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Abstract.
We consider a Hamiltonian system with slow and fast motions, one degree of

freedom corresponding to fast motion, and the other degrees of freedom corresponding
to slow motion. Suppose that at frozen values of the slow variables there is a non-
degenerate saddle point and a separatrix on the phase plane of the fast variables. In
the process of variation of the slow variables, the projection of a phase trajectory onto
phase plane of the fast variables may repeatedly cross the separatrix. These crossings
are described by the crossing parameter called pseudo-phase. We obtain an asymptotic
formula for the pseudo-phase dependence on the initial conditions, and calculate change
of the pseudo-phase between two subsequent separatrix crossings.

AMS classification scheme numbers: 34E10, 37J40

1. Introduction

In this paper we consider a slow-fast Hamiltonian system (also called a system with

slow and fast motions). In such a system one pair of canonical variables is changing

at a typical rate of order one, and the other pairs are changing at a rate of order ε,

where 0 < ε ¿ 1 is a small parameter. The averaging method (see, e.g. [1]) can be

used for approximate description of dynamics in such systems. The “action” variable

I introduced on the phase plane of the fast variables is an adiabatic invariant of the

system. This means that under certain conditions I is preserved along phase trajectories

of the system with an accuracy of order ε on time intervals of order ε−1. An essential

condition for applicability of the averaging method is that the frequency of motion on

the fast phase plane is indeed of order one. This condition, however, is violated at

separatrices that may exist on the fast phase plane. In the process of evolution of the

slow variables separatrices slowly move. A phase trajectory may cross a separatrix, and

hence, the frequency may vanish. Note that generally this phenomenon takes place for

a measure of initial conditions of order one, and thus cannot be neglected. An estimate

of accuracy of conservation of adiabatic invariance at separatix crossing was obtained

in [2, 3].
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Crossing of a separatrix results in a jump of the adiabatic invariant. An asymptotic

formula for this jump was obtained in [4, 5, 6], in the case of explicit slow time

dependence (this case can be reduced to the case of a slow-fast system with two degrees

of freedom by introducing time as a new phase variable). It was shown that this jump

depends on a value of so called pseudo-phase. This latter belongs to the interval (0, 1)

and strongly depends on initial conditions. If a phase trajectory crosses the separatrix

repeatedly, accumulation of jumps, as one can see in numeric experiments, results in a

diffusive-like behaviour of the adiabatic invariant. Dynamics in the region of separatrix

crossings looks chaotic. However, not so many rigorous results were obtained on this

dynamics. Existence of Smale-horseshoe-type dynamics on a set of zero measure in this

region (the measure of the region itself is of order one) was shown in [7].

A formula for the change of the pseudo-phase between two subsequent separatrix

crossings in the system with explicit slow time dependence was obtained in [8], [9], for

the case of symmetric separatrix crossing this formula is presented in [10]. Together with

the formula for the change of the adiabatic invariant [4, 5, 6], it can be used to define

a mapping describing dynamics in the region swept by slowly moving separatrix on the

phase plane. Under additional symmetry conditions, and when slow dependence of the

Hamiltonian on time is periodic, this mapping was used in [11, 12] to prove existence

in this region of stable periodic phase trajectories of period equal to the period of the

Hamiltonian and stability islands surrounding these trajectories. Quite unexpectedly,

it was found that there are a number of order ε−1 periodic trajectories surrounded by

stability islands of measure of order ε. Hence, the total measure of these islands of

stability is a value of order one, though small. In [9], it was shown that measure of a

stability island in the region of separatrix crossings cannot exceed a value of order ε. An

analog of asymptotic formulae for jumps of adiabatic invariant at separatrix crossings

and variation of pseudo-phases in a class of dissipative systems is given in [13, 14].

A formula for the jump of adiabatic invariant in an autonomous slow-fast system

with two degrees of freedom was obtained in [15]. In the present paper we derive a

formula for the change of the pseudo-phase between two subsequent separatrix crossings

in such a system. This formula makes it possible to describe dynamics in the region

of separatrix crossings with the use of a mapping, similar to [11]. Systems of this kind

describe various problems in mechanics and physics. Here we mention a restricted planar

elliptic three body problem (Sun, Jupiter, and an asteroid) near a 3:1 resonance [16, 15]

and motion of a charged particle in the Earth’s magnetotail [17].

The outline of the paper is as follows. In Section 2 we formulate the main problem

and present the results. Section 3 contains necessary canonical transformations in the

system and describes the motion in adiabatic and improved adiabatic approximations.

In section 4, we derive the main formulae and estimate error terms. In Concluding

remarks we discuss possible perspectives of applying the obtained results in future

studies. For clarity of presentation, we restrict ourselves in sections 3 and 4 to the

case when coordinates of the saddle and direction of its main axes do not depend on

the slow variables [however, in section 2, the result is formulated for the general case].
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Some comments on the general case are given in Appendix.

2. Formulation of the results

In this section, we formulate the results of the paper. Detailed description of concepts

and notations used here can be found in the following sections.

Consider a dynamical system with Hamiltonian H = H(p, q, ŷ, x̂), where q, ε−1x̂ are

coordinates, and p, ŷ are canonically conjugated momenta, ε > 0 is a small parameter,

H ∈ C∞. The corresponding Hamiltonian equations of motion are:

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
, ˙̂y = −ε

∂H

∂x̂
, ˙̂x = ε

∂H

∂ŷ
. (2.1)

Variables p, q are called fast variables and correspond to one degree of freedom;

variables ŷ, x̂, corresponding to the other degrees of freedom are called slow variables.

Hamiltonian system for p, q at (ŷ, x̂) = const is called fast (or unperturbed) system.

The complete system dynamics is described with the use of adiabatic and improved

adiabatic approximations. Far from separatrices, action I of the fast system is an

adiabatic invariant of the complete (perturbed) system; its value along a trajectory is

preserved with the accuracy of order ε on time intervals of order ε−1 (see, e.g. [1]).

One can introduce improved adiabatic invariant J , which under the same conditions is

preserved with the accuracy of order ε2.

We assume that at all considered values of the slow variables there exists a non-

degenerate saddle point C and separatrices l1, l2 on the phase plane of the fast system

(see figure 1). These separatrices divide the (p, q)-plane into regions Gi = Gi(ŷ, x̂), i =

1, 2, 3. Denote the value of H at the saddle point as hc = hc(ŷ, x̂), and introduce

E = E(p, q, ŷ, x̂) = H − hc. On the separatrices E = 0. We suppose that E > 0 in

G3 and E < 0 in G1 and G2. Areas of regions G1, G2 are S1, S2 correspondingly, and

S3 = S1 + S2; Si = Si(ŷ, x̂) . Put Θi = Θi(ŷ, x̂) = {Si, hc}, where {·, ·} is the Poisson

bracket with respect to variables (ŷ, x̂) : {f, g} = f ′x̂g
′
ŷ − f ′ŷg

′
x̂. We will assume that

a phase point in the perturbed motion approaches the separatrix at such values of ŷ, x̂

that Θi(ŷ, x̂) are separated from zero: |Θi(ŷ, x̂)| > c−1
1 , c1 = const > 0.

Introduce slow time τ = εt. Choose initial conditions of a phase trajectory at τ = 0

in one of the regions Gi far enough from the separatrix, so that the initial value of E

is of order 1. Assume that as the slow variables change with time, value of E along

the phase trajectory changes and finally the trajectory crosses the separatrix of the fast

system either at τ > 0 or at τ < 0 or both at τ > 0 and at τ < 0. Separatrix crossings

at τ > 0 and at τ < 0 are characterized by pseudo-phases ξ, ξ̄ respectively. We describe

below the definition of ξ. Pseudo-phase ξ̄ is defined similarly for the motion backwards

in time.

When approaching the separatrix, the phase trajectory on the (p, q)-plane near C

repeatedly crosses the vertex lying in Gi and bisecting the angle between incoming and

outgoing whiskers of C. If i = 1, 2, this is either positive or negative part of η-axis, and

if i = 3 we choose positive direction of ζ-axis (see figure 1). Let E0 be the value of E
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Figure 1. Phase portrait of the fast system.

at the moment when the phase trajectory crosses this vertex for the last time before

leaving Gi. Then ξ = |E0/(εΘi∗)|, where Θi∗ is Θi calculated at the moment τ = τ∗ > 0

of separatrix crossing in improved adiabatic approximation (see details in section 3.2).

If ξ > c2

√
ε, where c2 is a large enough positive constant, then c2

√
ε < ξ < 1 + O(

√
ε),

because in this case value E changes by (−εΘi∗ + O(ε3/2)) between two subsequent

vertex crossings in Gi [15]. We will assume that c2

√
ε < ξ < 1− c2

√
ε. This assumption

means that we do not consider phase points that pass too close to the saddle point C;

the measure of correspondingly excluded set of initial conditions is small, of order
√

ε.

Let I, ϕ be the action-angle variables of the fast system. As the origin of the angle

variable ϕ we take a point where the phase trajectory crosses the vertex defined in the

previous paragraph. Let ϕ− be the initial value of the angle variable ϕ. In the present

paper we prove the following formula:

ξ =

{
1

2π

(
ϕ− +

1

ε

∫ τ∗

0

(ω0(J−, Y, X) + εω1(J−, Y, X))dτ

)
+ A∗ + O(ε1/3|lnε|−1/3)

}
,(2.2)

where J− is the initial value of the improved adiabatic invariant, X = X(τ), Y = Y (τ)

are slow variables of the improved adiabatic approximation, ω0 is the frequency in the

fast system, ω1 is the first correction to the frequency. A∗ = A(X(τ∗), Y (τ∗)), A = 0 for

i = 1, 2 and A = (1/4)(Θ2−Θ1)/Θ3 for i = 3. Parentheses in (2.2) denote the fractional

part.

Value ξ̄ is defined exactly like ξ for motion backwards in time. Let τ̄∗ < 0 be the

moment of separatrix crossing in improved adiabatic approximation. Then from (2.2),

by time reversal, we get

ξ̄ =

{
1

2π

(
−ϕ− +

1

ε

∫ 0

τ̄∗
(ω0(J−, Y,X) + εω1(J−, Y,X))dτ

)
− Ā∗ + O(ε1/3|lnε|−1/3)

}
,(2.3)
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where Ā∗ = A(X(τ̄∗), Y (τ̄∗)).
If the trajectory crosses the separatrix both at τ > 0 and τ < 0, we can define both

pseudo-phases ξ, ξ̄ and obtain the following relation:

ξ+ ξ̄ =
1

2πε

∫ τ∗

τ̄∗
(ω0(J0, Y, X)+εω1(J0, Y,X))dτ +A∗−Ā∗+O(ε1/3|lnε|−1/3) mod 1.(2.4)

In the case of explicit slow time dependence formulae (2.2)-(2.4) up to the estimate of

the error term give the corresponding formulae in [8].

3. Changes of variables. Adiabatic and improved adiabatic approximations

Assume for simplicity that at all values of the slow variables ŷ, x̂ point C is at the origin

on the phase plane (p, q) of the fast system, and that coordinate axis Cp coincides

with the vertex defined in section 2 and is the origin of the phase (i.e. it is the line

ϕ = 0 mod 2π). If this is not the case, the result is the same (see Appendix).

3.1. Canonical variables

In the fast system, action-angle variables I, ϕ mod 2π are introduced by a canonical

transformation of variables defined by generating function W (I, q, ŷ, x̂) containing ŷ, x̂

as parameters. We take this function in the form

W (I, q, ŷ, x̂) =

∫ q

0

P(I, q′, ŷ, x̂)dq′, (3.1)

where P is the value of p-variable along the trajectory with the prescribed value of action

I. In the new variables the Hamiltonian has the form H = H0(I, ŷ, x̂). Now, in the

complete system, make a canonical transformation of variables (p, q, ŷ, x̂) 7→ (Ī , ϕ̄, ȳ, x̄)

with the generating function ȳε−1x̂ + W (Ī , q, ȳ, x̂). The canonically conjugated pairs of

variables are (Ī , ϕ̄) and (ȳ, ε−1x̄). Formulae for the transformation of variables are:

ϕ̄ = ∂W/∂Ī, p = ∂W/∂q, x̄ = x̂ + ε∂W/∂ȳ, ŷ = ȳ + ε∂W/∂x̂. (3.2)

In the new variables, Hamiltonian H has the form

H = H0(Ī , ȳ, x̄) + εH1(Ī , ϕ̄, ȳ, x̄) + ε2H2(Ī , ϕ̄, ȳ, x̄, ε), (3.3)

where

H1 =
∂H

∂ŷ

∂W

∂x̂
− ∂H0

∂x̂

∂W

∂ȳ
;

(3.4)

H2 =

[
1

2

∂2H

∂ŷ2

(
∂W

∂x̂

)2

+
1

2

∂2H0

∂x̂2

(
∂W

∂ȳ

)2

+
∂H0

∂x̂

∂2W

∂x̂∂ŷ

∂W

∂ŷ
− ∂2H

∂x̂∂ŷ

∂W

∂x̂

∂W

∂ŷ
− ∂H

∂ŷ

∂2W

∂x̂2

∂W

∂ŷ

]

im

and function H2 is 2π-periodic in ϕ̄. The above expression for H2 was obtained using

the mean value theorem of calculus several times; subscript “im” denotes that partial

derivatives of H,H0,W in this expression are calculated in appropriate intermediate
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points whose positions depend on ε. In what follows, specific positions of these points

are not essential. In the adiabatic approximation, dynamics is described by Hamiltonian

H0. In this approximation Ī = const along a phase trajectory.

Now we construct a canonical, close to identical, transformation of variables

(Ī , ϕ̄, ȳ, x̄) 7→ (J, ψ, y, x) in order to make the terms of order ε in the Hamiltonian

independent of phase. We look for the generating function of the transformation in the

form Jϕ̄ + yε−1x̄ + εW1(J, ϕ̄, y, x̄). We have:

Ī = J + ε∂W1/∂ϕ̄, ψ = ϕ̄ + ε∂W1/∂J, ȳ = y + ε2∂W1/∂x̄, x = x̄ + ε2∂W1/∂y. (3.5)

In the new variables, the Hamiltonian takes the form:

H = H0(J, y, x) + εH1(J, y, x) + ε2H2(J, ψ, y, x, ε). (3.6)

Substitute expressions (3.5) into equation H = H, where H is given by (3.3), (3.4) and

equate terms of similar order in ε. Then in the first order we have:

∂H0

∂J

∂W1

∂ϕ̄
+ H1(J, ϕ̄, y, x) = H1(J, y, x). (3.7)

Averaging over ϕ̄, we obtain

H1 = 〈H1〉, (3.8)

where the brackets denote averaging. For W1 we find

∂W1

∂ϕ̄
= − 1

∂H0/∂J
(H1 − 〈H1〉) . (3.9)

Hence,

W1 = − 1

∂H0/∂J

∫ ϕ̄

0

(H1 − 〈H1〉) dϕ + C(J, y, x̄), (3.10)

where C(J, y, x̄) is an arbitrary function. In what follows, we choose C(J, y, x̄) ≡ 0.

Equating terms of higher order in ε, we obtain the following expression for H2:

H2 =

[
1

2

∂2H0

∂J2

(
∂W1

∂ϕ̄

)2

+
∂H1

∂J

∂W1

∂ϕ̄
+

∂H0

∂ȳ

∂W1

∂x̄
− ∂H0

∂x̄

∂W1

∂y

]

im

+H2,(3.11)

where H2 is given by (3.4) and, like in (3.4), partial derivatives are calculated in

appropriate intermediate points to make the equality exact.

In improved adiabatic approximation, the dynamics is described by the Hamiltonian

H0(J, Y, X) + εH1(J, Y, X). In this approximation J is an integral of motion. With the

accuracy of order ε2, the following formula for J is valid (see [15]):

J = J(p, q, ŷ, x̂) = I + εu(p, q, ŷ, x̂), (3.12)

u =
1

4π

[∫ T

0

(
∂E

∂ŷ

∫ t

0

∂E

∂x̂
dσ

)
dt−

∫ T

0

(
∂E

∂x̂

∫ t

0

∂E

∂ŷ
dσ

)
dt

]

+
1

2π

∫ T

0

(
T

2
− t

)
{E, hc} dt. (3.13)
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The integrals here are calculated along a phase trajectory of the fast system passing

through the point (p, q); σ is the time of motion along this trajectory starting from this

point, T is the period of motion. Function J is the improved adiabatic invariant. In the

complete system far from separatrices this value is constant with the accuracy of order

ε2 on time intervals of order ε−1.

3.2. Separatrix crossing in the adiabatic approximation

Value εΘi(ŷ, x̂) defined in section 2 is the rate of change of Si in the adiabatic

approximation as a phase point in Gi approaches the separatrix. According to our

assumption, Θi(ŷ, x̂) > const > 0 in the considered region of variation of the slow

variables. The action I(H, ŷ, x̂) is the area encircled by a phase trajectory, divided by

2π, and in the adiabatic approximation I = const. Therefore, in this approximation

phase points initially in G3 can cross the separatrix in a finite interval of slow time εt,

and then enter G1 or G2.

In our analysis we have to consider the separatrix crossing in the improved adiabatic

approximation. We use the following scheme to describe variation of J, ψ and the slow

variables. Let the motion start at t = 0 at a point M−(p−, q−, ŷ−, x̂−), and (p−, q−) ∈
G3(ŷ−, x̂−). Let J = J− at this point. Evolution of slow variables is described by solution

Y (τ), X(τ), τ = εt of the slow system with Hamiltonian H0(J−, Y, X) + εH1(J−, Y,X)

with initial conditions Y (0) = ȳ−, X(0) = x̄−. The relations between ȳ−, x̄− here

and ŷ−, x̂− are given by (3.2). The time moment of the separatrix crossing τ∗ in this

approximation can be found from the equation S3(Y (τ∗), X(τ∗)) = 2πJ−.

Introduce function Ē = Ē(J, Y,X) with the following equation:

I(Ē + hc(Y, X), Y,X) = J. (3.14)

Along a trajectory of the improved adiabatic approximation Y = Y (τ), X = X(τ)

and J = J−. Therefore, in this case from (3.14) Ē = Ē(J−, Y (τ), X(τ)) and Ē is the

energy reserve on the way to the separatrix in this approximation. In particular, at

τ = τ∗ we have Ē = 0.

4. Formula for the pseudo-phase

For definiteness, we consider motion in domain G3. The result for domains G1, G2 is the

same. For simplicity of presentation we assume that during the motion 0 < E < c−1
3 <

1/2, where c3 is a big enough constant. The case when there is a segment of trajectory

with E > c−1
3 does not create difficulties, because the improved adiabatic approximation

allows to describe behavior of phase ϕ on such a segment with the accuracy O(ε), which

is good enough for result (2.2).

We consider the motion on a certain slow time interval 0 < τ < τk. Here τk is a slow

time moment close enough to τ∗, τk < τ∗. We choose τk in such a way that at 0 ≤ τ ≤ τk

one has Ē & ε2/3|lnε|2/3 along the trajectory of the adiabatic approximation. This choice
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τk will be justified later. According to [18], at 0 ≤ τ ≤ τ∗ one has |E − Ē| < O(ε).

Hence, if Ē > c4ε with large enough constant c4, then

1

2
Ē ≤ E ≤ 2Ē. (4.1)

This relation implies that in estimates of the kind O(Eβ1|lnE|β2) one can replace E with

Ē and vice versa.

We start with a formula for variation of ψ with time. Let ψ = ψ− at time moment

τ = 0. From the Hamiltonian equations of motion we have:

ψ(τ) = ψ− + ε−1

∫ τ

0

[ω0(J, y(τ ′), x(τ ′)) + εω1(J, y(τ ′), x(τ ′))

+ε2ω2(J, ψ, y(τ ′), x(τ ′))
]
dτ ′, (4.2)

where

ω0 = ∂H0/∂J, ω1 = ∂H1/∂J, ω2 = ∂H2/∂J,

and (J, ψ), (y, ε−1x) are canonically conjugated pairs of variables defined in (3.5).

Rewrite (4.2) as follows:

ψ(τ) = ψ− + ε−1

∫ τ

0

[ω0(J−, Y (τ ′), X(τ ′)) + εω1(J−, Y (τ ′), X(τ ′))] dτ ′ + D, (4.3)

where we introduced notation

D = ε−1

∫ τ

0

[(
∂ω0

∂J
+ ε

∂ω1

∂J

)
(J − J−) +

(
∂ω0

∂Y
+ ε

∂ω1

∂Y

)
(Y − y)

+

(
∂ω0

∂X
+ ε

∂ω1

∂X

)
(X − x) + ε2ω2(J, ψ, y, x)

]
dτ ′, (4.4)

and Y,X in (4.3), (4.4) are slow variables of the improved adiabatic approximation.

Partial derivatives in (4.4) are calculated at proper intermediate points to make the

equality in (4.3) exact.

Our primary aim is to estimate D. Using (3.14), one can represent terms under

integral in (4.3) as functions of (Ē(J, Y, X), Y,X). In the main approximation we have

ω0 = ∂Ē/∂J ∼ |lnĒ|−1. (4.5)

Symbols ”∼” and ”O(·)” here and below in the paper imply that relations containing

them can be differentiated: if two functions are related via such a symbol, then their

derivatives are also related via the same symbol. To ensure this property, we control

singular terms in our estimates.

Therefore,

∂ω0/∂J = ∂ω0/∂Ē · ∂Ē/∂J ∼ Ē−1(ln|Ē|)−3.

To estimate ∂ω1/∂J , we need first to estimate H1. We do this with the use of (3.4). We

have (see [15]):

∂W

∂α
=

∫ t

0

(〈
∂E

∂α

〉
− ∂E

∂α

)
dt′, α = ŷ, x̂, (4.6)
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where the integral is taken along a phase trajectory of the fast system, and t is the

time of motion along this trajectory to the point where ∂W/∂α is calculated. Using the

following formula (see [15]):∮

E=h

∂E

∂α
dt = −∂Si

∂α
+ O(hln|h|), α = ŷ, x̂, (4.7)

we find that ∂W/∂α = O(1) + O((lnĒ)−1) and hence, from (3.4),(3.8),

H1 = O(1) + O((lnĒ)−1). (4.8)

We have to retain the second term, because it can be essential after differentiating.

Thus, using (4.8) and (4.5,

ω1 = O(Ē−1(lnĒ)−3), ∂ω1/∂J = O(Ē−2(lnĒ)−4).

To estimate derivatives like ∂Ē/∂Y , one can differentiate equality (3.14) to obtain

∂Ē/∂Y ∼ (lnĒ)−1. Then we find:

∂ω0/∂Y ∼ Ē−1(lnĒ)−3, ∂ω1/∂Y = O(Ē−2(lnĒ)−4),

and similarly for X.

From expression (3.11) for H2 using the above estimates, and the estimate

∂W1

∂ϕ
= −u = O(lnĒ) (4.9)

(see [15]), we find

H2 = O(Ē−1(lnĒ)−1). (4.10)

Hence,

ω2 = O(Ē−2(lnĒ)−2).

Estimate the factors (X−x) and (Y −y) in (4.4). From the Hamiltonian equations

of motion we have

Ẋ = ε
∂H0(J−, Y, X)

∂Y
+ ε2∂H1(J−, Y,X)

∂Y
,

ẋ = ε
∂H0(J, y, x)

∂y
+ ε2∂H1(J, y, x)

∂y
+ ε2∂H2(J, y, x)

∂y
,

where the partial derivative of H2 in the second equation is calculated at an appropriate

point to make the equation exact, and analogously for Ẏ , ẏ. Hence, the value ∆(τ) =

|X − x|+ |Y − y| at the moment when ∆ 6= 0 satisfies differential inequality:

∆′ ≤ εa(τ)∆ + ε3b(τ) (4.11)

with initial condition ∆(0) = O(ε2), where a(τ) > 0, b(τ) > 0,

a(τ) = O

(∣∣∣∣
∂2H0

∂X2

∣∣∣∣ +

∣∣∣∣
∂2H0

∂Y 2

∣∣∣∣ +

∣∣∣∣
∂2H0

∂X∂Y

∣∣∣∣
)

+ εO

(∣∣∣∣
∂2H1

∂X2

∣∣∣∣ +

∣∣∣∣
∂2H1

∂Y 2

∣∣∣∣ +

∣∣∣∣
∂2H1

∂X∂Y

∣∣∣∣
)

= O

(
1

Ē(lnĒ)3

)
+ εO

(
1

Ē2(lnĒ)4

)
= O

(
1

Ē(lnĒ)3

)
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b(τ) = O

(∣∣∣∣
∂H2

∂X

∣∣∣∣ +

∣∣∣∣
∂H2

∂Y

∣∣∣∣
)

+ ε−2O

(∣∣∣∣
∂2H0

∂Y ∂J

∣∣∣∣ +

∣∣∣∣
∂2H0

∂X∂J

∣∣∣∣
)
|J − J−|

+ε−1O

(∣∣∣∣
∂2H1

∂Y ∂J

∣∣∣∣ +

∣∣∣∣
∂2H1

∂X∂J

∣∣∣∣
)
|J − J−|

= O

(
1

Ē2(lnĒ)2

)
+ ε−2|J − J−|

[
O

(
1

Ē(lnĒ)3

)
+ εO

(
1

Ē2(lnĒ)4

)]

= O

(
1

Ē2(lnĒ)2

)
+ O

(
1

Ē2(lnĒ)3

)
= O

(
1

Ē2(lnĒ)2

)
. (4.12)

Here we have used estimates (4.8), (4.10), (4.1) and the estimate |J − J−| = O(ε2/Ē)

(see [15]). Solving (4.11), we get

∆(τ) ≤ exp

[∫ τ

0

a(τ ′) dτ ′
](

∆(0) + ε2

∫ τ

0

b(τ ′) dτ ′
)

. (4.13)

To calculate the integrals in this expression, we make the change of variable dτ =

(dτ/dĒ)dĒ and use equality

dτ

dĒ
=

1

dĒ/dτ
= −T/(Θ + O(Ē lnĒ)) ∼ lnĒ. (4.14)

Straightforward calculation using the above estimates for a and b gives the following

estimate:

∆(τ) = O

(
ε2

ĒlnĒ

)
. (4.15)

Substituting all the above estimates into (4.4) and changing the variable of

integration from τ to Ē like in (4.14), we obtain the estimate:

D = O(εĒ−1(lnĒ)−1). (4.16)

Now let τ = τk, where τk is a slow time moment when the trajectory crosses the

axis Cζ bisecting the angle between invariant manifolds of C (see figure 1). According

to our assumptions, at this time moment q = 0, ϕ = 0 mod 2π and, as it follows from

(3.1), (3.2), (3.5), (3.10), ψ = ϕ̄ = ϕ.

We assume that at this moment the phase point is still far enough from the

separatrix, and it still has to cross Cζ a number of times before crossing the separatrix.

From (4.3), (4.16), we conclude that

2πN = ϕ− + ε−1

∫ τ∗

0

(ω0 + εω1) dτ − ε−1

∫ τ∗

τk

(ω0 + εω1) dτ + O(εĒ−1
k (lnĒk)

−1), (4.17)

where N is an integer, Ēk is value of Ē at τ = τk, and ω0, ω1 are functions of

(J−, Y (τ), X(τ)). To calculate integral∫ τ∗

τk

ω0 dτ

we make the change of variable dτ = (dτ/dĒ)dĒ as above. At τ = τ∗, we have Ē = 0.

Making use of (4.14), we find:∫ τ∗

τk

ω0 dτ =
2π

Θ∗
Ēk + O(Ē2

k lnĒk). (4.18)
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The error term in (4.18) takes into account both error term in (4.14) and variation of

Θ with time.

Our next task is to find the relation between Ē and E. Using definition of Ē (3.14)

we obtain:

H0(J−, Y,X) = Ē + hc(Y, X). (4.19)

Using (3.6) and (4.10) one can write

Ē = H − hc(Y,X)− εH1(J−, Y, X) + O(ε2). (4.20)

According to (4.15), |x−X|+ |y − Y | = O(ε2Ē−1(lnĒ)−1). Therefore,

Ē = H − hc(y, x)− εH1(J−, Y, X) + O(ε2Ē−1(lnĒ)−1). (4.21)

Consider this relation at the time moment τ = τk. At this moment q = 0. Formulae for

generating functions W,W1 (3.1), (3.10) and for transformations of variables (3.2), (3.5)

imply that at this moment values of variables y, x and original variables ŷ, x̂ coincide.

Thus we have

Ēk = Ek − εH1(J−, Y, X)k + O(ε2 Ē−1
k (lnĒk)

−1)

and ∫ τ∗

τk

ω0 dτ =
2π

Θ∗
(Ek − ε(H1)k) + O(E2

k lnEk) + O(ε2 E−1
k (lnEk)

−1), (4.22)

where Ek, (H1)k are values of E and H1 accordingly at the point corresponding to the

slow time moment τk.

Calculate now the integral

ε

∫ τ∗

τk

ω1 dτ.

We change the integration variable like in (4.18) to obtain

ε

∫ τ∗

τk

ω1 dτ = ε

∫ Ēk

0

∂H1

∂Ē

2π

Θ
(1 + O(ĒlnĒ)) dĒ. (4.23)

We have:

∂H1

∂Ē
=

dH1

dĒ
− ∂H1

∂X
· dX

dĒ
− ∂H1

∂Y
· dY

dĒ
,

where the X, Y -derivatives of H1 are calculated at constant Ē. This expression should

be evaluated along the trajectory of the improved adiabatic approximation. For the

derivatives of X and Y , one can write Ẋ = ε(dX/dĒ)(dĒ/dτ) and then use the

Hamiltonian equations of the improved adiabatic approximation to find expressions

for Ẋ, Ẏ . Thus, we obtain

∂H1

∂Ē
− dH1

dĒ
=

1

dĒ/dτ

[
−

(
∂H1

∂X

)

Ē

· ∂H0

∂Y
+

(
∂H1

∂Y

)

Ē

· ∂H0

∂X

]
.

The terms in square brackets are O(1), and dĒ/dτ ∼ (lnĒ)−1. Hence,

∂H1

∂Ē
=

dH1

dĒ
+ O(lnĒ).
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Substituting this expression into (4.23) one obtains:

ε

∫ τ∗

τk

ω1 dτ = ε
2π

Θ∗
[(H1)k − (H1)∗] + εO(ĒklnĒk), (4.24)

where (H1)∗ is a value of H1 at τ = τ∗. Combining (4.22) and (4.24), we get:

1

ε

∫ τ∗

τk

(ω0 + εω1)dτ =
2π

εΘ∗
Ek − 2π

Θ∗
(H1)∗

+O(ε−1 E2
k lnEk) + O(EklnEk) + O(εE−1

k (lnEk)
−1). (4.25)

After slow time moment τk the phase trajectory approaches the separatrix,

repeatedly crossing the axis Cζ. Values of E at these crossings form a decreasing

sequence {En}. Let n = 0 at the last crossing of Cζ before crossing the separatrix, and

let value of n grow with time [i.e. n takes negative values before the separatrix crossing].

In order to find the difference En−En−1, one should integrate dE/dt along one turn of

the phase trajectory in the exact system. According to [3], [15],

En − En−1 = ε

∮

E=En

{E, hc}dt + ε2O(E−1/2
n ). (4.26)

The integral in (4.26) is calculated along the trajectory of the fast system with E = En

and fixed values x = xn, y = yn corresponding to the time moment of the n-th crossing

of Cζ. [In the particular case under consideration, when position of the saddle point C

does not depend on slow variables ŷ, x̂, the estimate of the error term in (4.26) can be

replaced with ε2O(lnEn). However, this improvement of the intermediate estimate does

not produce improvement of error estimates in final formulae. We use the error term

estimate in the form presented in (4.26), since this estimate is also valid in the general

case, when position of C depends on ŷ, x̂; this case is discussed in Appendix.] We have

[15] ∮

E=En

{E, hc}dt = −Θ(xn, yn) + O(EnlnEn),

(4.27)

|xn − x0|+ |yn − y0| = O(EnlnEn).

From (4.26), (4.27) we find

En − En−1 = −εΘ0 + εO(EnlnEn) + ε2O(E−1/2
n ), (4.28)

where Θ0 is the value of Θ at the time moment of the last crossing of Cζ. Thus, with

each turn E decreases by a value approximately equal to εΘ0. Summing up expressions

of the kind of (4.28) one obtains:

En = E0 + εΘ0n + O(E2
nlnEn) + εO(

√
En). (4.29)

Let n = m at the slow time moment τ = τk. Substitute (4.29) into (4.25). The

result is:
1

ε

∫ τ∗

τk

(ω0 + εω1)dτ =
2π

εΘ∗
(E0 + εΘ0m)− 2π

Θ∗
(H1)∗

+O(ε−1 E2
m lnEm) + O(

√
Em) + O(εE−1

m (lnEm)−1). (4.30)



Phase change between separatrix crossings 13

Now we can substitute (4.30) into (4.17). To minimize the error term we choose

Em ∼ ε2/3|lnε|−2/3 (i.e. m ∼ ε−1/3|lnε|−2/3). Take into account that Θ0 − Θ∗ = O(ε).

Thus we obtain:

2πN = ϕ0 +
1

ε

∫ τ∗

0

(ω0 + εω1)dτ − 2πξ +
2π

Θ∗
(H1)∗ + O(ε1/3|lnε|−1/3),

where N is an integer, and ξ = E0/(εΘ∗). Hence,

2πξ = ϕ0 +
1

ε

∫ τ∗

0

(ω0 + εω1)dτ +
2π

Θ∗
(H1)∗ + O(ε1/3|lnε|−1/3) mod 2π. (4.31)

Note, that this formula is valid not only in the case when a phase trajectory approaches

the separatrix from region G3, but also for G1 and G2.

Consider the term (H1)∗. We have the following formula valid at the points of

(p, q)-plane belonging to the axis where the origin for the angle variable is chosen (see

[15]):

H1 = −ω0u. (4.32)

Value of function u(p, q, ŷ, x̂) is given by formula (3.13).

Let a point (p, q) on the phase plane of the fast system lie in Gi, i = 1, 2 near C on

the axis Cη (see figure 1). Then [15]

2πu = di + O(
√
|h| ln|h|), h = E(p, q, ŷ, x̂), (4.33)

where di and a, bi below are smooth functions of (ŷ, x̂).

If a point (p, q) lies in G3 near C on the positive part of Cζ, then [15]

2πu = (a/2)(Θ2 −Θ1)lnh + (1/2)(Θ1b2 −Θ2b1) + (1/2){S2, S1}+ d3 + O(
√

h lnh),

d3 = d1 + d2. (4.34)

[In the particular case under consideration when position of saddle point C does

not depend on values of ŷ, x̂, error estimates in (4.33), (4.34) can be replaced with

O(hln2|h|).] In the region Gi we have [15] ω0 = 2π/Ti,

Ti = −ailn|h|+ bi + O(hln|h|),
a1 = a2 = a, a3 = 2a, b3 = b1 + b2. (4.35)

Hence, from (4.32), (4.33), (4.35) we conclude that in the regions G1, G2 we have

(H1)∗ = 0. In G3, we find from (4.32), (4.34), (4.35) that

2π

Θ∗
(H1)∗ =

π

2
· Θ2∗ −Θ1∗

Θ3∗
. (4.36)

Therefore, we finally obtain formula (2.2).

5. Concluding remarks

The error term estimate in (2.2) is slightly worse than one obtained in [8], that is

O(ε1/3|lnε|−2/3), but is a little better than one presented in [11] (O(ε1/3|lnε|1/3). The

both latter estimates were obtained for the system explicitly depending on the slow
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time. In fact, the most essential property is that this error term is o(1), i.e. tends to

zero as ε → 0.

Formula (2.2), together with the formula for the change of J at separatrix crossing

obtained in [15], can be used to produce a map describing dynamics in the systems of

two degrees of freedom with separatrix crossings for a majority of initial conditions.

It turns out that this map, up to the error terms, is the same as in the system with

explicit slow time dependence. In [11, 12] on the base of this map in the symmetric

case Θ1 ≡ Θ2, existence of stable periodic trajectories in the region with separatrix

crossings was proved. The results of the present paper and [15] allow to use the theorem

of [11, 12] to establish existence of stable periodic trajectories in the slow-fast system

under consideration. The number of this trajectories on an energy level is of order ε−1,

and on the phase plane of the map each of these trajectories is surrounded by a stability

island of the area of order ε. Such islands in systems taken from [16, 17] were recently

found numerically in [19, 20]. We plan to describe these topics in more details in a

future paper.
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Appendix

In section 4, formula (2.2) was obtained under additional assumption that the saddle

point does not move on the phase plane of the fast variables and the directions of the

main axes of the saddle do not change with variation of the slow variables. In this

Appendix, we demonstrate that formula (2.2) stays valid without this assumption.

Let p = pc(ŷ, x̂), q = qc(ŷ, x̂) be coordinates of the saddle point C. At frozen values

of the slow variables one can make canonical transformation of variables (p, q) 7→ (p̃, q̃) to

put the saddle point C to the origin of new coordinates (p̃, q̃) and make coordinate axes

Cq̃, Cp̃ coincide with the main axes of the saddle. Let coordinate axis Cp̃ coincide with

the vertex defined in section 2. Let V (p̃, q, ŷ, x̂) be generating function of transformation

(p, q) 7→ (p̃, q̃); it contains ŷ, x̂ as parameters. Initial Hamiltonian function H(p, q, ŷ, x̂)

expressed in the new variables has the form H = H̃0(p̃, q̃, ŷ, x̂). Now make canonical

transformation (p, q, ŷ, x̂) 7→ (p̃, q̃, ỹ, x̃) with generating function ε−1ỹx̂ + V (p̃, q, ỹ, x̂).

The Hamiltonian H in new variables is

H̃(p̃, q̃, ỹ, x̃) = H̃0(p̃, q̃, ỹ, x̃) + εH̃1(p̃, q̃, ỹ, x̃) + ε2H̃2.

In the system with Hamiltonian function H̃0 at frozen slow variables (ỹ, x̃) one can

introduce action-angle variables I, ϕ mod 2π with a canonical transformation of variables
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defined by generating function W (I, q̃, ỹ, x̃) of the form (3.1). In the new variables H̃0

has the form H̃0 = H0(I, ỹ, x̃). Now, in the complete system, we make a canonical

transformation (p̃, q̃, ỹ, x̃) 7→ (Ī , ϕ̄, ȳ, x̄) with generating function ε−1ȳx̃ + W (Ī , q, ȳ, x̃).

In the new variables Hamiltonian function H has the form (3.3).

In the following consideration, we have to keep additional terms in H1 and H2 (and,

accordingly, in H1 and H2) generated by the corresponding terms in H̃.

All the formulae before formula (4.31) remain valid if we replace initial slow

variables ŷ, x̂ with ỹ, x̃, function E = H − hc(y, x) with function Ẽ = H̃(p̃, q̃, ỹ, x̃) −
H̃0(0, 0, ỹ, x̃) = H̃ − hc(ỹ, x̃) and value ξ with ξ̃ = |Ẽ0/(εΘ∗)|, where Ẽ0 is the value

of function Ẽ on the trajectory at the moment of the last crossing of the vertex before

leaving Gi. Here, we write formula (4.31) as follows:

ξ̃ =
1

2π

(
ϕ0 +

1

ε

∫ τ∗

0

(ω0 + εω1)dτ

)
+

1

Θ∗
(H1)∗ + O(ε1/3|lnε|−1/3) mod 1. (A.1)

In this case
1

Θ∗
(H1)∗ = A∗ +

1

Θ∗
H̃1(0, 0, ỹ, x̃); (A.2)

value A∗ was introduced in section 2.

To be definite, consider the case of motion in the domain G3. In this domain

Ẽ0 > 0, Θ∗ > 0. From (A.1), (A.2) we have

1

εΘ∗
(Ẽ0 − εH̃1(0, 0, ỹ, x̃)) =

1

2π

(
ϕ0 +

1

ε

∫ τ∗

0

(ω0 + εω1)dτ

)
+ A∗

+O(ε1/3|lnε|−1/3) mod 1. (A.3)

According to the definition of E in section 2, E = H − hc(ŷ, x̂). Now, we have

H̃(p̃, q̃, ỹ, x̃) = H(p, q, ŷ, x̂),

H̃(0, 0, ỹ, x̃) = H(pc(ŷ, x̂) + O(ε), qc(ŷ, x̂) + O(ε), ŷ, x̂)

= H(pc(ŷ, x̂), qc(ŷ, x̂), ŷ, x̂) + O(ε2) = hc(ŷ, x̂) + O(ε2).

Therefore,

Ẽ − εH̃1(0, 0, ỹ, x̃) = H̃(p̃, q̃, ỹ, x̃)− H̃0(0, 0, ỹ, x̃)− εH̃1(0, 0, ỹ, x̃)

= H̃(p̃, q̃, ỹ, x̃)− H̃(0, 0, ỹ, x̃) + O(ε2) = H(p, q, ŷ, x̂)− hc(ŷ, x̂) + O(ε2)

= E + O(ε2).

Thus, (A.3) again implies formula (2.2).
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