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Abstract. Large-scale phenomena in the solar wind are important elements of heliospheric physics and space weather. On the
basis of the OMNI database of interplanetary measurements we identified large-scale structures of solar wind (SW types) for
all time intervals during 1976-2000. Our classification includes quasi—steady types: (1) Heliospheric current sheet (HCS), (2)

Slow and (3) Fast SW streams, respectively, from closed and open magnetic field structures in the solar corona, and disturbed
types: (4) Corotating interaction regions (CIR — compressed regions between slow and fast SW streams), (5) SHEATH
(compressed regions ahead of MC/EJECTA) and (6) Magnetic cloud (MC) and (7) EJECTA as well as (8) direct and (9) reverse

interplanetary shocks (see catalog on #ipe//ftp.iki.rssi.ru/pub/omni/ and paper [1] ). We discuss several
preliminary results obtained with our catalog (see more detaitét//www.iki.rssi.ru./people/yyermol_
inf.html) including effects on the Space Weather.
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INTRODUCTION METHOD OF DATA PROCESSING

Investigation of large-scale (with characteristic time When the types of solar wind streams were classified, we
scale more than 1 hour) types of streams in the solaused OMNI database (sé#p://omniweb.gsfc.

wind allows one to study, on the one hand, the largenasa.gov [12]) for interval 1976-2000 and available
scale phenomena on the Sun and their variations in thevorld experience in identification of solar wind streams
solar cycle and, on the other hand, to study a role ofand the standard criteria for following parameters: veloc-
large-scale streams in a transfer of energy from the Suity V, densityN, proton temperatur€, ratio of thermal to

to the Earth and excitation of geomagnetic disturbancesagnetic pressurg¢parameter), ratio of measured tem-
[2, 3, 4]. We identified large-scale structures of solarperature to temperature calculated on basis of average
wind (SW types) for every 1-hour point of measure- "velocity—temperature" relation/ Texp, thermal pressure
ments during 1976-2000 (see paper [1] and fijpe and magnetic field. This method allows us to identify
[Iftp.iki.rssi.ru/pub/omni/ ). The results of reliably 3 types of quasi-stationary streams of the solar
our identification are in good agreement with previouswind (heliospheric current sheet, fast streams from the
results on selection of individual SW types during shortercoronal holes, and slow streams from the coronal stream-
time intervals (see, for example, papers [6, 5] and refers), and 5 disturbed types (compression regions in front
erences therein). In comparison with the previous studef incoming fast streams (CIR), and interplanetary man-
ies our catalog has following advantages: (1) Simultaneifestations of coronal mass ejections (ICME) that can in-
ous inclusion in the catalog of various large-scale SWclude magnetic clouds (MC) and EJECTA with the com-
types at sufficiently long intervals of time comparable to pression region SHEATH preceding them). In contract
the solar cycle, (2) Inclusion of the improved set of SWwith EJECTA, MCs have lower temperature, lower ra-
types, in particular, selection of ICMEs on EJECTA andtio of thermal to magnetic pressurg-parameter) and
MCs and, accordingly, SHEATH before EJECTA and be-higher, smooth and rotating magnetic field [13]. In addi-
fore MCs. By means of this catalog the estimations oftion, we have included into our catalog such events (rare
magnetic flux which is carried away by CMEs from the enough) as direct and reverse shock waves, and the rar-
Sun [7] and efficiency of geomagnetic storm generationefaction region RARE.

by various interplanetary drivers [8, 9, 10] have been ob- When we calculated yearly averaged values, we have
tained. In this paper we present several results on occutaken into consideration that the OMNI database con-
rence rate and geoeffectiveness of SW types obtained aiains gaps of the data from 0 to 50% time of year. This
the basis of our catalog of large scale solar wind phenomprocedure has been made in the assumption that rate of
ena (see paper [11] for details). occurrence of the given SW type is similar both in in-



tervals of data presence and in intervals of data gap. If

during chosen year the number of events of selected SW

typeNe has been registered in interval of data presegce

the normalized number of the given SW type in this year

was defined by multiplication of occurrence rate of the

given SW typeNe/ty to total duration of yeat,. Error of

this estimation decreases with increasigandty, and FAST
has been estimated & /?(ty —tg) /ts. When we ana- 8 SLowW
lyzed durations of different SW types, we selected inter-

vals of SW types which have not data gaps at both edges

of the intervals.
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RESULTS FIGURE 1. Occurance of various SW type measurements
during 1976-2000
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25-year averaged parameters (for example, occurrence GiGURE 2. Yearly averaged sunspots (upper panel) and nor-
1-hour measurements for various SW type is shown irmalized numbers of various solar wind types

Figure 1) while time variations of these parameters with

solar cycle are presented in Figure 2-5.

Figure 2 shows yearly averaged sunspots (upper panepartions in total times of observations for various SW
and normalized numbers of various SW types. HCStypes (see Figure 4) vary similarly to their normalized
and CIR have maxima in minimum and declining phasenumbers (Figure 2).
of solar cycles, respectively. Probably EJECTA have 2 Figure 5 shows yearly averaged sunspots (upper
peaks near solar maxima, at rising and declining phaseganel), number of magnetic storms witly; < —50 n'T
Statistics for MC is very low and it is difficult to make (2nd panel) and geoeffectivenesses of various SW types.
a clear conclusion. Durations of various SW types (sedseoeffectiveness of CIR is low in minima of solar cycles
Figure 3) have large standard deviations and thier deperwhile geoeffectiveness of EJECTA shows 2 peaks near
dence on solar cycle phases can not be found. Temporahaxima of solar cycles.




TABLE 1. Average values and their standard deviations of plasma and magnetic field parameters (1st rows) and their numbers
of 1-hour points (2nd rows) for various solar wind types
Parameters HCS SLOW FAST CIR EJECTA MC SHEATH  RARE
N,cm 3 12.14-6.6 10.8:7.1 6.6£5.1 14.19.9 7.8£5.3 10.18.0 14.3+10.6 1.7+1.8
6208 84299 44543 12647 27259 2225 8596 139
V, 107 km/s 3.8+0.6 3.740.4 5.4+0.8 4.5-0.9 4.10.9 4111 45k1.1 5116
6214 84805 44798 12666 27310 2233 8615 146
B,nT 3.942.2 5.942.9 6.4+3.5 8.7+4.1 6.4+2.8 1245.2 8.5+4.5 6.7+£2.2
6322 67719 36179 10493 23857 2237 7286 116
T/Texp 0.840.9 1.0+1.4 1.0+0.7 1.742.0 0.7+1.3 0.74+1.5 1.5+1.2 1.1+0.9
5950 75901 40026 11149 25275 2016 7851 124
T,10°K 41441 4.444.4 13.14+11.8  13.8+13.3 42453 4.546.6 12.9417.6  11.1+10.7
5950 75901 40026 11149 25275 2016 7851 124
NkT,102nPa| 0.6+1.3 0.6+1.3 1.3+2.3 2.2+2.8 0.44+1.2 0.7+2.0 2.2+3.6 0.3+0.5
5950 75901 40026 11149 25275 2016 7851 124
mNV2, nPa 29+1.4 24416 3.2+2.8 4.4+2.8 2.14+1.7 3.3+3.2 4.9+4.7 0.84+0.6
6208 84299 44543 12647 27259 2225 8596 139
B,10°1 9.5+0.2 5.24+0.0 6.1+0.1 6.5+0.1 3.1+0.0 1.6+0.1 6.54+0.1 2.3+0.5
5878 59669 32244 8829 20518 1725 6465 100
Bz, nT -0.01+2.3 0.08+3.1 0.05+3.4 0.2+4.4 0.03£3.3 -0.8+7.7 0.10+4.9 0.80+2.8
6322 67719 36179 10493 23857 2237 7286 116
Dgt, NT -6.5+15.0 -10.7418.2 -28.7425.9 -18.04+27.2 -21.14-254 -52.1445.8 -21.5+33 -27.0+22.0
6415 85459 45017 13120 29046 2571 6856 147
TABLE 2. Normalized numbers per year, average durations, temporal parts in total times of observations and geoeffec-
tiveness (for magnetic storms wibs; < —50nT) for various solar wind types
Parameters SLOW  FAST HCS CIR EJECTA MC SHEATH before RARE
EJECTA MC
Number per year 175+75 15166 124+81 63+15 99+38 8+7 46+19 6+5 1.5+4.4
Duration, h - 542 20+4 2945 25+12 16+3 9+5 4.5+11
Time of observation, %| 31+7 21+8 6+4 10+3 20+6 2+1 8+4 0.8+0.7
Geoeffectiveness, % - - - 20.2 8 54.5 15.5 15.2

CONCLUSIONS

vided by total number of this SW type) of MC with

SHEATH is the largest (61%), geoeffectivenesses
for CIR and EJECTA with SHEATH are medium
(20-21%) and types of SHEATH and EJECTA with-
out SHEATH have the lowest geoeffectiveness (15
and 8%, respectively).

6. There is a slight indication that number of EJECTA
and thier geoeffectiveness have 2 peaks around
maxima solar cycles during 1976-2000.

We classified 9 large-scale types of solar wind on the
basis of OMNI dataset during 1976-2000 and found.

1. Magnetic clouds and EJECTA have significatly dif-
ferent parameters.

2. Yearly numbers of different structures are 124
81 for HCS, 84 6 for MC, 994 38 for EJECTA,
46 4 19 for SHEATH before EJECTA, & 5 for
SHEATH before MC, and 63 15 for CIR.

3. Yearly average durations of phenomena ate5h
for HCS, 244- 11 h for MC, 29+ 5 h for EJECTA,
16+3 h for SHEATH before EJECTA, 85 h for
SHEATH before MC, and 264 h for CIR,

4. Solar wind observations consist of-8% of to-
tal time of observations for HCS421% for MC,
204+-6% for EJECTA, 84% for SHEATH before
EJECTA, 0.8-0.7% SHEATH before MC, 183%
for CIR.

5. Geoeffectiveness (number of selected SW type re-

sulted in magnetic storms withs; < —50 nT di- 1. Yu.l. Yermolaev, N.S. Nikolaeva, I.G. Lodkina, and
M.Yu. Yermolaev,Cosmic Res47, 81-94 (2009).
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FIGURE 3. Yearly averaged sunspots (upper panel) and du-

rations of various solar wind types
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FIGURE 5. Yearly averaged sunspots (1st panel), number of
magnetic storms witls; < —50nT (2nd panel) and geoeffec-
tivenesses of various solar wind types
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