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Introduction:  Investigations of bacterial
phylogeny using nucleic acid sequencing suggest that
the first life forms to evolve on Earth were hyperther-
mophilic archaea and bacteria [1].  This biota probably
persued microbial chemosynthesis based on the an-
aerobic metabolization of sulfur aand/or the aerobic
oxidation of hydrogen sulphide, hydrogen, methane or
Fe(II) to Fe(III) [2,3].  Such a biota would have
evolved and spread rapidly, perhaps within 30 Myr
beginning near the end of the early bombardment (ap-
prox. 3.8 Bya) [2,4].

A Martian Biota:  Conditions similar to those
which led to the origin of life on the Earth do seem to
have existed on Mars during the late Noachian [5,6].  If
life did evolve on Mars, an archaea-bacteria biota may
have had the opportunity to diversity and spread, but
its biomass would have been been relatively much
smaller [7].  Potential late Noachian-Hesperian aque-
ous, endolithic, and subsurface niches would have been
present in lacustrine/ocean, fluvial, permafrost, and
hydrothermal settings in the context of a probable alka-
line hydrosphere [8-12].  Present surface conditions,
however, seem to exclude the possibility of even relict
exposed or endolithic niches [13,14].  Consequently,
subsurface hydrothermal environments have been con-
sidered mostly likely to provide niches for a surviving
Martian biota [15,16].  By the late Amazonian, a sig-
nificant decline in volcanism had restricted both the
size and extent of potential hydrothermal sources so
that the discovery/study of any associated ecosystem
may be very difficult [16].

Rampart Craters:  Martian rampart craters form
when ejecta surges loose fluidizing vapors and the
transported material is deposited [17].  Subsurface
volatiles in the form of groundice and permafrost ex-
tend to a depth of perhaps several kms [18].  If a sub-
surface viable spore-stage archaea-bacteria biota was
present in the groundice, it would be incorporated in
the volatized ejecta (and subsurface plume).  A reani-

mation of the spore assemblage would result in a mi-
crobial bloom.  Following complete cooling of the
impact ejecta/subsurface plume a new spore assemblage
would be formed.  Halophilic bacteria spores can re-
main vaible for at least 250 Myr [19].  Given the ap-
parent Martian cratering rate [20], the long-term sur-
vival of a biota based on intermittent hydrothermal and
impact-generated events might be possible.

Exobiology Exploration:    Rampart craters may
provide the most likely locations for the preservation of
viable Martian life forms.  At shallow depths they may
preserve concentrations of halothermophilic archaea-
bacteria spores.  Rampart craters formed in areas of late
Amazonian volcanism would be the most promising
locations for the search for spore concentrations.
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