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Abstract

We consider a classical hydrogen atom in a linearly polarized electric field of slowly changing

frequency. In the process of evolution, the system passes through resonances between the driving

frequency and the Keplerian frequency of the electron’s motion. At a resonance, a capture into

the resonance can occur. After the capture, the system evolves in such a way that the resonance

condition is approximately preserved, and parameters of the electron’s orbit are varying. We study

this phenomenon in the case of 2:1 resonance and show that the capture results in growth of

the eccentricity of the electron’s orbit. It strongly depends on the initial conditions, whether the

capture occurs or not. Hence, the capture can be considered as a probabilistic phenomenon. The

capture probability is defined and calculated.
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I. INTRODUCTION

Dynamics of highly excited (Rydberg) atoms in microwave fields has been a subject of

extensive research during the last thirty years. After experiments of Bayfield and Koch [1]

and theoretical work of Leopold and Percival [2], it was realised that certain essential prop-

erties of the dynamics of Rydberg hydrogen atoms can be described in the frames of classical

approach. In more recent studies, methods of classical mechanics yielded surprisingly ac-

curate results for various problems of the hydrogen atom in weak, slowly varying external

fields (see [3] for references). In [3], it was shown that this accuracy is due to the fact that

in the perturbative limit certain quantum expectation values obey the same equations as

the corresponding classical values averaged over the Kepler motion.

One of the major areas of application of classical mechanics is the chaotic ionization of

Rydberg atoms. At large enough amplitude of the external field the Chirikov resonance

overlap criterion [4] is met, and the system can diffuse in the phase space until the atom

is ionized. This way of ionization was thoroughly studied for various configurations and

polarizations of external fields. See, for example, ionization in linearly polarized (LP) mi-

crowave field [5, 6], in circularly polarized (CP) field [7] and references therein, in elliptically

polarized (EP) field [8], in CP microwave and magnetic field [9].

Another classical idea in the field is to control the Keplerian motion of the electron using

its resonant interaction with a low-amplitude wave of slowly changing frequency. Dynamical

problems of this kind were studied in [10] for a 1-D model and [11] for a 3-D model. In

particular, in the latter work an hydrogen atom in a linearly polarized electric field of slowly

decreasing frequency was considered. It was shown that at a passage through 2:1 resonance

(i.e., when the driving frequency is twice as large as the Keplerian frequency) the system

with initially zero eccentricity of the electron’s orbit is captured into the resonance. In the

captured state, the electron’s Keplerian frequency varies in such a way that the resonant

condition is approximately satisfied. In this motion the orbit’s eccentricity grows, which

may result in ionization of the atom.

In the present work we also consider a 3-D hydrogen atom in a linearly polarized elec-

trostatic field of slowly changing frequency. We study behaviour of the system near 2:1

resonance using methods of the theory of resonant phenomena, developed in [12] - [14] (see

also [15]). These methods were previously used in studies of various physical problems
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including surfatron acceleration of charged particles in magnetic field and electromagnetic

wave [16], slowly perturbed billiards [17], [18], and classical dynamics in a molecular hydro-

gen ion [19]. Recently they were also applied to study dynamics of a classical 2-D hydrogen

atom in a CP microwave field of slowly changing frequency [20].

In the present paper, we show that capture into the resonance necessarily occurs not

only in the case of zero initial eccentricity but also if the initial eccentricity is not zero

but small enough. Moreover, at larger values of the initial eccentricity the capture is also

possible. Following the general approach, capture into the resonance in this latter case can

be considered as a probabilistic phenomenon. We define and evaluate its probability. The

obtained results can be used to broaden the applicability of the resonant control methods

for Rydberg atoms.

The paper is organized as follows. In Section 2, we use standard techniques of classical

celestial mechanics and the theory of resonant phenomena to reduce the equations of motion

near the resonance to the standard form. Like in [11], we consider the case of small initial

eccentricity. In Section 3, we apply relevant results of [12] and find the region of so called

”automatic capture” into the resonance at small eccentricities and calculate probability

of capture at larger values of initial eccentricity. The capture significantly changes the

eccentricity of the electron’s orbit and may lead to ionization. In Conclusions, we summarize

the results.

II. EQUATIONS OF MOTION NEAR THE 2:1 RESONANCE

We study dynamics of a classical electron in a hydrogen atom perturbed by a harmonically

oscillating electric field of small amplitude µ, linearly polarized along the Z-axis. This system

is described with Hamiltonian

H = H0 + Zµ cos Ψ. (1)

Here H0 is the unperturbed Hamiltonian of motion in the Coulomb field and Ψ is the

perturbation phase. Introduce the perturbation frequency ω = dΨ/dt. We assume that

ω = ω(εt), 0 < ε ¿ 1, i.e. that this frequency slowly changes with time. For brevity, we

put the electron mass and charge to 1, and use dimensionless variables.

The unperturbed trajectory of the electron is an ellipse with eccentricity e (assumed

small), semimajor axis a, and inclination i. It is a well-known fact from celestial mechanics
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FIG. 1: The Keplerian ellipse is shown with the bold line. The rest system of coordinates is

(XY Z), the z-axis is orthogonal to the plane of the orbit. The periapsis and the ascending node

are denoted with P and N accordingly.

that the so-called Delaunay elements L,G, H, l, g, h provide a set of canonical variables for

the system under consideration (see, e.g. [21]). The Delaunay elements can be defined as

L =
√

a, G =
√

a(1− e2), H =
√

a(1− e2) cos i; (2)

l is the mean anomaly, g is the argument of the periapsis, and h is the longitude of the

ascending node (see Figure 1).

In these variables, Hamiltonian (1) takes the form (see [11]):

H = H0 + µH1, H0 = − 1

2L2
,

H1 = sin i

∞∑

k=1

[
ak + bk

4
(sin(kl + g −Ψ) + sin(kl + g + Ψ)) + (3)

bk − ak

4
(sin(kl − g −Ψ) + sin(kl − g + Ψ))

]
,

where

ak =
2a

k
J ′

k(ke), bk =
2a
√

1− e2

ke
Jk(ke). (4)
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Here Jk(·) is the Bessel function of integer order k, and J ′
k(·) is its derivative.

In order to avoid possible singularities at e = 0, we make a canonical transformation of

variables (L,G, H; l, g, h) 7→ (P3, P2, P1; Q3, Q2, Q1) defined with generating function P3(l +

g + h) + P2(g + h) + P3h. The new canonical variables [called Poincaré elements of the first

kind] are expressed in terms of the old ones as follows:

P3 = L, Q3 = l + g + h,

P2 = G− L, Q2 = g + h,

P1 = H −G, Q1 = h.

(5)

As the perturbation frequency slowly varies with time, the system passes through res-

onances with the unperturbed Keplerian frequency l̇. Near a resonance, certain terms in

expression (3) for H1 are changing very slowly. Consider a passage through the 2:1 reso-

nance. In this case, after averaging over fast oscillating terms, we obtain the Hamiltonian

describing the dynamics near the resonance:

H = − 1

2P 2
3

+ µα(P2, P3) sin i sin(2Q3 −Q2 −Q1 −Ψ), (6)

where we introduced the notation α(P2, P3) = (a2 +b2)/4. In (6), we have used that at small

values of eccentricity a2 ≈ b2 ≈ ea/2.

The resonance is defined by 2Q̇3 = ω(τ), τ = εt. It follows from the unperturbed

Hamiltonian (3) that Q̇3 = 1/P 3
3 . Hence, denoting the value of P3 at the resonance as Pr,

we find:

Pr =

(
2

ω(τ)

)1/3

. (7)

Our next step is to introduce the resonant phase. We do this with the canonical transfor-

mation (P3, P2, P1; Q3, Q2, Q1) 7→ (J3, J2, J1; γ3, γ2, γ1) defined with the generating function

W = J3(2Q3 −Q2 −Q1 −Ψ) + J2Q2 + J1Q1. (8)

For the new canonical variables we have

J3 = P3/2, γ3 = 2Q3 −Q2 −Q1 −Ψ,

J2 = P2 + P3/2, γ2 = Q2,

J1 = P1 + P3/2, γ1 = Q1.

(9)

The Hamiltonian function takes the form:

H = − 1

8J2
3

+ µ α(P2, P3) sin i sin γ3 − ω(τ)J3. (10)
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Near the resonant value P3 = Pr we can expand this expression into series. With the

accuracy of order O(|P3 − Pr|3) we obtain the following Hamiltonian:

F = −3

2

(P3 − Pr)
2

P 4
r

+ µ α̃(J2, P3) sin i sin γ3, (11)

where canonically conjugated variables are P3/2 and γ3 and α̃ is function α expressed via

J2, P3. Introduce notations P = P3, ϕ = γ3 + 3π/2, J = J2. The Hamiltonian (11) does not

contain γ2, hence J is an integral of the problem. Another integral is J1, corresponding to

the fact that Delaunay element H is an integral of the original system (3). Coefficient sin i

in (11) should be taken at P = Pr. We have

sin i|P=Pr
=

√
1− H2

(J + Pr/2)2
. (12)

The initial value of eccentricity is small, though not necessary zero. From (4), we have

α̃(J, P ) ≈ ae

4
=

1

4
P

√(
P

2
− J

)(
J +

3

2
P

)
. (13)

Small eccentricity implies that P/2 − J ¿ 1. As the system evolves near the resonance,

small variations of P are essential when calculating the term (P/2 − J) in (13) and less

important in the other terms. Hence, in these latter terms, we can put P = Pr. We write

J +
3

2
P ≈ 2P,

where we have used that P/2 ≈ J . Thus, we obtain

α̃(J, P ) ≈
√

2

4
P 3/2

r

√
P

2
− J (14)

and the following expression for the Hamiltonian:

F ≈ F1 = −3

2

(P − Pr)
2

P 4
r

+ µ

√
1− H2

(J + Pr/2)2

√
2

4
P 3/2

r

√
P

2
− J cos ϕ. (15)

Introduce so-called Poincaré elements of the second kind:

x =
√

P − 2J cos ϕ, y =
√

P − 2J sin ϕ. (16)

The transformation (P/2, ϕ) 7→ (x, y) is canonical with generating function W1 = y2

2
cot ϕ−

Jϕ. Change the sign of F1 and, to preserve the canonical form, the sign of x. Thus, we

obtain the Hamiltonian in the form:

F1 =
3

2

(x2 + y2)2

P 4
r

− 3
x2 + y2

P 4
r

(Pr − 2J) + µA(H, J, Pr)x, (17)

6



where

A(H, J, Pr) =
P

3/2
r

4

√
1− H2

(J + Pr/2)2
.

Note, that if the eccentricity is small, then Pr − 2J ¿ 1, and hence the slow variation of

Pr is essential only in the second term in (17). In the other terms, Pr can be assumed to

be constant, say, Pr = Pr0, where Pr0 is the value of Pr at τ = 0. Now, we renormalise the

Hamiltonian F1 → 2
3
P 4

r0F1 to transform it to the following standard form studied in [12]:

F1 = (x2 + y2)2 − λ(x2 + y2) + µ̃x (18)

with λ = 2(Pr − 2J) and µ̃ = µA(H, J, Pr0). We describe the dynamics defined by Hamilto-

nian (18) in Section 3.

III. CAPTURE INTO THE RESONANCE AT SMALL VALUES OF ECCEN-

TRICITY

Dynamics in the system with Hamiltonian function (18) was studied in details in [12]. In

this section we put forward the results of [12] relevant to our study.

In (18) µ̃ > 0 is a constant parameter, and λ is a slow function of time, λ̇ ∼ ε. Assume

that λ̇ > 0.

On the phase plane (x, y), the values
√

P − 2J and ϕ (see (16)) are polar coordinates.

Note that eccentricity in the original problem is proportional to
√

P − 2J .

Parameter λ is changing slowly, and as the first step we consider the problem at fixed

values of λ. Phase portraits at different values of λ are presented in Figures 2, 3. At

λ < λ∗ = 3
2
µ̃2/3 (Figure 2a) there is one elliptic stable point A on the portrait. At λ > λ∗

(Figure 3) there are two elliptic stable points A and B, and one saddle point C. Separatrices

l1, l2 divide the phase plane into three regions G1, G12, G2. In Figure 2b, the portrait at

λ = λ∗ is shown.

The coordinates of point C are x = xc, y = 0, where xc = xc(λ) is the largest root of

equation
∂F1(x, 0, λ)

∂x
= 4x3 − 2λx + µ̃ = 0. (19)

At λ ≥ λ∗, introduce Fc = Fc(λ) = F1(xc, 0, λ) and F̃(x, y, λ) = F(x, y, λ)− Fc(λ). In G12

we have F̃ < 0, in G1 and G2 F̃ > 0, on the separatrices F̃ = 0.
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FIG. 2: Phase portraits of the system at fixed values of λ; µ̃ = 0.01. a) λ = 0.05 < λ∗, b)

λ = 0.069624 ≈ λ∗.

As parameter λ slowly grows with time, λ̇ ∼ ε, curves l1, l2 defined with F̃ = 0 slowly

move on the phase plane. On time intervals of order ε−1 their position on the phase plane

essentially changes, together with the areas of G12, G2. On the other hand, area surrounded

by a closed phase trajectory at a frozen value of λ is an approximate integral [adiabatic

invariant] of the system with slowly varying parameter λ. Therefore, a phase point can cross

l1, l2 leaving one of the regions Gi and entering another region.

Denote with (x(t), y(t)) a phase point moving according to (18). Without loss of gen-

erality assume that λ = λ∗ at t = 0. The initial point (x(0), y(0)) can be either inside

l1 [F̃0 = F̃(x(0), y(0), λ∗) < 0] or out of l1 [F̃0 > 0]. The following assertion is valid.

All points lying inside l1 at λ = λ∗ except, maybe, of those belonging to a narrow strip

−k1ε
6/5 ≤ F̃0 < 0, where k1 is a positive constant, stay in G12 at least during time intervals

of order ε−1.

This result is due to the fact that the area of G12 monotonically grows with time [see below

(22),(23)], and conservation of the adiabatic invariant makes a phase point go deeper and

deeper into this region. A point captured in G12 rotates around point A= (xA, 0), where xA is

the smallest root of equation (19). As time grows, |xA| also grows and point A on the portrait

slowly moves along x-axis in the negative direction. Therefore, the motion is a composition

8



−0.5 0   0.5 
−0.5

0   

0.5 

x

y

G

G 

G 

C 

l
l 

o o 

A B 

1 

12 

2 

2 
1 

FIG. 3: Phase portrait of the system at λ = 0.1 > λ∗; µ̃ = 0.01.

of two components: fast rotation along a banana-shaped curve surrounding A and slow

drift along x-axis. The area surrounded by each banana-shaped turn is approximately the

same and equals the area S(λ∗) surrounded by the trajectory passing through (x(0), y(0))

at λ = λ∗. Hence, the average distance between the phase point and the origin slowly grows,

corresponding to the eccentricity growth in the original problem.

In [11], it was shown that a point having zero initial eccentricity necessarily undergoes the

eccentricity growth. The formulated result implies that this is also valid for all the points

initially [i.e., at λ = λ∗] inside l1, except, maybe, for a narrow strip close to l1. A typical

linear size of this domain is of order µ̃1/3. In [22] this phenomenon was described in the

problem of motion of Saturn’s satellites and called ”automatic entry into libration” [see also

[23]].

Consider now the case when the point (x(0), y(0)) is outside l1: F̃0 > 0. With time the

area inside l1 grows, and at a certain moment the phase trajectory crosses l1. In the adiabatic

approximation the area surrounded by the phase trajectory is constant: S(λ) = S(λ∗).

Hence, in this approximation the time moment of crossing l1 can be found from equation
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S1(Λ) = S(λ∗). Here S1(λ) is the area inside l1 as a function of λ and Λ is a value of the

parameter at this moment. After crossing, there are two possibilities: (i) the phase point

can continue its motion in G12 during a time interval of order at least ε−1 [this corresponds

to capture into the resonance and growth of the eccentricity]; (ii) without making a full turn

inside G12 the phase point can cross l2 and continue its motion in G2 [this corresponds to

passage through the resonance without capture]. The area of G2 also monotonically grows

with time [see below (22),(23)], hence such a point cannot cross l2 once more and return to

G12.

It is shown in [12] that the scenario of motion after crossing l1 strongly depends on

initial conditions (x(0), y(0)): a small, of order ε, variation of initial conditions can result in

qualitatively different evolution. If the initial conditions are defined with a final accuracy

δ, ε ¿ δ ¿ 1, it is impossible to predict a priori the scenario of evolution. Therefore,

it is reasonable to consider capture into G12 or G2 as random events and introduce their

probabilities.

Following [24], consider a circle of small radius δ with the centre at the initial point M0.

Then the probability of capture into G12 is defined as

P = lim
δ→0

lim
ε→0

S12

Sδ
M0

, (20)

where Sδ
M0

is the measure of the circle of radius δ and S12 is the measure of the set of points

inside this circle that are captured finally into G12.

Let λ = Λ be the parameter value at the moment of crossing l1 in the adiabatic approxi-

mation. The following formula for probability P is valid:

P =
I1 − I2

I1

, where I1(λ) = −
∮

l1

∂F̃
∂λ

dt, I2(λ) = −
∮

l2

∂F̃
∂λ

dt, (21)

and the integrals I1, I2 are calculated at λ = Λ. Calculating the integrals, one finds [12]

I1(Λ) =
1

2
(2π −Θ), I2 =

Θ

2
, Θ = arccos

(
Λ

2x2
c

− 2

)
. (22)

Here Θ is the angle between the tangencies to l1 at C, 0 ≤ Θ < π. Note that

dS2

dλ
= I2 ,

dS12

dλ
= I1 − I2. (23)

Geometrically, formula (21) can be interpreted as follows. In a Hamiltonian system, phase

volume is invariant. As parameter λ changes by ∆λ, a phase volume ∆V12 enters the region
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G12. At the same time, a volume ∆V2 leaves this region and enters G2. The relative measure

of points captured in G12 is (∆V12 − ∆V2)/∆V2. The integral I1 in (21) is the flow of the

phase volume across l1, and I2 is the flow across l2. Therefore, P gives the relative measure

of points captured into G12.

Note that, rigorously speaking, there also exists a set of initial conditions that should

be excluded from consideration. Phase trajectories with initial conditions in this set pass

very close to saddle point C, and the asymptotic results of [12] cannot be applied to them.

However, this exclusive set is small: it can be shown that its relative measure tends to zero

faster than any positive power of ε.
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FIG. 4: Passage through the resonance on (x, y)-plane and corresponding variation of eccentricity

(bottom plots); µ̃ = 0.001, ε = 0.0001. a) Passage with capture into the resonance; b) passage

without capture; initial conditions in the cases a) and b) are different.

In Figure 4a, capture into the resonance is shown. First, the phase point rotates around

the origin in region G1, then it crosses l1, enters region G12 and continues its motion in this

region. In the course of this motion, the average distance from the origin grows, correspond-

ing to the growth of the eccentricity. The motion of captured phase points is regular in the
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sense that two initially close captured phase points stay close to each other in the process

of further evolution. In Figure 4b, all the parameter values are the same as in Figure 4a,

but initial conditions are slightly different. In this case, after crossing l1, the phase point

crosses l2 and gets into region G2. This is a passage through the resonance without capture.

Variation of eccentricity in this case is due to transition from G1 into G2. For numerics, we

used λ = λ0 + εt.

We have tested formula (21) for probability of capture numerically. We considered a

square of size 100ε × 100ε on (x, y)-plane centered at the point (x̄0, ȳ0) where the formula

is tested, and took 100 initial points for the system with Hamiltonian (18) in this square.

The numerical value of capture probability at the central point Pnum is the ratio of captured

trajectories to the total number of trajectories. The results of numerical test show consid-

erably good agreement with the formula. A part of these results for µ̃ = 0.001, ε = 0.0001

are presented in Table 1.

x̄0 ȳ0 Pnum Pth

0.255 0.105 0.14 0.146

0.225 0.115 0.12 0.130

0.275 0.085 0.10 0.120

0.295 0.115 0.09 0.101

0.305 0.125 0.11 0.096

TABLE 1: Numerical value of capture probability Pnum vs theoretical value Pth.

At the end of this section, we comment on the parameters’ range appropriate for the

methods used. First of all, it must be µ ¿ 1 and ε ¿ 1, otherwise it is not possible to use

the perturbation theory methods. One can also give some additional restrictions. Consider

Hamiltonian (18). A typical scale on the corresponding phase portrait can be found using the

condition that the first and the last terms in the Hamiltonian are of the same order. Thus,

we find that typical values of x and y on the portrait are of order of µ1/3. Hence we find that

typical frequency of motion on this portrait is Ωtyp ∼ φ̇ ∼ µ2/3. The adiabaticity condition

[i.e. that variation of the driving frequency during a period of motion is much smaller than

the frequency of motion] can be written as ε ¿ Ω2
typ or ε ¿ µ4/3. Therefore, of the two small

parameters, ε should always be the smallest. Also, it is necessary for application of the time

averaging that the driving frequency is much larger than the typical frequency of motion

12



on the phase portrait: ω À Ωtyp. Thus, we obtain µ ¿ ω3/2. Essentially, this condition

provides possibility of using the isolated resonance approximation.

IV. CONCLUSIONS

Summarizing the results, we can say the following. (i) Capture into the resonance in the

considered problem results in growth of the eccentricity of the electron’s orbit. (ii) On the

phase plane around the origin [e = 0], there exists a region of size of order µ̃1/3 such that

all phase trajectories with initial conditions [i.e. at λ = λ∗] in this region undergo a capture

into the resonance with necessity [”automatic capture”]. (iii) If initial eccentricity is larger,

and the initial point on the phase plane is out of the region mentioned above, there is a finite

probability that the phase trajectory will be captured into the resonance. This probability

is given by (21).

Acknowledgements

The work was partially supported with RFBR grants No. 03-01-00158 and NSch-

136.2003.1.

[1] J.E.Bayfield and P.M.Koch, Phys. Rev. Lett. 33, 258 (1974).

[2] J.G.Leopold and I.C.Percival, Phys Rev. Lett. 41, 944 (1978).

[3] P.Bellomo, C.R.Stroud, Jr., D.Farrelly, and T.Uzer, Phys. Rev. A 58, 3896 (1998).

[4] B.V.Chirikov, Phys. Rep. 52, 265 (1979).

[5] G.Casati, B.V.Chirikov, D.L.Shepelyansky, and I.Guarneri, Phys. Rep. 154, 77 (1987).

[6] P.M.Koch and K.A.H. van Leeuwen, Phys. Rep. 255, 289 (1995).
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