

50 years of space era, Solar System Exploration symposium, 1-5 October 2007, Moscow

Comparative study of terrestrial planets

Subduction

silicate cycle

Co,

Space 2 Erosion by solar wind Biosphere Atmosphere Crust Degassing Volcanism Mantle Convective Cooling Core Figure from Breuer et al. 1986

Earth : greenhouse effect stabilized by interacting processes in the biosphere, atmosphere, hydrosphere, crust and mantle.

- Life can be seen as a geology-related process
- NOTION OF LIFE-GEOLOGY COEVOLUTION

Examples of important questions

> Is there a feedback between life and tectonic style, atmosphere evolution, and – possibly– magnetic field generation?

➤ Is there a link between the failure to sustain plate tectonics and the loss of habitability? Is surface recycling on Venus similar to plate tectonics?

> What is the climate history of Mars and Venus?

> If there was once water on the surface of Venus, how fast was it lost? If Venus was dry how much atmosphere could have been lost over the planets history and under which conditions?

➤ Can massive abiotic oxygen amospheres be generated by runaway greenhouse on extrasolar planets? Context for a come back to Venus?

Why did Venus evolved differently of Earth?

An urgent need for a unified scenario of terrestrial planet formation and evolution

A necessary step toward extrasolar terrestrial planet observation and modelling

A wide interested international science community

An ongoing program with the European VeX and the Japanese VCO orbiters

➢ A technically and scientifically high return-on-investment planetary mission relying on ESA, Roscosmos, NASA and

JAXA experiences

Need for an in situ mission to understand the evolution of Venus and its climate

1R

European Venus Explorer A proposed mission for ESA's Cosmic Vision 2015-2025

E. Chassefière, O. Korablev, T. Imamura, K. Baines, C. Wilson (Co-PI), K. Aplin, T. Balint, J. Blamont, C. Cochrane, Cs Ferencz, F. Ferri, M. Gerasimov, J. Leitner, Lopez-Moreno, B. Marty, M. Martynov, S. Pogrebenko, A. Rodin, D. Titov, J. Whiteway, L. Zasova and the EVE team.

Institut Pierre Simon Laplace

EXPLORER

Main science return : isotopes

➢ In situ measurement from the balloon of noble gas abundances and stable isotope ratios from the balloon, to study the record of the evolution of Venus.

SOLAR

CI CHONDRITES

VENUS

EARTH

ARS

MASS M (AMU)

Announcement

0-0

à.

12c 14N

ABSOLUTE ABUNDANCES

[NORMALIZED TO SILICON]

RELATIVE TO SOLAR ABUNDANCES

0

-1

-2

-3

-4

-5

-6

-7

-11

-12

-13

-14

20Ne

log M/10⁶Si [M/10⁶Si]

Venus isotopic ratios :

From Pepin and Porcelli, 2002

36Ar

Elemental ratios : Kr, Xe Earth/Mars-like, solar-like or chondritic-like? Why is Ne depleted?

Main science return: composition

➤ In situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry.

Main science return: dynamics

Balloon science P/L

- Composition of atmosphere and aerosol particles
- Microphysical properties of aerosol particles
- Isotopic ratios of noble gases, and of light elements
- Determination of local wind velocity, from tracking the balloon's position
- Upwards and downwards fluxes of radiation
- Electrical properties of atmosphere and clouds
- Cloud particles for exobiological potential
- Vertical profiles of radiative fluxes, pressure, temperature, and chemical abundances.

Instrument	Mass (kg)	Power (W)	Data rate (bps)	TRL Level/ heritage	Potential provider (laboratory, consortium)	
GC/MS with ACP	3.6	15W (peak)	30	4/5, Huygens, MSL, ExoMars, Phobos	IPSL (France), Open University (UK), IKI (Russia), others.	
Isotopic MS	4.0	15W (peak)	11.6	4/5, Beagle2, Rosetta	Open Univ (UK) / IPSL (Fr) / U. Berne (CH)	
Nephelometer	1.0	2 W	1.4	3-4	NASA-led (Cornell/Ball Aerospace) with TU Delft. Other possibility: IKI	
Optical package	0.5	1.2 W	1.6	4	Univ. Oxford (UK)	
Atmospheric package (p, T, acc, sound)	0.4	2 W	0.4	5 Huygens, Beagle 2, ExoMars	FMI (Finland) / Oxford U & Open U (UK) / Padova (Italy) / IAA (Spain) / IWF (Austria)	
VLBI beacon / USO	0.5	5 W	0.8	8	CNES (France) / TBD	
Electrical / EM package	0.4	2.5 W (peak)	10.0	6 Compass-2, ISS	Eötvös Univ (Hungary) & RAL (UK)	
ATR spectrometer	2	5 W (peak)	5	4	IKI (with IFSI participation)	
TOTAL	12.4 kg w/o margin; or 15 kg including 21% margin					

Descent probe science P/L

- Atmospheric chemistry.
- Cloud chemistry and optical properties.
- Atmospheric structure, dynamics, and radiative balance.
- Surface composition.
- Atmospheric electrical properties and EM wave phenomena.

Instrument	Mass (kg)	Power (W)	Data rate (bit/s)	TRL (2007)	Origin
Chemistry package	3.7	<20 W	3	4-8	IKI, IPSL, MPS, UK
Optical package	1.5	6 W	1.6	4	IKI, IPSL
Nephelometer	1	2 W	1.4	4	IKI, Inst Appl. Math.
Imaging system	0.7	3W	3+	6	IKI
ATR spectrometer	2	5 W	5	4	IKI, IFSI
Accelerometer	0.2	1 W	0.3	8	IKI, TSNIIMASH
Meteorological package	0.3	2 W	0.4	5-7	IKI/ FMI
Gamma-spectrometer	8	17W	2	6-8	IKI
Lightning detector	0.8	2.3W	0.5	6	IKI, Eötvös Univ
OBDH	1.7	5W	-	7	IKI
20% Margin	4				
Budget:	23.9 kg				Russia, EU

Heritages : Vega, Phobos, BepiColombo…

Orbiter • • science • • CONTEXT SCIENCE FOR PROBES ALMOST NEW ORBITAL PAYLOAD

- Electric activity (gamma, • visible, radio emissions, insitu)
- Cloud structure (lidar, • camera, IR spectro, in-situ)
- Subsurface structure • (radar)

- Escape fluxes (mass spectrometers, magnetometer)
- Auroras (UV imager)
- Meso-thermospheric wind field (submm spectro + camera)
- Atmospheric composition (IR-submm spectro)
- Temperature profiles (radio science, in-situ, IR-submm spectro)

Instrument	Mass (kg)	Power (W)	Data rate (kbps)	TRL Level/ heritage	Potential provider (laboratory, consortium)
Neutral mass spec.	3	4	~ 1	4, Giotto, Cassini, BepiColombo	IPSL (France)
Ion mass spec.	1.5	3-7	~ 2 (≥ 0.02)	4, BepiColombo	Consortium: IKI (Russia), Mullard (UK)
UV plasma imager	2.3	5	6	6, Nozomi, BepiColombo	Tohoku Univ. (Japan)
Sub-mm sounder	9.2	40	~ 9.2	8/9, Rosetta, Herschel	Max Planck Institute (Germany)
UV mapping spectrometer	1.5	5	40	9, MEX	Consortium: INAF (Italy), IKI (Russia)
Lidar (TBC)	7.4	70	4.8	4/9, Phoenix Mars	York Univ., MDA, CSA (Canada)
Infrared Spectrometer	2.4	7	4.4	5, Mars Express, Venus Express	Consortium: IKI (Russia), INAF (Italy)
High-speed / context camera	3.5	10	< 10	6, ground based	German Aerospace Center (Germany)
USO for radio science	1	1	0	9, in most of missions	e.g General Dynamics (UK)
EM Wave analyser	0.7	4-4.5	~ 4	7/5, Compass-2, ISS, sw. BepiColombo	Consortium: Eötvös Univ., BL Electronics (Hungary)
Subsurface Radar	7.2	9	≤ 80	7/8, MEX, MRO and ExoMars	Consortium: IPG, Obs. Midi-Pyrénées & de Bordeaux (France), GSFC, JPL and UTA (USA)
Magneto- meter	≤ 1.2	1.2	1.5	9, Oersted, Champ, Proba- 2, Swarm	Dan. Nat. Space Center (Danemark), Imperial College London (UK)
Gamma Flash Detector	2.3	3	10	7/5, Coronas-F	Consortium: IKI, SINP MSU (Russia)
20% margin	8.6				
Total :	51.8	≤ 17 0	210	-	ESA (& ECS), Russia, USA, Japan, <i>Canada</i>

	Westbrock	Effelsberg	Green Bank	Medicina	Arecibo	SKA=30%
Aperture	14 x 25m	100 m	100 m	$30,000 \text{ m}^2$	300 m	$300,000 \text{ m}^2$
Frequency range (MHz)	300-450	350-450	300-500	406-410	425-435	300-500
Aperture efficiency	0.35	0.6	0.6	0.4	0.4	0.4
SNR (in 1Hz)	35	110	270	230	1100	3500
Max. data rate (bps)	20	6	150	130	600	2000
Aver. Data rate (bps)	≈ 2	≈ 7	≈ 20	≈15	<≈30	≈ 200
TRL (2007)	8	8	8	8	8	3

Data rate achievable by UHF transmission from balloon (or descent probe) direct to Earth

Back-up option : direct Balloon-to-Earth downlink

EVE international cooperative scheme

• EUROPE

- The spacecraft,
- the balloon platform and
- the Kourou element of the launch costs.

• RUSSIA

- The dry Soyuz launcher,
- the descent probe,
- the entry/descent systems for both balloon and descent probe and
- A contribution to the science payload and data analysis.

• JAPAN

- A small balloon for low altitude studies (option).
- USA & CANADA
 - Comprehensive science and instrument hardware involvements and
 - possibility of using NASA/JPL developed
 Venus balloon technology through international collaboration, under NASA's Mission of Opportunity (MoO) program.

A step-by-step international program to Venus

- Step 1 (2000-2010) : Orbiter missions (VEx and VCO) → <u>atmospheric and cloud</u> <u>dynamics</u>
- Step 2 (2010-2020) : Balloon/descent probe mission (EVE?) → evolution, chemistry and general dynamics
- Step 3 (2020-2030) : Longliving landers/low atmosphere platforms → interior structure/dynamics and coupling to the climatic system

Venus Express (Europe) Venus Climate Orbiter (Japan)

EVE (Europe/Russia) Low H₂O balloon (Japan)

VENERA-D (Russia + others)

Flagship mission (NASA + others)

Mission Class		overy	New Flagship Frontiers						
Objectives		High / Mid. Alt Balloon	VISE	WE	WET	VSSR	Venus Exploration Goals, Objectives, Investigations, and Priorities: 2007		
Goal I. Origin and Early Evolution of Venus: How did Venus originate and evolve, including the lifetime and conditions of habitable environments in solar systems?				uding the	A Report of the Venus Exploration Analysis Group (VEXAG)				
Determine isotopic composition of the atmosphere		•	٠	٠		٠	October 2007		
Map the mineralogy and composition of the surface on a planetary scale				•		•			
Characterize the history of volatiles in the interior, surface, and atmosphere			•	٠		•			
Characterize the surface stratigraphy of lowland regions and evidence for climate change	•		•	•					
Determine the ages of various rock units on Venus						•			
Goal II. Venus as a terrestrial planet: What are the proc	cesses th	at have a	nd still shape	the plane	t?	10			
Characterize and understand the radiative balance of the Venus atmosphere	•	•	•						
Investigate the resurfacing history and the role of tectonism, volcanism, impact, erosion and weathering.		•		•	•				
Determine the chronology of volcanic activity and outgassing				٠		٠			
Determine the chronology of tectonic activity									
Investigate meteorological phenomena including waves, tides, clouds, lightning and precipitation.	•	•		٠			and the second se		
Goal III. What does Venus tell us about the fate of Earth	n'a enviro	nment?							
Search for fossil evidence of past-climate change in the surface and atmospheric composition.		•	•	•		•			
Search for evidence of changes in interior dynamics and its impact on climate	4				•				
Characterize the Venus Greenhouse effect and its similarities to those on Earth and other planets	٠	٠			•				
Convention: Major Contribution									
VISE – Venus In-Situ Explorer, VME – Venus Mobile Explorer, VNET – Venus Network Explorer, VSSR – Venus Surface Sample Return									

A Venus In-Situ Explorer (VISE) was listed as a possible mission among those solicited in the last announcement of opportunity (AO) for New Frontiers (NF) missions, and is still under consideration for the next New Frontiers AO, subject to the current National Research Council (NRC) review of the process for identifying NF mission candidates. The science goals for a VISE mission were described in the last NRC Solar System Exploration Decadal Survey^{*} as well as in the recent (2006) NASA Solar System Exploration Roadmap^{**}. The goals for VISE were