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Abstract
We consider a 2 d.o.f. Hamiltonian system with one degree of freedom corre-

sponding to fast motion and the other corresponding to slow motion. We assume
that at frozen values of the slow variables there is a separatrix on the phase plane of
the fast variables and there is a region in the phase space (the domain of separatrix
crossings) where projections of phase points onto the plane of the fast variables re-
peatedly cross the separatrix in the process of evolution of the slow variables. Under
rather general conditions we prove that there are no stable periodic trajectories of
any prescribed period inside the domain of separatrix crossings, except maybe for
periodic trajectories passing anomalously close to the saddle point.

We study a dynamical system with two typical scales of motion, the fast
motion and the slow one. When investigating such a system, it is natural, as
the first approximation, to ”freeze” the slow motion and study the fast mo-
tion at constant values of the slow variables. We assume that the fast system
thus obtained has an 8-shaped separatrix on its phase portrait. In the course
of the slow evolution this separatrix slowly breaths, and phase trajectories of
the system may cross it. It is a well-known fact that dynamics in the domain
of separatrix crossings in such systems looks chaotic in computer simulations.
However, only few rigorous results on this topic are obtained. In a series of
recent papers, it was shown that if the fast system possesses additional sym-
metry, there are many stable periodic trajectories in this domain. Each stable
periodic trajectory is surrounded by an island of stability, where dynamics
is regular. In the present paper, we show that if the additional symmetry
condition is not imposed onto the fast system, in general there are no stable
periodic trajectories inside the domain of separatrix crossings, except maybe
for periodic trajectories passing anomalously close to the saddle point.

1 Introduction

Many problems in theory of charged particles’ motion, theory of propagation of short-wave
excitations, and celestial mechanics can be reduced to analysis of 2 d.o.f. Hamiltonian
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systems with fast and slow variables (see, e.g. [1, 2, 3]). One degree of freedom corresponds
to fast variables, and the other corresponds to slow variables. The typical ratio of time
derivatives of the slow and the fast variables is of order ε ¿ 1. To describe dynamics in
such systems one can use the adiabatic approximation constructed as follows.

Consider the system for the fast variables at frozen values of the slow variables (we
call it the fast system). This is a 1 d.o.f. Hamiltonian system involving the slow variables
as parameters. Assume that for a range of values of the slow variables there is a region
filled with closed trajectories on the phase portrait of the fast system. Then one can
introduce “action-angle” variables in the fast system [4]. The “action” variable of the
fast system is an adiabatic invariant (i.e. an approximate first integral) of the complete
system: its value on a phase trajectory oscillates with amplitude ∼ ε on time intervals
of order ∼ 1/ε. To describe approximately variation of the slow variables, one should
average the rates of their variation over the “angle” variable of the fast motion. This
approximation of the real motion is called the adiabatic approximation [5]. The obtained
1 d.o.f. Hamiltonian system for the slow variables, involving the “action” variable of fast
motion as a parameter, is called the slow system.

We shall consider the situation when there are separatrices on the fast system’s phase
portrait (see Figure 1), and there is a region in the phase space (the domain of separatrix
crossings) where projections of phase points onto the plane of the fast variables repeatedly
cross the separatrix in the process of evolution of the slow variables. In this case the
described above construction of the adiabatic approximation needs a certain modification,
and the formulated above assertions on the adiabatic approximation accuracy are not
applicable. In particular, when a phase trajectory crosses a narrow neighborhood of the
separatrix, the value of the adiabatic invariant undergoes a quasi-random jump of order
εlnε [6]. Accumulation of such quasi-random jumps at multiple separatrix crossings results
in chaotic dynamics of the system in the domain of separatrix crossings. In computer
simulations, in many problems this domain looks like a region of dynamical chaos (see,
e.g. [7, 8]).

Quite unexpectedly, however, it was shown that under additional symmetry conditions
imposed on the fast system, in the domain of separatrix crossings there exist many stable
periodic trajectories (in [9, 10], this result was obtained for Hamiltonian systems with
one and a half degrees of freedom; in [11, 12], it was obtained for Hamiltonian systems
with two degrees of freedom). Each one of these trajectories is surrounded by a stability
island. The total measure of these islands does not tend to zero as ε tends to zero.
The proof was based on analysis of Poincaré maps constructed with the use of results of
[13, 14, 15, 16, 6, 17].

In this paper we consider a Hamiltonian system with two degrees of freedom without
the additional symmetry conditions imposed. We prove that in general in the domain of
the separatrix crossings there are no stable periodic trajectories of any prescribed period,
except maybe for periodic trajectories passing anomalously close to the saddle point.
A similar result for Hamiltonian systems with one and a half degrees of freedom was
earlier obtained in [9]. Speaking very roughly, one can say that the result is due to the
fact that jump in the adiabatic invariant in this case is of order εlnε, and not ε like in
the case considered in [11, 12]. We restrict our study to analysis of so called natural
Hamiltonian systems, i.e. systems with Hamiltonian function H = 1

2
g(x)y2 + 1

2
β(x)p2 +

U(q, x) (see Section 2 for the used notations). For such Hamiltonian, the corresponding
slow system possesses a symmetry that allows existence of periodic trajectories of the

2



adiabatic approximation. For a generic Hamiltonian system with two degrees of freedom
there are no periodic adiabatic trajectories, hence the question of stability for periodic
trajectories of the exact system is not applicable in this case.

The paper has the following structure. In Section 2, we describe the system and
discuss phase portraits. Section 3 is devoted to construction of adiabatic and improved
adiabatic approximations. In Section 4, we describe two successive separatrix crossings
and introduce parameters, characterizing each crossing. We write down the Poincaré map
in Section 5 and prove the absence of stable periodic trajectories in Section 6. Existence
of a large number, ∼ ε−1|lnε|, of periodic solutions in the considered range of parameters
is proved in Appendix.

2 Properties of the system and main assumptions

Consider a 2 d.o.f. Hamiltonian system with the Hamiltonian function

H =
1

2
g(x)y2 +

1

2
β(x)p2 + U(q, x). (1)

Here (p, q) and (y, ε−1x) are the pairs of canonically conjugated variables, ε > 0 is a small
parameter. All the functions are assumed to be smooth enough, and the functions g and
β are positive. The equations of motion have the form:

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
, ẏ = −ε

∂H

∂x
, ẋ = ε

∂H

∂y
. (2)

The variables p, q are called fast, while the variables y, x are called slow.
The system with Hamiltonian H at frozen values of the slow variables is called the

fast system. It contains the value of x as a parameter. This is a natural system with one
degree of freedom. Assume that the potential U is a function of q with two minima at all
the considered values of x (see Figure 1, left). The potential U has the local maximum
at the point q = qs(x).

q

U

q

p

C

l

G

G

G

l

1

2

3

1 2

Figure 1: A non-symmetric double-well potential (left) and the plane of the fast variables
(right).

The phase portrait of the fast system is shown in Figure 1, right. On this phase por-
trait, there exists a non-degenerate saddle point C and separatrices l1, l2 passing through
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this point. These separatrices divide the (p, q)-plane into domains Gi = Gi(x), i = 1, 2, 3.
Introduce the function

E =
1

2
β(x)p2 + U(q, x)− U(qs(x), x). (3)

In the domain G3 function E is positive, and in G1,2(x) it is negative. At the point C
and on the separatrices E = 0.

Let S1,2 = S1,2(x) denote the area of G1,2(x) accordingly, S3 = S3(x) = S1(x) + S2(x).
In the unperturbed system, one can introduce canonical “action-angle” variables (Ii, ϕi)
separately in each Gi. The “action” Ii is a function of p, q, x given by the formula Ii =
Ii(E, x), where Ii(e, x) is an area bounded by a trajectory of the fast system, corresponding
to E = e in Gi, divided by 2π.

For an approximate description of motion in system (2) one can use the adiabatic
approximation (see, e.g. [5]). In this approximation, while the projection of a phase point
onto the fast plane (p, q) is in Gi, Ii = const along the phase trajectory. Variation of
the slow variables y, x is defined by a Hamiltonian system with Hamiltonian H0,i(Ii, y, x),
where H0,i is the function H expressed in terms of Ii, y, x. Thus, H0,i = 1

2
g(x)y2+Vi(Ii, x),

where Vi(Ii, x) is the effective potential given by the function 1
2
β(x)p2 +U(q, x) expressed

in terms of Ii, x. We shall consider the system on an energy level H = h0, hence H0,i =
h0, i = 1, 2, 3.

Introduce on the plane of variables (y, x) the uncertainty curve [3] Γ(h0) = {y, x :
1
2
g(x)y2 + U(qs(x), x) = h0}.

Motion in the adiabatic approximation can be described as follows (see Figure 2).
Denote Θi = gy∂Si/∂x. As the system evolves, the area Si varies at the speed of εΘi.
An adiabatic trajectory, hence, can approach the separatrix and cross it. After crossing
the separatrix, the motion continues in a different domain. Let the motion start at t = 0
at a point M0 = (p0, q0, y0, x0) and (p0, q0) ∈ G3(x0). Let I3 = I(0) at this point. The
corresponding adiabatic trajectory is defined as follows. The part of this trajectory that
corresponds to motion in G3 is given by I3 = I3(h0 − 1

2
g(x)y2 − U(qs(x), x), x) = I(0). Its

projection onto the plane of the slow variables (= slow plane) is a curve B3(I
(0)). Assume

that it approaches the uncertainty curve Γ at a point (x∗, y∗) and Θi(x∗, y∗) > 0, i =
1, 2, 3. (Let, for definiteness, y∗ > 0; we assume, that there are no other intersections
between this adiabatic trajectory and the uncertainty curve at y > 0.) This corresponds
to the separatrix crossing on the plane of fast variables (=fast plane). After crossing
the separatrix, the motion on the fast plane continues either in G1 or in G2. (A certain
probability can be associated with each of these continuations, see [6].) If motion on the
fast plane continues in domain Gi then on the plane of the slow variables, the motion is
defined by the Hamiltonian H0,i(Ii, y, x) with Ii = Ii∗ = Si(x∗)/(2π). The projection of
the corresponding part of the adiabatic trajectory onto the slow plane is a curve Bi(I

(0))
[we retain here the same argument I(0), because the value Ii∗ is uniquely defined by I(0)].
Due to the symmetry of the system, the corresponding adiabatic trajectory approaches the
uncertainty curve again at the point (x∗,−y∗). After crossing the separatrix, the motion on
the slow plane is defined by the Hamiltonian H0,3(I3, y, x) with I3 = I(0) and follows again
the curve B3(I

(0)). Thus, on the plane of the slow variables, the corresponding trajectory
in the adiabatic approximation can be represented as a union of two segments: B3(I

(0)),
corresponding to the motion in G3, and Bi(I

(0)), corresponding to the motion in Gi (see
Figure 2). We assume that this trajectory belongs to a domain (a sort of an annulus, see
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Figure 2) D3,i on the plane of the slow variables, filled up with adiabatic trajectories of
the system at H0,i = h0, and each of these trajectories possesses the same properties as
the one described above. The values of I3, Ii corresponding to these trajectories fill up
segments Ξ3, Ξi accordingly.

y

x

Γ(h0)

S S
1,23

Figure 2: Schematic picture of motion on the slow plane.

The uncertainty curve divides D3,i into two subdomains D3, Di. Consider a point
(y, x) ∈ D3. The corresponding energy level line H = h0 on the plane of the fast variables
(p, q) belongs to the domain G3(x) and gives a trajectory of the fast system. For a point
(y, x) ∈ Di, i = 1, 2, the corresponding energy level has connected component which is
the trajectory of the fast system, belonging to the domain Gi. For a point (y, x) ∈ Γ the
energy level is a union of the separatrices l1(x), l2(x) and the point C(x).

3 Adiabatic and improved adiabatic approximations

In the fast system, action-angle variables I, ϕ mod 2π are introduced separately in each
domain Gi, i = 1, 2, 3 by a canonical transformation of variables. The corresponding
generating function W (I, q, x) contains x as a parameter [for brevity, we omit subscripts
i]. We take this function in the form

W (I, q, x) =

∫ q

q0(I,x)

P(I, q′, x)dq′, (4)

where P is the value of p-variable along the trajectory with the prescribed value of action
I. In G1, G2, q0(I, x) is the value of q at one of the two points where this trajectory
crosses the axis p = 0; in G1 we take the right one of these points, and in G2 we take the
left one. In G3 we take q0(I, x) = qs(x) and assume that at this point P > 0. In the new
variables the Hamiltonian has the form H = H0(I, y, x).

Now make a canonical transformation of variables (p, q, y, x) 7→ (Ī , ϕ̄, ȳ, x̄) with the
generating function ȳε−1x + W (Ī , q, x). The canonically conjugated pairs of variables are
(Ī , ϕ̄) and (ȳ, ε−1x̄). Formulas for the transformation of variables are:

ϕ̄ = ∂W/∂Ī, p = ∂W/∂q, x̄ = x, y = ȳ + ε∂W/∂x. (5)

In the new variables, Hamiltonian H has the form
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H = H0(Ī , ȳ, x̄) + εH1(Ī , ϕ̄, ȳ, x̄) + ε2H2(Ī , ϕ̄, ȳ, x̄, ε), (6)

where

H1 = gȳ
∂W

∂x
. (7)

In the adiabatic approximation, dynamics is described by Hamiltonian H0. In this ap-
proximation Ī = const along a phase trajectory.

One can also construct a canonical, close to identical, transformation of variables
(Ī , ϕ̄, ȳ, x̄) 7→ (J, ψ, ŷ, x̂) in order to make the terms of order ε in the Hamiltonian inde-
pendent of phase (see, for example, [17]). In the new variables, the Hamiltonian takes the
form:

H = H0(J, ŷ, x̂) + εH1(J, ŷ, x̂) + ε2H2(J, ψ, ŷ, x̂, ε), H1 = 〈H1〉, (8)

where the angular brackets denote averaging with respect to ϕ̄. In fact, in G1, G2 the
terms of order ε are absent because in these domains average value of H1 over ϕ̄ is zero
due to the symmetry with respect to the axis p = 0.

In the improved adiabatic approximation, the dynamics is described by the Hamilto-
nian H0(J, Y,X) + εH1(J, Y, X). In this approximation J is an integral of motion. With
the accuracy of order ε2, the following formula for J is valid (see [6]):

J = J(p, q, y, x) = I + εu(p, q, y, x), (9)

u =
1

2π
gy

∫ T

0

(
T

2
− t

)
∂E

∂x
dt. (10)

The integral here is calculated along a phase trajectory of the fast system passing
through the point (p, q); t is the time of motion along this trajectory starting from this
point, T is the period of motion. Function J is the improved adiabatic invariant. In
the complete system far from separatrices its value along a phase trajectory is constant
with the accuracy O(ε2) on time intervals of order ε−1. Below, we use notation Ji for the
improved adiabatic invariant in domain Gi.

4 Description of separatrix crossing

On the phase plane of the slow variables (y, x), the separatrix is represented by the curve
Γ(h0) (see Figure 2). Fix the number ν, ν = 1 or ν = 2. We are interested in dynamics of
phase points that are being captured into Gν after first separatrix crossing. The domain
D3,ν is divided by the uncertainty curve into domains D3 and Dν . The axis y = 0 intersects
the domain D3,ν along a segment S3 belonging to D3 and a segment Sν , which belongs to
Dν (see Figure 2). Points on the fast plane corresponding to S3 belong to G3, and the
points corresponding to Sν belong to Gν . Fix an interval Ξ3,0 ∈ Ξ3, endpoints of Ξ3,0 and
Ξ3 are different.

Let the motion start at t = 0 at a point M (0) = (p(0), q(0), y(0), x(0)), such that
H(p(0), q(0), y(0), x(0)) = h0 and (ŷ(0), x̂(0)) ∈ S3. Hence, (p(0), q(0)) ∈ G3(x

(0)). Let
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I3 = I(0) ∈ Ξ3,0, J3 = J (0), ψ = ψ(0) at this point. In the (y, x)-plane, the part of the adi-
abatic trajectory belonging to D3 is B3(I

(0)) = {y, x : (y, x) ∈ D3, H0,3(I
(0), y, x) = h0},

the motion is described by a Hamiltonian system with Hamiltonian H0,3(I
(0), y, x). Let

(x∗, y∗) and (x∗,−y∗) denote points of intersection of this trajectory and Γ(h0). As-
sume for definiteness that y∗ > 0, Θ3∗ ≡ Θ3(y∗, x∗) > 0. Thus, a phase point of the
slow system passes from D3 to Dν at the point (x∗, y∗), and at the point (x∗,−y∗)
it passes from Dν to D3. Introduce “slow time” variable τ = εt. Below τ∗ de-
notes the slow time moment of the first separatrix crossing in this approximation. Let
Iν∗ = Sν(x∗)/(2π). After crossing the separatrix, adiabatic trajectory on the slow plane
is curve Bν(I

(0)) = {y, x : (y, x) ∈ Dν , H0,ν(Iν∗, y, x) = h0}. In the exact system, in the
process of evolution the phase point on the plane of the slow variables approaches the
curve Γ(h0), and accordingly, on the plane (p, q) it approaches the separatrix. For such
a phase point, the last crossing of Cp-axis in G3 (see Figure 1) occurs near C at time
τ = τ∗ + O(εlnε). Assuming that at the point of this crossing E = h(0), we introduce
η(0) = h(0)/(εΘ3∗) .

After the separatrix crossing the phase point in the plane of slow variables (ŷ, x̂) moves
towards Sν . When it crosses Sν , the projection of the phase point onto the fast plane is
deep inside region Gν . Denote the value of Jν at this time moment as J (1).

Then the phase point again starts approaching the separatrix. In the adiabatic ap-
proximation, projection of the phase point onto the plane of the slow variables follows the
curve Bν . Let τ ν

∗∗ denote the slow time moment of passing through the point (x∗,−y∗)
in the adiabatic approximation. At τ = τ

(ν)
∗∗ + O(εlnε) the phase point crosses Cq-axis

in Gν near point C for the last time before entering G3. Denote Θν∗ ≡ Θν(y∗, x∗) > 0.
Assuming that at the point of this crossing E = h(1), we introduce η(1) = −h(1)/(εΘν∗) .
[We have taken into account that Θν(−y∗, x∗) = −Θν(y∗, x∗).]

After crossing Γ(h0), the projection of the phase point onto the plane (ŷ, x̂) crosses
again the segment S3. Let J (2), ψ(2) denote values of J3, ψ at this time moment. Then
the phase point approaches the separatrix again, crosses it and gets captured into domain
Gl, l = 1 or l = 2. Let E = h(2) at the last crossing of Cp-axis in G3 near C before this
crossing. This crossing occurs at time τ = τ∗ + T

(ν)
0 + O(εlnε), where T

(ν)
0 is the slow

time period of motion along the trajectory B(I(0)) = B3(I
(0))

⋃
Bν(I

(0)) in the adiabatic
approximation. We introduce η(2) = h(2)/(εΘ3∗) .

5 The return map

In this section, we introduce the return map describing the dynamics of the system in the
domain of separatrix crossings.

In the energy level H = h0 segment S3 is represented by a piece of two-dimensional
surface {p, q, y, x : H(p, q, y, x) = h0, (ŷ, x̂) ∈ S3}. This piece can be parameterized by
variables J3, ψ. The corresponding Poincaré return map M : (J (0), ψ(0)) → (J (2), ψ(2))
produced by trajectories that pass through Gν is symplectic. Its stationary points corre-
spond to periodic orbits of the original problem, of period approximately equal to T ν

0 /ε.
It is convenient to study these stationary points using a different set of variables, namely
to consider map M̂ : (J (0), η(0), ν) → (J (2), η(2), l).

The map M̂ is a composition of two maps: M̂ = M (2) ◦M (1),

M (1) : (J (0), η(0), ν) → (J (1), η(1), ν) , M (2) : (J (1), η(1), ν) → (J (2), η(2), l) .

7



The results of [6, 17] give the following formulas for M (k). Suppose that

η(0) ∈
[
c−1
1 ,

Θν∗
Θ3∗

− c−1
1

]
, η(1) ∈ [c−1

1 , 1− c−1
1 ] ,

η(2) ∈
[
c−1
1 ,

Θl∗
Θ3∗

− c−1
1

]
, (11)

where c1 is a positive constant, which can be chosen arbitrarily large. Then

2πJ (1) = Sν(x∗) + εa∗
Θν∗
Θ3∗

(Θ3∗ − 2Θν∗)
(

1

2
− Θ3∗

Θν∗
η(0)

)
lnε + O(ε) , (12)

η(1) =

{
Θ3∗
Θν∗

η(0) + ε−1Φν
1(J

(1)) + O(ε1/3|lnε|−1/3)

}
, (13)

2πJ (2) = S3(x̃∗)− εa∗(Θ3∗ − 2Θν∗)(η(1) − 1

2
)lnε + O(ε) , (14)

η(2) =

{
Θν∗
Θ3∗

η(1) − (1− δν,l)
Θν∗
Θ3∗

+ ε−1Φ2(J
(2)) + O(ε1/3|lnε|−1/3)

}
, (15)

l = ν, if 0 <

{
Θν∗
Θ3∗

η(1) + ε−1Φ2(J
(2))

}
<

Θν∗
Θ3∗

, (16)

l 6= ν, if
Θν∗
Θ3∗

<

{
Θν∗
Θ3∗

η(1) + ε−1Φ2(J
(2))

}
< 1. (17)

Here { · } denotes the fractional part, a∗ = a(x∗). For a one has a = 1/
√−d, where d

is the Hessian of E at the point C. In (13), (15),

Φν
1(J) =

1

2π

∫ τ
(ν)
+

τ
(ν)
−

(ω
(ν)
0 (J, Yν(τ), Xν(τ)) dτ , (18)

Φ2(J) =
1

2π

∫ τ
(3)
−

τ
(3)
+

(ω
(3)
0 (J, Y3(τ), X3(τ) + εω

(3)
1 (J, Y3(τ), X3(τ))) dτ. (19)

Here ω
(j)
0 = ∂H0/∂J , ω

(j)
1 = ∂H1/∂J , with H0, H1 calculated in region Gj, and (Yj, Xj) is

a solution of Hamiltonian system with Hamiltonian H0(J, y, x)+εH1(J, y, x) on the energy

level H0 = h0. Values τ
(j)
± are the slow time moments when the phase point corresponding

to this solution arrives to the separatrix. At these moments Sj(Xj) = 2πJ . [One can
take any of such solutions, they differ by a time shift which does not change the value of
the integrals in (18), (19)]. In (15), δν,l is the Kroneker symbol. The value x̃∗ in (14) is
defined by Sν(x̃∗) = 2πJ (1).

Equations (12), (14) follow directly from the formula for a jump of adiabatic invariant
at a separatrix [6] for the case with the assumed symmetry properties. Equations (13),
(15)-(17) are derived from the result of [17] in the following way.
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Let h
(0)
ν be the value of E when the phase point crosses the axis p = 0 near C for the

first time after entering Gν . We have (see [6]): h
(0)
ν = h(0) − εΘν∗ + O(ε3/2). Introduce

value ξ
(0)
ν = |h(0)

ν /(εΘν∗)|. This value is related to η(0) as

ξ(0)
ν = 1− Θ3∗

Θν∗
η(0) + O(

√
ε). (20)

According to [17],

ξ(0)
ν + η(1) = ε−1Φν

1(J
(1)) + O(ε1/3|lnε|−1/3) mod 1. (21)

Equation (13) then immediately follows from (21) and (20).

Let h
(1)
3 be the value of E when the phase point crosses the axis q = 0 near C for

the first time after exit from Gν . We have: h
(1)
3 = h(1) + εΘν∗ + O(ε3/2). At this time

moment the phase point is in G3 on positive or negative part of axis Cp. Let h̃(2) denote
the value of E when the phase point crosses the same part of the axis Cp for the last
time before entering Gl. Introduce values ξ

(1)
3 = h

(1)
3 /(εΘ3∗) and η̃(2) = h̃(2)/(εΘ3∗). If

0 < η̃(2) < 1−Θν∗/Θ3∗, we have l 6= ν; if 1−Θν∗/Θ3∗ < η̃(2) < 1, we have l = ν.
Consider first the case l 6= ν. In this case h̃(2) = h(2) and η̃(2) = η(2). From the

definitions of ξ
(1)
3 and h

(1)
3 we find

ξ
(1)
3 =

Θν∗
Θ3∗

(1− η(1)) + O(
√

ε). (22)

According to [17],

ξ
(1)
3 + η(2) = ε−1Φ2(J

(2)) + O(ε1/3|lnε|−1/3) mod 1. (23)

From (23), (22) we obtain (15) with l 6= ν. The condition (17) then follows from (15) and
the condition 0 < η(2) < 1−Θν∗/Θ3∗.

Now proceed to the case l = ν. Introduce h̃
(1)
3 as the value of E when the phase

trajectory crosses the Cp-axis for the second time after exit from Gν . We have: h̃
(1)
3 =

h
(1)
3 + ε(Θ3∗ − Θν∗) + O(ε3/2). Introduce ξ̃

(1)
3 = h̃

(1)
3 /(εΘ3∗). From the definitions of ξ̃

(1)
3

and h̃
(1)
3 we find

ξ̃
(1)
3 = 1− Θν∗

Θ3∗
η(1) + O(

√
ε). (24)

According to [17],

ξ̃
(1)
3 + η(2) = ε−1Φ2(J

(2)) + O(ε1/3|lnε|−1/3) mod 1. (25)

From (25), (24) we obtain (15) with l = ν. In this case we have η(2) = η̃(2)−1+Θν∗/Θ3∗+
O(
√

ε). The condition (16) then follows from (15) and the condition 1−Θν∗/Θ3∗ < η̃(2) <
1.

6 Absence of stable periodic trajectories

In Appendix, we prove that in the domain defined by I(0) ∈ Ξ3,0 and conditions (11), the
system has many, of order ε−1|lnε|, periodic trajectories. In this Section, we prove that
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all periodic trajectories in this domain and under these conditions are linearly unstable.
Let the map M̂ have a fixed point J (0) = J0, η(0) = η0. Near this fixed point the map
can be linearized. The determinant of the Jacobi matrix for M̂ at (J0, η0) equals 1. The
linear stability condition for the fixed point is |trace M̂ | < 2, where trace M̂ denotes trace
of the Jacobi matrix for M̂ . On the other hand, formulas (12-15) imply that the trace of
the Jacobi matrix at (J0, η0) equals

trace M̂ = B(lnε)2 + O(lnε), (26)

where

B =
a2
∗

4π2
(Θ3∗ − 2Θν∗)2 ∂Φ̄ν

1(J)

∂J

∣∣∣∣
J=J0−Sν̄(x∗)/(2π)

∂Φ̄2(J)

∂J

∣∣∣∣
J=J0

. (27)

Here ν̄ = 1 if ν = 2 and vice versa. Functions Φ̄ν
1 and Φ̄2(J) are “roughened” Φν

1 and
Φ2(J), accordingly:

Φ̄ν
1(J) =

1

2π

∫ τ
(ν)
∗∗

τ∗
ω

(ν)
0 (J, yν(τ), xν(τ)) dτ , (28)

Φ̄2(J) =
1

2π

∫ τ∗+T
(ν)
0

τ
(ν)
∗∗

ω
(3)
0 (J, y3(τ), x3(τ)) dτ. (29)

In these integrals, (yj(τ), xj(τ)) is a solution of the Hamiltonian system with Hamiltonian
H0,j(J, y, x) on the energy level H0,j = h0. The integration limits are also calculated in
the adiabatic approximation (see notations in Section 4). Note that value of r.h.s. in (29)
does not depend on ν.

We assume that B 6= 0. Thus, |trace M̂ | → ∞ as ε → 0. Therefore, the linear
stability condition |trace M̂ | < 2 cannot be satisfied at small enough ε, and the fixed
point is unstable. Moreover, a periodic point of M̂ of any prescribed period is in general
unstable. Indeed, each iteration of M̂ produces a factor of order (lnε)2 in the expression
for the trace. Consider a periodic trajectory that starts at a point (J0, η0) in G3 and
returns to its starting point after being captured k times in Gν and n times in Gl, l 6= ν.
Accordingly, the map M̂ has a periodic point (J0, η0) of period k + n. The expression for
the trace of the Jacobian matrix for M̂k+n at (J0, η0) is:

trace M̂k+n = B(k,n)(lnε)2(k+n) + O((lnε)2(k+n)−1), (30)

with

B(k,n) =
a

2(k+n)
∗

(2π)2(k+n)
(Θl∗ −Θν∗)2(k+n)

(
∂Φ̄ν

1

∂J

)k (
∂Φ̄l

1

∂J

)n (
∂Φ̄2

∂J

)k+n

, (31)

where the partial derivatives of Φ̄ν
1, Φ̄l

1, and Φ̄2 are calculated at J = J0 − Sl(x∗)/(2π),
J = J0 − Sν(x∗)/(2π), and J = J0, accordingly.

If the system possesses additional symmetry, such that Θ1 = Θ2, the value B in (26)
is zero, and the periodic trajectory may be linearly stable. Indeed, existence of linearly
stable periodic trajectories in the case of a symmetric double-well potential was proved in
[12] (see also [11], where a more general case is considered). It can be seen from (26),(31)
that for smaller values of asymmetry |Θ1 − Θ2| one should take a smaller value of ε to
make sure that the periodic trajectory is unstable. An estimate for the corresponding
value of ε can be obtained as follows. The main terms in expressions (12),(14) for M̂ are

10



proportional to εlnε|Θ1 −Θ2|, while the next term is of order ε (see [6]). Thus, the term
containing the asymmetry prevails, if ε is of order exp(−const/|Θ1 −Θ2|) or smaller.

Summarizing, we can say the following. In the domain defined by I(0) ∈ Ξ3,0 and
conditions (11), for any prescribed period can be found a small enough ε, such that the
considered system does not have stable periodic solutions of this period and smaller. The
condition I(0) ∈ Ξ3,0 implies that the periodic solution does not come too close to the
boundary of the domain of separatrix crossings. Conditions (11) mean that the periodic
solution does not pass anomalously close to the saddle point.
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Appendix. Existence of periodic solutions

In this Appendix, we prove that map M̂ has many, of order ε−1, stationary points in
the domain defined by I(0) ∈ Ξ3,0 and conditions (11). In the proof, we use the way of
argument similar to one developed in [9, 10].

Introduce the following notations:

Ĵ (s) = εζ(s) , s = 0, 1, 2; (32)

ε−1 dΦν
1(εζ)

dζ
= γ1(εζ) , ε−1 dΦ2(εζ, ε)

dζ
= γ2(εζ, ε)

Suppose that (ζ(0), η(0)) = (ζ, η) is a stationary point of map M̂ with l = ν. Thus,
ζ(2) = ζ, η(2) = η and from (12)-(15) we obtain the following equations (for brevity, the
subscript ∗ is omitted):

η(1) = 1− Θ3

Θν

η + O(ε1/2) (33)

η(1) − Θ3

Θν

η − γ1

(
εζ − Sν̄

2π

)(
a
Θν

Θ3

(Θν̄ −Θν)

(
1

2
− Θ3

Θν

η

)
lnε + A(η)

)

= ε−1Φν
1

(
εζ − Sν̄

2π

)
+ O(ε1/3|lnε|−1/3) mod 1 (34)

η − Θν

Θ3

η(1) = ε−1Φ2(εζ, ε) + O(ε1/3|lnε|−1/3) mod 1. (35)

Here function A(η) represents the terms of order ε in the formula for the jump in the
improved adiabatic invariant at the separatrix crossing (see [6]). Here we do not need the
explicit expression for this function.

Below, we look for solutions of (33)-(35) neglecting the error terms. Thus obtained
set of equations differs from the exact set (33)-(35) by terms O(ε1/3|lnε|−1/3) that can be
differentiated without changing their order of smallness. We find non-degenerate solutions
of the set (33)-(35) without the error terms. According to the implicit function theorem,
for small enough ε, each of these solutions corresponds to a solution of the exact system.
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We assume that there exists at least one point I such that

γ1(I − Sν̄/(2π))γ2(I, 0) 6= 0. (36)

Therefore, there is an interval of values of I, where (36) is valid. Below, we consider only
values of εζ that belong to the interval defined by (36).

Equation (33) defines in the first approximation a segment L(εζ) of a straight line on
the plane (η, η(1)). The endpoints of the segment are (0, 1) and (Θν/Θ3, 0).

Consider the points (η, η(1)) ∈ L(εζ). Equations (33)-(35) can be interpreted geomet-
rically as follows. Let the curve Λ(εζ) ⊂ T2 = {(s1 mod 1, s2 mod 1)} be the image of
L(εζ) under the mapping

(η, η(1)) 7→ (s1, s2)

=

(
1− 2Θ3

Θν

η−γ1

(
εζ−Sν̄

2π

)(
a
Θν

Θ3

(Θν̄−Θν)

(
1

2
−Θ3

Θν

η

)
lnε+A(η)

)
, 2η−Θν

Θ3

)
(37)

defined by left hand sides of (34) and (35). Consider also the point

ε−1Φ(εζ, ε) =

(
ε−1Φν

1

(
εζ − Sν̄

2π

)
mod 1, ε−1Φ2(εζ, ε) mod 1

)
(38)

on T2. As ζ varies, the curve Λ(εζ) moves slowly, at the speed of order εlnε on the torus.
On the other hand, the point ε−1Φ is moving fast, while its velocity vector γ(εζ, ε) =
(γ1(εζ) , γ2(εζ, ε)) varies slowly. Solutions of system (33)-(35) correspond to values of
“time” ζ when the point ε−1Φ(εζ, ε) crosses the curve Λ(εζ).

One can see from (37) that Λ(εζ) is almost parallel to the meridian of the torus that
corresponds to s1. The length of Λ(εζ) is of order |lnε|. Hence, it makes ∼ |lnε| turns
around the torus.

It follows from assumption (36), that the winding of the torus defined by (38) is
transversal to Λ. The interval defined by (36) corresponds to an interval of “time” ζ
of length more than c−1

2 /ε (c2 and C1 below are positive constants). On this “time”
interval there are more than C−1

1 |lnε|/ε pairs (ζr, ηr) such that the point ε−1Φ(εζ, ε)
crosses transversally the moving curve Λ(εζ) at ζ = ζr and η = ηr. Each intersection
point corresponds to a stationary point of the return map. Each of these stationary
points, in turn, corresponds to a periodic orbit of the original system.
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[1] J. Büchner and L. M. Zelenyi, “Regular and chaotic charged particle motion in mag-
netotaillike field reversals, 1, Basic theory of trapped motion,” J. Geophys. Res.
94(A9), 11821-11842 (1989).

[2] A. V. Gurevich and E. E. Zedilina, Long distance propagation of HF radio waves
(Springer-Verlag, Berlin, 1985).

[3] J. Wisdom, “A perturbative treatment of motion near the 3/1 commensurability,”
Icarus 63(2), 272-289 (1985).

12



[4] V. I. Arnold, Mathematical methods of classical mechanics (Springer-Verlag, New
York, 1978).

[5] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classi-
cal and Celestial Mechanics (Dynamical Systems III. Encyclopedia of Mathematical
Sciences), 3rd edition (Springer-Verlag, New York, 2006).

[6] A. I. Neishtadt, “On the change in the adiabatic invariant on crossing a separatrix
in systems with two degrees of freedom,” PMM USSR 51, 586-592 (1987).

[7] J. R. Cary, D. S. Bruhwiller, “Diffusion of particles in a slowly modulated wave,”
Physica D 40, 265 (1989).

[8] A. I. Neishtadt and V. V. Sidorenko, “Wisdom system: dynamics in the adiabatic
approximation,” Celest. Mech. and Dynam. Astron. 90, 307-330 (2004).

[9] A. I. Neishtadt, V. V. Sidorenko, and D. V. Treschev, “Stable periodic motions in
the problem of passage through a separatrix,” Chaos 7, 2-11 (1997).

[10] A. I. Neishtadt, V. V. Sidorenko, and D. V. Treschev, “On stability islands in the
domain of separatrix crossings,” In: Nonlinear Mechanics eds. V. M. Matrosov, V.
V. Rumyantsev et al (Moscow: Fizmatlit), 192-203 (2001) (in Russian).

[11] A. A. Vasiliev, A. I. Neishtadt, C. Simó, and D. V. Treschev, Stability islands in
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