 - 2005
 A time-dependent hydrogen ionization in the atmosphere of SN 1987A.

Time dependent effects

- Utrobin, V. U., Chugai, N. 2002 2005
 A time-dependent hydrogen ionization in the atmosphere of SN 1987A.
- Zeldovich, Ya. B., Kurt, V. G., and Sunyaev, R. A. 1968 Importance of the ionization freeze-out effect in cosmology.

- Advantages and disadvantages of the radiations-hydrodynamic **STELLA** code
 - $^\circ~+$ CMFGEN hydrodynamic is NOT included
 - + Utrobin, Chugai grey atmosphere
 - \circ LTE

- Advantages and disadvantages of the radiations-hydrodynamic **STELLA** code
 - + CMFGEN hydrodynamic is NOT included
 - + Utrobin, Chugai grey atmosphere
 - − LTE
- Hydrodynamic profiles and photosphere continuum from STELLA

- Advantages and disadvantages of the radiations-hydrodynamic **STELLA** code
 - \circ + CMFGEN hydrodynamic is NOT included
 - + Utrobin, Chugai grey atmosphere
 - \circ LTE
- Hydrodynamic profiles and photosphere continuum from STELLA
- Rate equations

- Advantages and disadvantages of the radiations-hydrodynamic **STELLA** code
 - \circ + CMFGEN hydrodynamic is NOT included
 - + Utrobin, Chugai grey atmosphere
 - – LTE
- Hydrodynamic profiles and photosphere continuum from STELLA
- Rate equations
- Transfer equations in **Sobolev** approximation and taking into account **multiplet coupling**

Initial conditions

• First path: SAHA or LUCY $(T_m \rightarrow T_c)$ and Boltzmann

Initial conditions

- First path: SAHA or LUCY $(T_m \rightarrow T_c)$ and Boltzmann
- Second path: Number densities from first path

•
$$\frac{\partial n_{z,i}}{\partial t} = -div(n_{z,i}\overrightarrow{v}) + \sum_{j\neq i}(n_{z,j}P_{j,i} - n_{z,i}P_{i,j})$$

•
$$\frac{\partial n_{z,i}}{\partial t} = -div(n_{z,i}\overrightarrow{v}) + \sum_{j\neq i}(n_{z,j}P_{j,i} - n_{z,i}P_{i,j})$$

•
$$\frac{Dn_{z,i}}{Dt} = -\frac{3n_{z,i}}{t} + \sum_{j < i} (n_{z,j}A_{ij} + n_{z,i}B_{ij}J_{ji} - n_{z,j}B_{ji}J_{ji}) - \sum_{j > i} (n_{z,j}A_{ji} + n_{z,j}B_{ji}J_{ij} - n_{z,i}B_{ij}J_{ij}) + n_{e} \sum_{j \neq i} n_{z,j}C_{ji} - n_{e}n_{z,i} \sum_{j \neq i} C_{ij} - n_{z,i}(B_{z,ic} + n_{e}C_{z,ic}) + n_{e}n_{z^{+}}(B_{z,ci} + n_{e}C_{z,ci}) + \frac{n_{z,i}}{n_{z}} \sum_{j=1}^{n} n_{z^{-},j}(B_{z^{-},jc} + n_{e}C_{z^{-},jc}) - n_{z,i} \sum_{j=1}^{n} n_{e}(B_{z^{-},cj} + n_{e}C_{z^{-},cj}), \ i = 1, 2 \dots$$

•
$$\frac{\partial n_{z,i}}{\partial t} = -div(n_{z,i}\overrightarrow{v}) + \sum_{j\neq i}(n_{z,j}P_{j,i} - n_{z,i}P_{i,j})$$

•
$$\frac{Dn_{z,i}}{Dt} = -\frac{3n_{z,i}}{t} + \sum_{j < i} (n_{z,j}A_{ij} + n_{z,i}B_{ij}J_{ji} - n_{z,j}B_{ji}J_{ji}) - \sum_{j > i} (n_{z,j}A_{ji} + n_{z,j}B_{ji}J_{ij} - n_{z,i}B_{ij}J_{ij}) + n_{e}\sum_{j \neq i} n_{z,j}C_{ji} - n_{e}n_{z,i}\sum_{j \neq i} C_{ij} - n_{z,i}(B_{z,ic} + n_{e}C_{z,ic}) + n_{e}n_{z} + (B_{z,ci} + n_{e}C_{z,ci}) + \frac{n_{z,i}}{n_{z}}\sum_{j=1}^{n} n_{z} - j(B_{z} - jc + n_{e}C_{z} - jc) - n_{z,i}\sum_{j=1}^{n} n_{e}(B_{z} - cj + n_{e}C_{z} - cj), \quad i = 1, 2 \dots$$

•
$$\frac{Dn_{e}}{Dt} = n_{z,i}(B_{z,ic} + n_{e}C_{z,ic}) - n_{e}n_{z^{+}}(B_{z,ci} + n_{e}C_{z,ci})$$

Two photon decay

$$\frac{\mathrm{D}n_{\mathrm{H,1}}}{\mathrm{D}t} = \frac{\mathrm{D}n_{\mathrm{H,1}}}{\mathrm{D}t} + A_{2q}$$
$$\frac{\mathrm{D}n_{\mathrm{H,2}}}{\mathrm{D}t} = \frac{\mathrm{D}n_{\mathrm{H,2}}}{\mathrm{D}t} - A_{2q}$$

System closure

$$\frac{\mathrm{D}n_{\mathrm{z},p}}{\mathrm{D}t} = -\frac{3n_{\mathrm{z},p}}{t} - \sum_{j \neq p} \frac{\mathrm{D}n_{\mathrm{z},j}}{\mathrm{D}t}$$

Line transfer

•
$$J_{lu} = (1 - \beta_{lu})S_{lu} + \beta_{lu}I^* \cdot W$$

Line transfer

•
$$J_{lu} = (1 - \beta_{lu})S_{lu} + \beta_{lu}I^* \cdot W$$

• $\beta_{ul} = \frac{1 - exp(-\tau_{lu})}{\tau_{lu}}$
 $\tau_{lu} = \frac{c^3}{8\pi}\frac{1}{\nu_{lu}}\frac{g_l}{g_u}A_{ul}t\left(n_l - \frac{g_l}{g_u}n_u\right)$
 $S_{lu} = \frac{2h\nu_{lu}^3}{c^2}\left(\frac{g_un_l}{g_ln_u} - 1\right)^{-1}$

Steady state at 15 Day

Time dependent at 15 Day

Steady state, time dependent at 15 Day

Steady state, multiplet coupling at 15 Day

Time dependent, multiplet coupling at 15 Day

All, multiplet coupling at 15 Day

Tarusa 19.01.2012 - p. 18

