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Summary. We consider destruction of adiabatic invariance in volume-preserving
systems due to separatrix crossings, scattering on and capture into resonances. These
mechanisms result in mixing and transport in large domains of phase space. We
consider several examples of systems where these phenomena occur.
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1 Introduction

Consider a volume-preserving system of ODE in R3 depending on a small
parameter, ε: 0 < ε ¿ 1:

ẋ = v (x) + εw (x, ε) , divv = divw = 0. (1)

Velocity field v in (1) defines an unperturbed (base) flow; w is a perturbation
and is supposed to be a smooth function of ε. We restrict our discussion to 3-D
autonomous flows, providing remarks on possible generalizations where appli-
cable. System (1) at ε = 0 is called the unperturbed system. Systems of kind
(1) arise naturally in problems of incompressible fluid dynamics. Therefore,
it is customary to call phase trajectories of (1) streamlines. A natural way to
illustrate dynamics driven by (1) is to consider the motion of passive tracers
advected by the flow. In a sense, passive tracers for the flows are equivalent
to phase points in generic dynamical systems.

Let the unperturbed system be integrable. Then the phase space of the
system (that for hydrodynamical flows coincide with the physical space) is
foliated into invariant tori and the motion on these tori is quasi-periodic or
periodic. If there are two independent integrals, the tori are invariant closed
curves. In general, the integrability requires the existence of at least one con-
served quantity (or action or invariant), so all flows of interest belong to one
of two classes: action-action-angle or action-angle-angle [10]. Transport in the
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perturbed action-angle-angle flows is severely restricted by KAM tori (it was
illustrated in [8]), while the effective degeneracy of the action-action-angle
flows opens the possibility of global transport and mixing. We will, therefore,
focus our attention on action-action-angle flows and possible mechanisms lead-
ing to chaotic advection.

The effects of the small perturbation in (1) start manifesting themselves
on time intervals of order at least ε−1. A function of phase variables is called
an adiabatic invariant (AI) if its value along a phase trajectory of (1) has only
small (with ε) variations on time intervals of such length. In other words, an
AI is an approximate first integral of the system. Perpetual conservation of
AI presents a barrier for complete mixing.

In this paper, we describe destruction of adiabatic invariants at separatri-
ces and resonances and use several examples studied earlier [26, 18, 17, 23]
to illustrate different aspects of the complete picture. General properties are
discussed in Section 2. Separatrix crossings are discussed in Section 3, and
passages through resonances are considered in Section 4.

2 Separatrix crossings and passages through resonances
in volume-preserving systems

In this section, we give an introductory description of slow-fast volume-
preserving systems with separatrix crossings and passages through resonances.

Let unperturbed system (1) be integrable and of the action-action-angle
type. Then, almost the entire phase space is filled with closed phase trajec-
tories. In terms of the two independent integrals of motion, I and J , the
unperturbed system can be expressed in the following form (so-called Nambu
system [11]):

ẋ = µ(I, J) [gradI, gradJ ] , (2)

where the square brackets denote the vector product, and µ(I, J) is a func-
tion of values of the integrals I and J (in the examples of Sections 3.1, 3.2,
µ ≡ 1). A joint level of the two integrals I = i, J = j defines a closed unper-
turbed phase trajectory Γi,j . Introduce on Γi,j an angular variable φ mod 2π
changing at a constant rate in the unperturbed motion.

The perturbation in (1) causes the values of i and j to change at a rate of
order ε in the motion along a perturbed trajectory. In terms of the variables
i, j, φ, perturbed system (1) can be written as

di

dt
= εf (i, j, φ, ε) ,

dj

dt
= εg (i, j, φ, ε) ,

dφ

dt
= ω (i, j) + εh (i, j, φ, ε) . (3)

The functions f , g , h are 2π-periodic in φ. In (3), the variables i, j are ”slow”,
and the variable φ is ”fast”. Define the averaged system:

di

dt
= εF (i, j) ,

dj

dt
= εG (i, j) , (4)



Adiabatic invariance in volume-preserving systems 3

where functions F and G are obtained by the averaging of f and g, respec-
tively, over φ:

F (i, j) =
1

T (i, j)

∮

Γi,j

(gradI,w) dt, G(i, j) =
1

T (i, j)

∮

Γi,j

(gradJ,w) dt.

(5)
In (5), w is calculated at ε = 0, T (i, j) is the period of the unperturbed
motion along Γi,j , parentheses denote the scalar product, and the integration
is performed along Γi,j . Far from singular surfaces (described below), solutions
of the averaged system describe variations of i, j in complete system (1) with
the accuracy of order ε on time intervals of order ε−1 [5, 2].

Let Φ(i, j) be the flux of the perturbation through a surface spanning Γi,j .
Due to the preservation of the volume, the value of Φ(i, j) does not depend on a
particular choice of the surface. A remarkable fact is that the averaged system
is Hamiltonian, and Φ(i, j) is the Hamiltonian function (see, e.g., [26, 19]):

di

dt
=

ε

µ(i, j)T (i, j)
∂Φ(i, j)

∂j
,

dj

dt
= − ε

µ(i, j)T (i, j)
∂Φ(i, j)

∂i
. (6)

It follows from (6) that Φ(i, j) is an integral of the averaged system. Standard
assertions about the accuracy of the averaging method (see, e.g., [5, 2, 3])
imply that Φ is an approximate integral of the motion in exact system (1),
i.e., Φ is an adiabatic invariant. However, the averaging method breaks down
in a neighborhood of 2-D singular surfaces. These surfaces can be of one of
three types: (i) separatrix surfaces containing non-degenerate hyperbolic fixed
points of the unperturbed system and filled by heteroclinic trajectories con-
necting them, (ii) separatrix surfaces containing a line of degenerate singular
points (this case occurs, in particular, in 1 d.o.f. Hamiltonian systems depend-
ing on a slowly varying parameter, and it is considered elsewhere [22, 7, 12]),
(iii) resonance surfaces, where the smooth function ω(i, j) in (3) turns identi-
cally to zero. A resonance surface consists of closed joint levels of the integrals
I and J . The major difference between separatrix and resonance surfaces is
that near separatrix surfaces the base flow slows down only in the immediate
vicinity of fixed points of the base system. In comparison, the base flow slows
down everywhere near a resonance surface.

If system (1) possesses singular surfaces, dynamics can be described as
follows. Far from singular surfaces, a phase point i(t), j(t) closely (with the
accuracy O(ε)) follows a trajectory of the averaged system. The quantity
Φ(i, j) along the streamline (phase trajectory) oscillates with an amplitude of
order ε around a certain constant value, say, Φ1. When the streamline crosses
a small neighborhood of a singular surface, Φ changes by a value ∆Φ, that is
in general much greater than ε. After this neighborhood is crossed, the value
of Φ along the trajectory oscillates near a new constant value, Φ2 = Φ1 + ∆Φ.
As the main change occurs in a narrow neighborhood of a singular surface, we
shall call this change a jump of the AI. The magnitude of a jump turns out
to be very sensitive to variations of initial conditions. Therefore, the jump is
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in a sense random. If allowed by the geometry of the system, the streamline
comes to the separatrix again and the process repeats itself. Accumulation of
jumps at multiple crossings results in destruction of the adiabatic invariance
(i.e. the AI changes by a value of order 1) and leads to chaotic dynamics in
the system.

A complete description of chaotic advection in these problems starts with
a description of a single crossing of a resonance or a separatrix surface. We
obtain an asymptotic formula for this change of the AI. In the case of crossing
a resonance, we also study the possibility of capture into the resonance and
describe the captured dynamics. Second, based on the equations for a single
passage, we describe statistical properties of jumps and use them to study the
long-time dynamics on time intervals that include many crossings. We show
that there are two quantities that describe the chaotic advection over the long
intervals of time that include many crossings: the size of the chaotic domain
and a characteristic rate of mixing inside the chaotic domain. The regular
domain is filled with streamlines that do not cross singular surfaces, while the
domain of chaotic advection is filled with streamlines that repeatedly cross
at least one singular surface. A technique to estimate the excess width of
the chaotic domain was developed in [25]. The rate of mixing is given by the
properties of the diffusion of the AI.

The accumulation of the jumps of AI leads to the diffusion across level
surfaces of the AI. Mixing on a level of AI is much faster. Hence, the overall
rate of mixing is defined by the diffusion of AI. Similar phenomena were
observed in 3-D volume-preserving maps ([8]) and in Hamiltonian systems
(see [24] and references therein).

3 Separatrix crossings in volume-preserving systems

In this section, we consider two examples of volume-preserving systems where
separatrix crossings result in the destruction of adiabatic invariance to illus-
trate different aspects of the evolution. The problem in a more general setting
was studied in [19]. Let us just briefly note that the problem of jumps of adi-
abatic invariants at separatrix crossings in volume-preserving systems cannot
be reduced to similar problems in Hamiltonian systems depending on a slowly
varying parameter [22, 7, 12], or in slow-fast Hamiltonian systems [13]. Al-
though ideologically close to them, this problem needs an independent study.

3.1 Example 1: quadratic Stokes flow in the unit sphere

Consider the volume-preserving system

ẋ = −8xy + εz,

ẏ = 11x2 + 3y2 + z2 − 3, (7)
ż = 2zy − εx.
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This system was introduced in [4] as an example of a hydrodynamic flow
with chaotic advection [1] and in connection with “fast dynamo problem” in
magneto-hydrodynamics [27, 29]. System (7) satisfies the Stokes equation for
a flow of a viscous fluid. The flow can be regarded as a composition of three
flows, namely Hill’s spherical vortex, a quasi-rigid rotation, and a twist flow.

The unit sphere is invariant under the flow of system (7), and here we
discuss only dynamics inside the sphere. For ε = 0, the system is integrable.
The numerical simulations seem to show that at arbitrarily small ε 6= 0 the
whole interior of the unit sphere, at least up to a small measure, is a domain
of chaotic motion.

Consider the unperturbed system (see Fig. 1a). The explicit form for the
integrals I and J was obtained in [4]:

I = xz4, J =
x2 + y2 + z2 − 1

z3
. (8)

The poles of the unit sphere N and S (x = z = 0, y = ±1) are singular
points of the flow. Heteroclinic trajectories going from N to S fill the part
of the plane x = 0 lying inside the unit sphere. We shall call this surface
the separatrix S of the unperturbed system. Two heteroclinic trajectories
h1 : z = 0, x2 + y2 = 1, x < 0 and h2 : z = 0, x2 + y2 = 1, x > 0 go
from S to N. All the other trajectories are closed curves.

N

S

x

y

z

h
2

h
1

z

x

(a) (b)

Fig. 1. (a): The unperturbed flow. (b): Result of long time integration of a phase
trajectory giving evidence of the chaotic behavior. ε = 0.1.

For ε 6= 0, system (7) is no longer integrable. Integrals (8) are not pre-
served. Streamlines are not closed and cross the separatrix S. Figure 1b repre-
sents a result of long integration of one perturbed phase trajectory. The dots
mark the points where the trajectory crosses the equatorial plane. The points
tend to fill the interior of the unit circle in (x, z)-plane, which is an evidence
of chaotic behavior in the system.

Dynamics of the perturbed system is presented in Fig. 2 as a segment of a
typical streamline and the phase portrait of the averaged system on the (j, i)
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Fig. 2. Dynamics of the perturbed system over one long period. (a): A perturbed
streamline. (b): Phase portrait of the averaged system.

plane. In Fig. 2b, the curves are level lines of Φ. The separatrix corresponds to
the line i = 0. The departure of the trajectories to infinity in j is a fictitious
singularity associated with the particular choice of variables I and J . The
motion along trajectories of the averaged system is periodic with period of
order ε−1. On each period, each trajectory crosses the separatrix twice.

Along a phase trajectory of (7) far from S, the value of Φ undergoes
oscillations of order ε. Near S (at |i| ¿ 1), the accuracy of the averaging
method breaks down, and a more accurate consideration is necessary. The
behavior of Φ along a phase trajectory in this region is described in [26] and
[17], and here we present only the main results.

Consider a segment of a phase trajectory γ of the perturbed system that
crosses S once. Let M− and M+ be its initial and final points lying at a
distance of order 1 from S. Denote by Φ± the values of Φ(i, j) at the points
M±. Then for ∆Φ = Φ+−Φ− in the main approximation the following formula
holds:

∆Φ = −ε3/4 |Θ(j0)|3/4
a|j0| 1

Γ (1/4)

∫ ∞

0

t−3/4
(
e−ξt − e−(1−ξ)t

)

1− e−t
dt. (9)

Here

Θ(j) =
∮

Γ0,j

(gradI,w) dt, a = −3
√

π

8
Γ (5/8)
Γ (9/8)

,

where Γ (·) is the Gamma function, and the value j0 is defined below. The
value of ξ is a function of the initial conditions defined as follows. Assume
for definiteness that γ crosses S at z > 0 (j < 0). The trajectory γ of the
perturbed system is a spiral. Consider the points on γ where ẏ = 0, y > 0 (the
uppermost points on the turns of the spiral). Denote the last of them before S
crossing as M0. Let i0, j0 represent values of I, J at M0. By definition i0 ≤ 0. It
is possible to show that i0 > −εΘ0−Cε7/4, where C = const > 0, Θ0 = Θ(j0)
(because during the turn γ0 the value i grows approximately by εΘ0). Then
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we define ξ = −i0/(εΘ0). Formula (9) holds if c1ε
3/4 < ξ < 1− c1ε

3/4, where
c1 is a positive constant.

The quantity ξ strongly depends on the initial conditions. A small, of
order ε, variation in values of i, j at M− produces, in general, variation of
order 1 in the value of ξ. It can be shown that ξ can be treated as a random
value uniformly distributed on (0, 1). Accordingly, ∆Φ is also treated as a
random value with statistical properties defined by (9). The jumps in the AI
result in chaotization of the dynamics inside the unit sphere. It is natural to
suppose that the system is ergodic inside the sphere (at least up to a residual
of a small measure). This hypothesis can be checked numerically. Figure 3a
represents the plot of distribution of jumps of the AI found numerically after
108 separatrix crossings, and the theoretical distribution function obtained
using (9) under the hypothesis of ergodicity. One can see a remarkably good
agreement.

0

10

20

-0.2 0 0.2

-0.05

0

0.05

0 200 400
(a) (b)

Fig. 3. (a) Distribution of jumps of the adiabatic invariant, ε = 0.1 (a histogram).
The dotted line represents the theoretical distribution. (b) Autocorrelation function
of the jumps in Φ at ε = 0.1. The broken and the solid lines are calculated using 106

and 108 jumps, respectively. The plots are obtained by C. Simó [17].

The motion in the system can be described as follows (cf. Fig. 2). Far from
S, a phase point i(t), j(t) closely (with the accuracy O(ε)) follows a trajectory
of the averaged system. In other words, the value of Φ(i, j) along the phase
trajectory oscillates with an amplitude of order ε around a certain constant
value, say, Φ1. When the trajectory crosses a small neighborhood of S, value
of Φ undergoes a quasi-random jump of order ε3/4. After this neighborhood is
crossed, value of Φ along the trajectory is again close to a constant value Φ2,
and the difference Φ2 −Φ1 is given by (9). After the next separatrix crossing,
value of the AI changes again, and so on.

Consider statistical properties of the jumps in Φ along one phase trajectory
of the system. Let two successive separatrix crossings be characterized by
values ξ1 and ξ2. A small variation δξ1 in ξ1 produces a variation of the jump in
Φ by ∼ ε3/4δξ1. In the period of time ∼ ε−1 before the next crossing, it results
in variation ∼ ε−1/4δξ1 of the phase φ of the point. Hence, the value ξ2 obtains
a variation δξ2 ∼ ε−1/4δξ1, and δξ2/δξ1 ∼ ε−1/4 À 1. Therefore, it is natural
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to suppose that ξ1 and ξ2 are statistically independent and the successive
jumps in Φ are not correlated. In this case, variation of the AI along a phase
trajectory can be modeled as a random walk. It takes a time of order ε−5/2

for the AI to change by a value of order 1. To test the assumption about the
independence of successive jumps, the autocorrelation function of the jumps
in Φ was computed. The numerical results shown in Fig. 3b demonstrate fast
decay of the autocorrelation function.

3.2 Example 2: Chaotic advection in a cubic Stokes flow

The flow in this example was introduced in [21] as a flow inside a neutrally
buoyant spherical drop immersed in a linear flow. In spherical coordinates,
the velocity field of the flow takes the form:

dr

dt
=

3
4
r
(
r2 − 1

) (
1− 3 cos2 θ

)
,

dθ

dt
=

3
4

(
5r2 − 3

)
sin θ cos θ − 1

2
εωx sin ϕ, (10)

dϕ

dt
=

1
2
ε (ωz − ωx cot θ cos ϕ) ,

where 0 < ε ¿ 1 is a small parameter, and ωx ≥ 0, ωz ≥ 0 are the components
of vector ω, |ω| = 1. Flow (10) is a superposition of two flows: a slow rotation
at the angular velocity 1

2εω and a flow that deforms fluid elements, defined
by the terms in (10) that are independent of ω. It was demonstrated in [21]
that flow (10) may possess chaotic streamlines.

The unperturbed flow, i.e. system (10) at ε = 0, (see Fig. 4 a) possesses two
independent integrals of motion and, thus, is integrable. Almost all streamlines
of the unperturbed flow are closed. One of the integrals is the azimuthal angle
ϕ; another one is

ψ =
3
4
r3

(
r2 − 1

)
sin2 θ cos θ. (11)

The level surfaces of integral ϕ are the half-planes containing the z-axis as
their border. The level surfaces of integral ψ form two families of nested tori
filling the northern and the southern hemispheres of the unit sphere. Almost
all the streamlines of the unperturbed flow are closed curves. Besides the
closed streamlines, there are also heteroclinic streamlines connecting fixed
points of the flow. The unperturbed flow has the following fixed points: two
saddle points in the poles of the sphere, a saddle point at the origin, a fam-
ily of degenerate fixed saddle points filling the equator, and two families of
degenerate elliptic fixed points filling the circles ψ = ±3/(55/2). There are
two heteroclinic trajectories connecting the origin to the poles of the sphere,
two families of heteroclinic trajectories filling the surface of the sphere and
connecting its poles to the equator, and a family of heteroclinic trajectories
filling the equatorial plane z = 0, x2 + y2 < 1 and connecting the degenerate
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saddle points on the equator to the origin. We shall call the part of equatorial
plane z = 0, x2 + y2 < 1 (or ψ = 0) the separatrix, S.
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Fig. 4. (a) The unperturbed flow, ε = 0. (b) A segment of a phase trajectory in the
perturbed system, ε 6= 0.

Assume that ωx 6= 0. A segment of a trajectory of the perturbed system
that crosses S once is shown in Fig. 4b. As above, we introduce the function
Φ and the averaged system. On S, the averaged system is not defined and Φ
is discontinuous. To make it continuous, we introduce Φ̃ = Φ + ωzsign (ψ) /6.
From now on, the tilde is omitted. Phase portraits of the averaged system
are presented in Fig. 5. If ωz/ωx > 1/

√
2, there are regions on the phase

portrait (see Fig. 5a) filled with phase trajectories that do not cross S. These
regions contain the streamlines of (10), surrounding the circles ψ = ±3/55/2.
If ωz/ωx < 1/

√
2 (see Fig. 5b), all phase trajectories of the averaged system

cross S.
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Fig. 5. Phase portraits of the averaged system. (a) ωz/ωx = 0.8. (b) ωz/ωx = 0.5.

The jump in the AI at the separatrix crossing is given in the main approx-
imation by (see [18]):
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∆Φ =
√

ε a cosϕ0 ωx |Θ0|1/2 1√
π

∞∫

0

t−1/2
(
e−ξt − e−(1−ξ)t

)

1− e−t
dt. (12)

In (12), a = (6π)−1/2(Γ (3/4))2, Θ0 = − 1
6ωx sinϕ0, ξ = −ψ0/(εΘ0), ξ ∈

(0, 1); ϕ0 and ψ0 are values of ϕ and ψ at the point M0 defined as follows.
Consider a segment of a perturbed streamline that crosses S once. It is shaped
as a spiral (see Fig. 4b). On each turn of the spiral, mark the point where
ṙ = 0, r < 1/2 (the closest to the origin point of the turn). Thus, M0 is the
last of these points prior to the separatrix crossing.

As in the previous example, the value of ξ is highly sensitive to the initial
conditions and should be treated as a random variable uniformly distributed
on the interval (0, 1). Values of ξ for two successive separatrix crossings are
statistically independent, at least for a majority of phase trajectories.
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Fig. 6. Representation of a long phase trajectory of system (10), ε = 0.05. (a),(b)
ωz/ωx = 0.8. (c),(d) ωz/ωx = 0.5. (a),(c) Sections by the plane z = 1/

√
5, (b),(d)

Projections on the (φ, ψ)-plane.

The accumulation of the jumps of AI leads to diffusion of the AI. In time
t ∼ ε−2, the value of the AI along a trajectory varies by a quantity of order 1.
Long-time dynamics in the system is illustrated in Fig. 6. In order to represent
a long phase trajectory, we used its Poincaré sections by the planes z = ±1/

√
5

and a projection on the (ψ,ϕ) plane. Each dot on the plane corresponds to
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one crossing of one of the planes z = ±1/
√

5 taking place at r >
√

3/5. The
time of calculation corresponds approximately to 1000 separatrix crossings,
and the diffusion of the AI, both as the intermittent character of motion can
be clearly seen. One can see in Figs. 6a, b, that the domain of chaotic motion
coexists with the domain of regular motion not visited by the trajectory (in
Fig. 6b it is the domain below the area filled with dots; the domain above
this area is, in fact, also chaotic, but is not visited by the trajectory during
the calculation time due to the significant decrease in the diffusion rate at the
line Φ(ψ, ϕ) = 0, see details in [18]). In Figs. 6c, d, one can see that all the
interior of the unit sphere is the domain of chaotic dynamics.

4 Passages through resonances in volume-preserving
systems

In the current section we discuss another type of phenomena that occur at
singular surfaces: scattering on and capture into resonance. In what follows, we
will consider 3-D autonomous flows of the action-action-angle type. However,
let us note that the resonance phenomena take place also in systems with
two fast phases (angles) and two actions (e.g., systems with time-dependent
external forcing, similar to those appearing in [6, 20, 28]). Such systems can be
considered along the same lines, because partial averaging near the resonance
transforms these systems to the action-action-angle form (see [16]).

4.1 Example: a Taylor-Couette flow between two cylinders

As an example, we consider a volume-preserving kinematic model inspired
by a Stokes Taylor-Couette flow between two infinite counter-rotating coaxial
cylinders (the “vertical” z axis is along the axis of the cylinders, ρ is the
distance from the axis and θ is an angle in the “horizontal” plane) (see [23]
for a complete description). In the dimensionless units, the flow is

ρ̇ = εκ (ρ− 1) cos θ,

ż = ε (1 + lnρ /ln η) , (13)

θ̇ = ω (ρ, z)− 1
ρ
εκ (2ρ− 1) sin θ.

The value of ρ changes between ρ = 1 (at the inner cylinder) and ρ = 1/η (at
the outer cylinder). The frequency of the unperturbed flow, ω(ρ, z), is

ω(ρ, z) = −ρ
η

1− η
+

1
ρ

1
1− η

+
η

1− η2
δ sin(λz)

(
ρ− 1

ρ

)
, (14)

where λ = 2π and δ are the wavenumber and amplitude of oscillations of
the frequency of the outer cylinder, respectively. One can see that ω = 1
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and ω = −1 + δ sin(λz) on the inner and the outer cylinders, respectively.
One can imagine the outer cylinder to consist of rings, each of which rotates
with its own speed (see Fig. 7a). The variables ρ and z are the integrals of
the unperturbed system. The unperturbed streamlines are circles with the
direction of the rotation depending on the sign of ω(ρ, z).

The perturbation consists of two parts. The first is a vertical (in the axial
direction) shear-type flow (the ż term). The second is an additional angular
rotation due to a slight non-circularity of the outer cylinder. In (13), 0 ≤ ε ¿
1 is a small parameter, while κ ∼ 1 defines a characteristic ratio of the two
perturbations. The axial velocity, ż, equals ε at ρ = 1 and vanishes at ρ = 1/η.

For ε > 0, the variable θ is fast and the variables ρ and z are slow. Thus,
we can average (13) over one period of θ. The averaged trajectories (in the full
3-D, (ρ, z, θ), space) spiral around the cylinders of constant radius (ρ = const)
with the direction of the rotation depending on the sign of ω. The averaged
system is Hamiltonian and a quantity Φ,

Φ = ρ, (15)

is a Hamiltonian. It is an integral of the averaged system and is an adiabatic
invariant of the exact system. The averaging is valid away from a resonance
surface (in 3-D), or a curve on the slow, (ρ, z)-plane where ω = 0. We denote
that surface by R. It follows from (14) that R is given by

ρ2
R(z) =

1
η

1 + η − ηδ sin(λz)
1 + η − δ sin(λz)

.

and located between positive values ρmin and ρmax. The division of the flow
domain is shown in Fig. 7b (note that we plotted z mod 1). Trajectories to
the left and to the right of the corresponding vertical lines do not cross R.

z
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λδω sin1+−=

1=
i

ω

2/η

2
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z 
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o
d

 1
)

radial distance, ρ
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Fig. 7. (a) Flow structure for the unperturbed system. (b) Division of the flow
domain for z mod 1. A chaotic domain is between the vertical lines. A regular (KAM)
domain consists of two parts at the left and at the right. The wavy line in the middle
is the resonance, δ = 0.4, η = 0.2.
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As a passive tracer approaches R, it can be either scattered at a resonance
or captured into resonance. While the scattering on resonance is somewhat
similar to what happens at the separatrix crossing, capture can occur only
at a resonance. Qualitatively, the difference between the two regimes can be
described as follows. In the case of capture, upon arrival into the resonant
zone (i.e., an O(ε)-neighborhood of the resonant surface), the phase switches
its behavior from rotation to oscillation. The phase point drifts along the
resonant surface for a long, of order ε−1, time. As a result, the value of the AI
changes by ∆Φ = O(1). Among all the streamlines that arrive to the resonant
zone during a given time interval (of order ε−1), only a small (O(ε1/2)) part of
streamlines are captured. In the case of scattering there is no phase oscillation.
The streamlines pass through the resonance zone in an O(ε−1/2) time and
the corresponding jump in the AI is ∆Φ = O(ε1/2). We describe these two
processes below.

Scattering on resonance

In the vicinity of R, dynamics is defined in terms of θ and a coordinate,
σ = σ(ρR(z), z), along R chosen in such a way that the infinitesimal volume
is dV = dσdωdθ:

σ̇ = ε f2,0, θ̈ = ε (a + b1 cos(θ))− ε
∂f2,0

∂σ
θ̇, (16)

where

a =
η

1− η2
δλ cos(λz)

(
ρ− 1

ρ

)
(1 + lnρ /ln η) , b1 = −2κ

1
ρ + 1

,

f2,0 = −1
2
ρ

(
ρ2 − 1

)
(1 + lnρ /ln η) .

In the case of scattering, we can consider the value of σ (or z and ρ)
in (16) fixed and the dynamics is described by the resonance potential V =
−aθ− b1 sin θ. The shape of phase portraits for the motion in the potential V
depends on the relation between a and b1. If

|b1| > |a| , (17)

the phase portrait looks like the one shown in Fig. 8a, and vice-versa for
Fig. 8b.

In the process of scattering, the value of Φ undergoes a jump, the magni-
tude of which is (in the main approximation) given by

∆Φ = −2s
√

εκ
ρ− 1√
|a|

∫ θ∗

s∞

cos θ√
2 |s2πξ + θ + (b1/a) sin θ| dθ, (18)

where θ∗ is the value of θ at the crossing, s = sign(a), and ξ =
{V (θ∗)/ (2π |a|)} ∈ (0, 1), where the curly brackets denote the fractional part.
If (17) holds, the ensemble average of ∆Φ is:
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Fig. 8. Schematic phase portraits on the (θ, θ̇) plane.
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〈∆Φ〉 = −s
√

ε
ρ2 − 1

2π
SR.

Here SR is the area under the separatrix loop, Σ, in Fig. 8a:

SR = 2

∣∣∣∣∣
∫ θc

θa

√
−2(V − Vc) dθ

∣∣∣∣∣ ,

where Vc is the value of V at the hyperbolic fixed point in Fig. 8a. If (17) does
not hold, 〈∆Φ〉 = 0, as there is no separatrix, SR = 0.

Equation (18) was checked numerically for various values of parameters
ξ, κ and ε. In Fig. 9, the plots of ∆ρ (ξ) /

√
ε are presented for (a) κ = 2 (when

(17) is satisfied) and (b) κ = 0.2, (when (17) is not satisfied). The solid lines
in Fig. 9 correspond to theoretical values of ∆ρ (ε) /

√
ε and the asterisks show

values obtained numerically from (13) for various values of ξ. When (17) is
satisfied, ∆ρ(ξ) has a singularity.

Capture into resonance

The other phenomenon that affects the behavior of streamlines at a resonance
crossing is capture into resonance.
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Fig. 10. Captured motion. (a) A projection of a streamline on the slow, (ρ, z),
plane; and (b) the time evolution of ω(ρ, z), ε = 10−4, κ = 2.

Capture into resonance is possible only if the phase portrait in the (θ, θ̇)-
plane looks like the one shown in Fig. 8a, in other words, if there is a separatrix
in the (θ, θ̇)-plane. Let Π(σ) = f2,0SR be a flux of f2,0 through the separatrix
loop in Fig. 8a. Supposing that Π(σ) increases as a phase point moves along
a streamline, if a streamline comes very close to the hyperbolic fixed point,
it may cross Σ and, as a result, be caught in the oscillatory domain within
the separatrix loop. In this case, a streamline starts shadowing the resonant
surface. The captured motion can be approximately described by averaging
over fast motion along closed trajectories on the phase portrait in Fig. 8a.
Thus obtained system is integrable and Hamiltonian [16]. Depending on the
structure of resonance, a tracer can be released from resonance (which is the
case in the system under consideration) or reach the boundary of the system.

The dynamics of a typical capture is shown in Fig. 10 as a projection on
the slow, (ρ, z), plane and the time evolution of ω(ρ, z). A streamline comes
from the bottom in Fig. 10a (from the left in Fig. 10b), is captured near
z = 0.05 (t = 100), moves along the resonance, is released from the resonance
near z = 0.45 (t = 1000), and then proceeds along an adiabatic path.

As it was discussed in [14, 15, 9], capture can be considered as a probabilis-
tic phenomenon: initial conditions for streamlines that are or are not captured
are mixed. Consider a point M far from the resonance such that streamline
passing through M intersects the resonance. Let V d be a sphere of radius d
centered at M and V d,ε

c be the part of V d formed by initial conditions of
trajectories with a capture into the resonance (see [14, 15, 9]). We define the
probability of capture for the streamlines starting inside a small ball centered
at M as

P (M) =
√

ε lim
d→0

lim
ε→0

vol V d,ε
c /

√
ε

vol V d
.

Following [16], we have:

P (M) =
√

ε
(∂Π(σ)/∂σ)∗

2π |a|∗
∼ √

ε, if
(

∂Π(σ)
∂σ

)

∗
> 0, (19)
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Fig. 11. Regular and chaotic domains with z mod 1. Almost straight vertical lines
are regular streamlines. A single streamline that starts at ρin = 2.25 fills almost the
entire chaotic domain.

where the subscript ‘∗’ indicates that the corresponding quantity must be eval-
uated when a given streamline comes to the resonance. For (∂Π(σ)/∂σ)∗ < 0,
P (M) = 0.

Long-time dynamics and adiabatic diffusion

It was shown in Sect. 3 that the accumulation of the effects of the separa-
trix crossings leads to the destruction of the adiabatic invariance and chaotic
advection. In the present section, we discuss similar phenomena in the volume-
preserving flows with resonances.

It was shown above that the chaotic domain is a cylinder between ρmin

and ρmax values, that depend on the parameters of the unperturbed system,
η and δ, and are independent of the magnitude of perturbation, ε. Thus, the
size of the chaotic domain is on the scale of the whole system regardless of how
small ε is. Outside the chaotic domain, the majority of streamlines is regular.
A projection of three representative streamlines on the slow, (ρ, z), plane is
shown in Fig. 11. Almost straight vertical lines are regular streamlines. A
single streamline that starts at ρin = 2.25, zin = 0, θin = 0 fills almost the
entire chaotic domain.

We performed a set of numerical simulations to study the diffusion of adi-
abatic invariant and large scale mixing. 1000 initial conditions were uniformly
distributed in a box ρin×zin×θin = [2.249, 2.251]×[−0.01, 0.01]×[−0.01, 0.01]
and we considered the Poincaré section located at z = 0.25 mod 1. Every
streamline crosses the resonance twice between the consecutive sections. A
total change in ρ after two successive crossings has zero mean.

Denote by Ψ(ρ,N) the number of trajectories that, after N double cross-
ings, have the value of ρ between ρ − 0.005 and ρ + 0.005. The spreading
of Ψ(ρ,N), obtained by integrating (13) with the initial conditions specified
above, is shown in Fig. 12a. The second moment σ2(Ψ(ρ,N)) =

〈
(ρ− ρ0)

2
〉

is presented in Fig. 12b. The constant slope confirms the diffusion assumption
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Fig. 12. Evolution of Ψ(ρ, N). (a) The histogram of Ψ for different N . The solid line
and the stars correspond to N = 10 and N = 400, respectively. The other curves
are between those values of N . (b) The square of the standard deviation, σ2(Ψ),
averaged over 1000 trajectories for different N . The dashed line is a theoretical
prediction σ2(Ψ) = 2DN with D = D(ρ = 2.25) = 5.1× 10−6.

and the magnitude of the slope is in the good agreement with the predic-
tion based on the simplified diffusion equation with D(ρ) = D(ρ = 2.25) ≈
5.1×10−6, where D(ρ), called the coefficient of the adiabatic diffusion, is given
by the dispersion of ∆ρ:

D(ε, ρ) = εD̃(ρ) =
∫ 1

0

(∆ρ(ξ)− 〈∆ρ〉)2 dξ.
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