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Dynamic stability of spherical stars is determined by an average
adiabatic power v = glﬁé ‘I; . For a star with a density distribu-
tion p = pop(m/M), the star in the newtonian gravity is stable
against dynamical collapse when fUR (v — %)Pﬁ > 0 (Zeldovich
and Novikov, 1967; Bisnovatyi-Kogan, 1989). This approximate cri-
terium becomes exact for adiabatic stars with constant v. Here pg
is a central density, M is a stellar mass, m is the mass inside a La-
grangian radius r, so that m = 4x [ pridr, M = m(R), R is a stellar
radius. Collapse of a spherical star may be stopped only at stiffening
of the equation of state, like neutron star formation at late stages
of evolution, or formation of fully ionized stellar core with v = % at
collapse of clouds during star formation. Without such stiffening a
spherical star in the newtonian theory would collapse into a point

with infinite density (singularity).
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Let us consider 3-axis ellipsoid with semi-axes a # b # ¢

2 2 2
syt 2
e i ] 1
a’> b P (1
and uniform density p. A mass m of the uniform ellipsoid is written
as (V' is the volume of the ellipsoid)
iy
m—pV—?pabc (2)
Let us assume a linear dependence of velocities on coordinates
ax By Cz
Ve = — Uy = —, Uy, =—. 3
a O/ % (3)
The gravitational energy of the uniform ellipsoid is defined as
‘3Gm du (4)
b? + u)(c? + u)
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The equation of state P = K p” is considered here, with v =4/3.

A spherical star with v = 4/3 collapses to singularity at small
enough K, and we show here, how deviations from a spherical form
prevent formation of any singularity.

For v = 4/3, the thermal energy Ey, ~ V=13 ~ (abc)™'/3, and
the value

3 1/3
— B, (abe)® =3 ( 47}) K

remains constant in time.

A Lagrange function of the ellipsoid is written as

L= Ukin - Upot 3 Upot - Ug + Eth ) (5)
7 . . ;
Uin = D p/(ti + Uj +02)dV = % (RN (6)
s
Eth - (7)
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be3pasmepHblie
YPaBHEHUA OBUXKEHUSA
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for the oblate spheroid £ = ¢/a < 1,
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for the prolate spheroid £ = ¢/a > 1, and
. 1—¢ e
i=——3 (28)

for the sphere, where the equilibrium corresponds to e, = 1.
Near the spherical shape we should use expansions around
k = 1, what leads to equations of motion valid for both
oblate and prolate cases
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bespasmepHasa nonHaga aHeprus
(be3pasmepHbIV raMmnIibTOHUAH)
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Sphere:
¢ = 1 — noJiHas sHeprus paBHa HyIo (H = 0), paguyc npousBojicH

e < 1 — cdepa KoIANCUPYET B CHHTYJISPHOCTD
¢ > | — pa3pylieHue 3Be3/1bl C pa3jieTOM Ha OECKOHEUYHOCTD

Spheroid:
¢ = 0 — ciabast CMHTYJIIPHOCTh, 00Opa3oBaHKUE OJIMHA
¢ > () — KoJLi1a1ca B CHHTYJISIPHOCTh He NPOUCXO/IHT:

[Ipu € > 1 noanast aneprust H > 0 — npoucxoaut pasziieT Ha OECKOHEYHOCTh
ITpu € < 1 nonuas sueprusg H < 0 — yecranaB/iuBaeTcsi KojiedaTeJIbHbIU
pexKuM, U cPepou/1 JIMHAMHUYECKU CTA0OMIIM3UPYETCS OTHOCUTEIILHO KOJI1anca
B CUHI'YJISIPHOCTB. [Ipruem B 3aBUCMMOCTH OT Ha4aJlbHBIX YCIIOBHI KOJIEOAHUSI
MOTYT ObITh KaK PETYJISIPHBIMU NTEPUOANYECKUMH, TAK U XaOTUUECKUMHU.
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Figure 1. Example of regular motion of spheroid with H = —1/5,
e = 2/3. This motion corresponds to full line on the Poincaré map
in Fig.4.
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Figure 2. Example of regular motion of spheroid with H = —1/5,
e = 2/3. This motion corresponds to the point inside the regular
region on the Poincaré map in Fig.4.
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Figure 3. Example of chaotic motion of spheroid with H = —1/5,
e = 2/3. This motion corresponds to gray points on the Poincaré
map in Fig.4.



4 'The Poincaré section

To investigate regular and chaotic dynamics we use the method of
Poincaré section and obtain the Poincaré map for different values
of the total energy H. Let us consider a spheroid with semi-axes
a = b # c. This system has two degrees of freedom. Therefore in
this case the phase space is four-dimensional: a, a, ¢, ¢. If we choose
a value of the Hamiltonian Hy, we fix a three-dimensional energy
surface H(a,a,c,¢) = Hy. During the integration of the equations
(18)-(21) which preserve the constant H, we fix moments ¢;, when
¢ = 0. At these moments there are only two independent values (i.g.
a and @), because the value of ¢ is determined uniquely from the
relation for the hamiltonian at constant H. At each moment ¢; we
put a dot on the plane (a, a)

For the same values of H and £ we solve equations of motion
(18)-(21) at initial ¢ = 0, and different a, a. For each integration
we put the points on the plane (a,a) at the moments ¢;. These
points are the intersection points of the trajectories on the three-
dimensional energy surface with a two-dimensional plane ¢ = 0, called
the Poincaré section.



da/dt

Figure 4. The Poincaré map for five regular and two chaotic
trajectories in case of H = —1/5, ¢ = 2/3. The (a,a) values
are taken in the minimum of c. Full black line is the bounding
curve. The point inside the regular region corresponds to coherent
oscillations with the same period for a and ¢ values, represented
in Fig.2.

0.6 0.8 1.0 1:2



Figure 5. Zoom of previous figure.
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da/dt

Figure 6. The Poincaré map for five regular and two chaotic
trajectories in case of H = —1/5, ¢ = 2/3. The (a,ad) values
are taken in the maximum of c. Full black line is the bounding

S - i’ curve. The point inside the regular region corresponds to coherent
i . . . .
. . !‘ oscillations with the same period for a and ¢ values, represented
4 0\ in Fig.2.
- A
3 g
2 - 3
1 =
e
0 = ; --—.-___‘_J - 2 -
Nt L |
1 -
o
-3 4 §
. b .‘:
4 ;
H
T i
.
-5 I L I L) I L I L) I L 'I L) I L}
0.0 0.2 0.4 0.6 0.8 1.0 1.2



da/dt

XaoTnyeckoe ABMXKeHne

Figure 7. The Poincaré map for two chaotic trajectories in case
of H=—1/2,e =1/6. The (a, a) values are taken in the minimum
of ¢. Full black line is the bounding curve. The point inside the




da/dt

PerynsapHoe gBumxeHue

6 - Figure 8. The Poincaré map for six regular trajectories in the

case of H = —3/50, ¢ = 9/10. The (a, a) values are taken in the
i minimum of ¢. Full black line is the bounding curve. The point

inside the regular region corresponds to coherent oscillations with

4 the same period for a and ¢ values, similar to those represented
in Fig.2.
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da/dt

Cny4yaun ramma=6/5

i

Figure 9. The Poincaré map for one chaotic and four regular
trajectories in case of m = 1, H = —3/50, £ = 27/50, see (37).
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s ['he (a,ad) values are taken in the minimum of c. Full black line
{w;‘:_\ is the bounding curve. The point inside the regular region corre-
ek sponds to coherent oscillations with the same period for a and ¢

values, similar to those represented in Fig.2.




Discussion

The main result following from our calculations is the indication to a
degenerate nature of formation of a singularity in unstable newtonian
self-gravitating gaseous bodies.

Only pure spherical models can collapse to singularity, but any
kind of nonsphericity leads to nonlinear stabilization of the collapse
by a dynamic motion, and formation of regularly or chaotically os-
cillating body.

This conclusion is valid for all unstable equations of state, namely,
for adiabatic with v < 4/3.

In reality a presence of dissipation leads to damping of these oscil-
lations, and to final collapse of nonrotating model, when total energy
of the body is negative.
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Dynamic stabilization of non-spherical bodies
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ABSTRACT

We solve equations, describing in a simplified way a newtonian dynamics of a selfgrav-
itatine nonrotating th('l‘i idal b r(l}‘ after loss of Htﬁllrllir}(. We obtain that contraction
to singularity happens only in a pure spherical collapse. and deviations from the
spherical symmetry stop the contraction by stabilising action of nonlinear nonspher-
ical oscillations. A real collapse happens after damping of oscillations due to energy
losses, shock wave formation or viscosity. Detailed analysis of the nonlinear oscilla-
tions is performed using Poincaréd map construction. Regions of regular and chaotic

oscillations are localized on this map.

Key words: gravitation — instabilities.



