AN ESA ROBOTIC PACKAGE TO SEARCH FOR LIFE ON MARS. F. Westall¹, A. Brack, P. Clancy, B. Hofman, G. Horneck, G. Kurat, J. Maxwell, G. G. Ori, C. Pillinger, F. Raulin, N. Thomas, and B. Fitton, ¹Mail Code SN2, NASA Johnson Space Center, Houston TX 77058.

Similarities in the early histories of Mars and Earth suggest that life may have arisen on Mars as it did on Earth [1]. The early life forms on Mars were probably simple organisms, similar to terrestrial prokaryotes [2]. In fact, given the early deterioration of the Martian climate [3,4], it is unlikely that life on Mars could ever have reached more sophisticated evolution. On Earth, eukaryotes appeared only around 2.1 Ga [5], about two billion years after the first signs of life on Earth [6,7]. Based on the present knowledge of Mars, the possibility of extant life at the surface is small. However, given the adaptability of terrestrial prokaryotes under adverse conditions [8,9,10,11], it is not excluded. Any extant life is hypothesised to reside in the permafrost in a dormant state until "reanimated" by impact-caused hydrothermal activity.

Using this rationale, a multidisciplinary group of European scientists (listed above) worked together in 1997-1998 to conceive a hypothetical strategy to search for life on Mars [12]. The strategy consists of (1) identifying a landing site with good exobiological potential, and (2) searching for morphological and biogeochemical signatures of extinct and extant life on the surface, in the regolith subsurface, and within The platform to be used for this rocks. theoretical exercise is an integrated, multifunctional instrument package, distributed between a lander and a rover, which will observe and analyse surface and subsurface samples to obtain the following information:

- (a) Environmental data concerning the surface geology and minerology, UV radiation and oxidation processes;
- (b) Macroscopic to microscopic morphological evidence of life;
- (c) Biogeochemistry indicative of the presence of extinct or extant life;
- (d) Niches for extant life.

Our strategy is designed to be a guideline for future missions and is not aimed at any one particular mission. Parts of this strategy will be used in the 2003 Mars Express mission on the planned Beagle II exobiology lander.

The scientific objectives and required instrumentation are listed below. Some of this

instrumentation will need to be developed for space flight and planetary exploration, and much of it has already been developed and flown in space, or will fly on imminent missions.

objective it Euliang site with encostorogical potential		
Task	Instrument	
Topography	MOC/MOLA images from MGS	
	and other missions	
Mineralogy	TES from previous missions	
Site survey/	Panoramic camera	
target selection		

Objective 1: Landing site with exobiological potential

Objective 2. Visible evidence of life

Task	Instrument		
Microbial etch marks,	Panoramic camera (for large scale		
buildups (stromatolites,	buildups)		
bioherms), crusts	Low and high resolution optical		
	microscope		
Organism morphology	Low and high resolution optical		
	microscope		
	AFM		
Biominerals (carbonates,	Low and high resolution optical		
oxalates, phosphates, silica,	microscope		
Fe/Mn oxides, Fe	AFM		
sulphides)			

Objective 3. Biochemical signatures of life

Task	Instrument
Biologically important	APX spectrometer
elements (C, H, N, O, S, P)	
Biologically important	Pyrolitic GC-MS
isotopes and ratios	LA-ICP-MS
$({}^{12}C/{}^{13}C, {}^{15}N/{}^{14}N, {}^{34}S/{}^{32}S)$	
Biologically important	Pyrolitic GC-MS
molecules (H ₂ O, CO ₂ ,	(Thermal) IR spectroscopy
NO ₂ , NO ₃ , N _x O _y , SO ₂ /SO ₃ ,	Raman spectroscopy
phosphates)	Electron probe
Homochirality	Pyrolitic GC-MS

Objective 4. Mineralogy/geochemistry

Task	Instrumentation
Rock/regolith/dust	Optical microscope
composition	APX
Biominerals	Mössbauer spectroscopy
	Raman spectroscopy
	IR spectroscopy
	XRD
	Electron probe
	UV spectroscopy

Objective 5. Environmental detection

Task	Instrumentation	
UV	UVdetector	
Oxidant	Oxidant detector	

preparation	
Task	Instrumentation
Soil samples	Scoop
Dust/weathering rind	Grinding device
remover	
Consolidated regolith	Core drill or mole
penetration	
Rock penetration	Drill, chipper
Magnetic grain separation	Magnetic separation device
Sample transfer	Manipulator
Surface smoothening	saw
Sample crushing for	Grinder
analysis	

Objective 6. Sample acquisition, distribution and preparation

The instrumentation will be divided between a rover and a lander with the lander being the center for subsurface consolidated regolith sampling and for *in situ* sample preparation and analysis. The rover then provides a selection of rock samples from nearby locations either as small core samples or as small rock (cms) for sawing in the lander. The following table shows a possible lander/rover instrumentation configuration.

Rover		Lander	
Instrument	Weight	Instrument	Weight
	(kg)		(kg)
Robotic	2.0	Subsurface drill	6.5
positioning arm			
Rock surface	0.4	Sample	4.0
grinder		handling/distrib-	
		ution	
Low resolution	0.2	Sample sectioning	0.3
microscope			
APX	0.5	Sample grinding	0.4
Small rock	3.5	Low resolution	0.2
coring drill		microscope	
Core sample	0.5	Optical	0.3
containers		microscope	
		AFM	1.5
		Microscope	1.0
		transfer stage	
		APX	0.5
		spectrometer	
		Mössbauer	0.5
		spectrometer	
		Raman	1.5
		spectrometer	
		IR spectrometer	1.0
		Pyrolitic GC-MS	5.5
		Oxidant detector	0.4
		Laser ablation	2.5
		ICP-MS	
TOTAL	7.1		26.1

Acknowledgements: The team is grateful to the Manned spaceflight and Microgravity Directorate division of the European Space Agency for support for this project. McKay, C.P., Friedman, E.I., Wharton, R.A., & Davies, W.L. 1992. Adv. Space Res, 12: (4)231-(4)238. [2] Westall, F., 1999. J. Geophys. Res., in press. [3] Carr, M.H., 1996. Water on Mars. [4] McKay, C.P. & Davies, W.L. 1991. Icarus [5] Han, T.-M. & Runnegar, B., 1992. Science, 257: 232-235. [6] Schidlowski, M. 1988. Nature, 333: 313-318. [7] Mojzsis, S.J. et al., 1996. Nature, 384: 55-59. [8] Friedmann, E.I., 1982. Science, 215: 1045-1053. [9] Stetter, K.O., 1996. In G.R. Bock & J.A. Goodie (Eds.) Evolution of hydrothermal ecosystems on Earth (and Mars?), pp.1-18. [10] Abyzov, S.S. et al., 1998. SPIE, 3114: 75-85. [11] Cragg, B.A. et al., 1996. Earth Planet. Sci. lett., 139: 497-507. [12] Brack, A. et al., 1998. ESA exobiologyscience team study on the search for life on Mars. ESTEC, Noordwijk, Netherlands.