

Плазменно-пылевая экзосфера Луны: Основные проблемы и методы исследований

Кузнецов И.А., Захаров А.В., Дольников Г.Г., Ляш А.Н., Карташева А.А., Шеховцова А., Бычкова А., Шашкова И.А.

Институт космических исследований Российской академии наук, Москва, Россия; kia@iki.rssi.ru

Семинар отдела 53 ИКИ РАН, 29.04.2020 г.

Содержание

- Динамика плазменно-пылевой экзосферы вблизи поверхности Луны
- История обнаружения, свидетельства
- Гранулометрия реголита
- Опасность лунного реголита и поднимающейся пыли
- Лабораторное и численное моделирование лунной пылевой динамики и численное моделирование

Воздействие на лунную среду

1. Механические

- Микрометеоритная бомбардировка
- Воздействие на поверхность Луны со стороны КА
- 2. Электромагнитные
 - Солнечный ветер
 - УФ-излучение
 - Вторичные электроны, фотоэлектроны
 - Электрический потенциал поверхности
 - Хвост земной магнитосферы
 - Локальные лунные магнитные аномалии

Механические воздействия

 Частицы астероидного и кометного происхождения, поток изотропный, 5.2×10⁻¹⁶ kg m⁻² s⁻¹ [Bruno et al., 2006] – около 10⁶ кг/год.

Поток частиц оценивается как 100 м⁻² сут⁻¹ [Попель и др., 2016].

- Размер большинства частиц 10 нм ... 1 мм.
- Скорость соударения с поверхностью Луны 10 ... 72 км/с.
- При ударе выбрасывается число частиц, многократно превышающее массу импактора.
- Большинство возвращается на поверхность, но при достижении скорости 1,6 км/с частицы выходят на орбиту Луны, а при 2,4 км/с покидают лунную зону влияния.

Также механические воздействия

Электромагнитное воздействие

- Локальные заряженные пылевые частицы, их левитация
- Падение микрометеоритов
- Электрическое поле
- Поток солнечного ветра
- Солнечный
 электромагнитный спектр

Воздействие на лунные реголит и плазменно-пылевую экзосферу [Halekas et al., 2015]

Солнечный ветер

Table 2 - Typical solar wind parameters at the orbit of the Earth [Hundhausen, 1995].

Quantity	Value	Note
Proton density	6.6 cm ⁻³	
Electron density	7.1 cm ⁻³	
Bulk speed	450 km/s	i.e. 1 keV proton energy
Proton temperature	10 eV	i.e. 45 km/s thermal speed
Electron temperature	12 eV	i.e. 2100 km/s thermal speed

- Скорость частиц значительно варьируется и зависит от солнечной активности
- Основная масса ионов поглощается реголитом [Bhardwaj et al., 2015]
- 10...20 % ионов захватывают электроны и рассеиваются в виде нейтралов. [McComas et al., 2009; Wieser et al., 2009; Lue et al., 2018]
- 0,1...1 % отажается от поверхности, сохраняя положительный заряд (H⁺) [Saito et al., 2008]
- Значительная часть электронов поглощается, часть рекомбинирует с ионами, часть – отражается, создавая поток отраженных электронов

Земная магнитосфера

- приблизительно 30% лунных суток Луна оказывается под воздействием магнитосферной плазмы.
- Луна попадает в плазму хвоста магнитосферы и может оказаться либо в одной из долей хвоста (tail lobes), либо в низкоширотном пограничном слое или плазменном слое (plasma sheet) [Tsurutani et al.,1984b].
- В северном и южном долях хвоста плотность плазмы очень мала 10⁻³ ... 10⁻² ст⁻³ [Peterson et al., 1984].
- В плазменном слое магнитосферного хвоста, который делит северный и южный доли, плотность плазмы составляет 0,05-0,2 см⁻³, но характеризуется высокой температурой ионов (1...5 кэВ) и сильно изменчивой скоростью (10...1000 км/с) [Frank et al., 1985].

Figure 4. Temporal evolution of the lunar surface potential ϕ_s during the magnetotail crossing for $\chi = 90^{\circ}$ for different reductions of the total SEE yield, σ .

Figure 6. Temporal variations of the lunar surface potential, ϕ_s , and glass grain (radius $r = 1 \ \mu m$) potential, ϕ_d , above the surface through the magnetosphere pass (with reduced of the SEE yield for the surface, $\sigma/3$) for two solar zenith angles, (a) $\chi = 90^{\circ}$ and (b) $\chi = 85^{\circ}$.

Солнечное излучение

- Фотоэмиссия основной вклад в формирование электрического заряда реголита.
- Для освещенной стороны Луны в условиях солнечного ветра плотность фототока на порядок выше токов электронов и ионов солнечного, а также вторичного излучения электронов лунной поверхностью [2014_Stubbs]
- Энергия фотоэлектронов, выбитых солнечным УФ излучением, находится в диапазоне от 4 до 1 эВ [Wills et al., 1973]
- Эффективность фотоэмисии образцов лунного реголита составляет 2,8 10⁹ э см⁻² сек⁻¹ (фототок ~ 4.5 μA m⁻²) [Willis et al., 1973 (Grard); Feuerbacher et al., 1973]

Скорость счета прибора CPLEE на поверхности Луны. При пересечении центральной части геомагнитного хвоста на Луне произошло затмение Солнца. На графике этот интервал между 5 и 9 часами [Reasoner and Burke, 1972].

Реголит и лунная пыль

- Толщина реголита 4...5 м в области лунных морей и 10...15 м в гористых районах [МсКау et al., 1991; Fa et al., 2019]
- Более четверти (по массе) лунных частиц реголита представляют собой связанные стеклом агрегаты из более мелких частиц почвы (glass-bounded aggregates) [McKay et al., 1991] и брекчии.
- Частицы с размером <1 мм составляют более 95% массы реголита [Carrier, 1973] Средний размер частиц находится в диапазоне от 40 до 100 мкм. Такие частицы составляют порядка половины веса лунного реголита [Graf J.C. 1993, коммулятивное распределение]

Аполлон-17 [*МсКау et al.,* 1974]

Луна-24 [*Родэ, Иванов*, 1984]

Распределение микронных и субмикронных частиц образца реголита 10084, доставленного экспедицией Apollo. Измерения проводились аэрозольным методом с помощью приборов *Scanning Mobility Particle Sizer* для частиц в диапазоне 2.5 to 500 nm и *Aerodynamic Particle Sizer* для частиц в диапазоне 500 nm to 20 µm [Greeberg et al., 2007].

Фотография частицы лунного агглютината. Пористое стекло с вкраплениями частиц реголита и железа.

Левитирующие пылевые частицы

- Силы: кулоновская, гравитация, адгезия
- При попытках учета сил адгезии, их приблизительные оценки показывают, что эти силы могут в тысячи или даже миллионы раз превышать силу тяжести F_g микронной и субмикронной пылинки с радиусом r_d [Li et al., 2006, Hartzell and Scheeres, 2011].
- Для относительно больших пылевых частиц (>10³ μm) силы адгезии (F_a ∝ r_d) становятся несущественными с сравнении с гравитационной силой (F_g ∝ r³_d) [Hartzell and Scheeres, 2011].
- Чтобы *F_e* при среднем электростатическом поле *E*~10 *B/м* [Freeman et al., 1973; Freeman and Ibrahim, 1975] на освещенной стороне Луны, могла поднять пылинку диаметром, например 1 *мкм*, преодолев только силу гравитации, она должна иметь достаточно большой заряд *q*≈1500 *e* [Rosenfeld and Zakharov, 2020]

История обнаружения, свидетельства

«Пылевой фонтан» и свечение пыли над горизонтом Луны, Surveyor-6 (Rennilson and Criswell, 1974).

Свечение пыли над Луной, Clementine Lunar Orbiter (1991)

Наброски «пылевых фонтанов» Луны астронавтами Аполлона-17 (McCoy and Criswell, 1974)

Регистрация частиц: прибор LEAM (Apollo-17)

Число регистраций пылевых частиц в трёхчасовом интервале измерений над поверхностью Луны прибором LEAM. Данные проинтегрированы за 22 лунных суток [Berg et al., 1976]. Толстой линией по горизонтальной оси отмечено ночное время.

Регистрация частиц: прибор LDEX (LADEE)

Опасность лунного реголита и пыли

- Частицы лунной пыли обладают способностью активно воздействовать на элементы и системы космических аппаратов
- Пылевые микро- и наночастицы
 - проникали в блоки приборов
 - костюмы астронавтов
 - вызывали изменение тепловых режимов аппаратуры (перегрев)
 - изменяли тепловые свойства поверхностей аппаратуры, забивая тепловые радиаторы
 - оседали на солнечных батареях и оптике
 - попадали в двигающиеся узлы механизмов, доставленных на Луну
- Известно, что лунная пыль затрудняла работу робототехнических систем, бурение грунта, и многие другие механизированные работы.

Hazard Mission		Specific	Mission Report Page	Debrief Page
	Apollo 15 Smelled like gunpowder when first came in from EVA			10-22
	Apollo 15 Particulate matter floated around spacecraft			13-8
	Apollo 16	Dust in the LM in between EVAs, and in the CM after docking, also in eyes		12-11, 13-3, 13-5, 27-36
	Apollo 17	Kept helmet on to keep inhalation irritation down, still short term irritation		13-1, 19-10, 27-47
Radiators Degraded	Apollo 12	Temperatures measured were approximately 68 °F higher than expected	3-16	
	Apollo 15	LRV batteries ran 68 to 78 °F high because dust accumulation on radiators	94	
	Apollo 16	Instrument performance degraded by overheating due to dust on radiators	4-10, 4-19	
	Apollo 16	Dust on Lunar Rover battery mirrors caused overheating	9-42	10-64
	Apollo 17	Instrument shut down when terminator passing to mitigate dust collection	15-29	
Instruments Fooled	Apollo 12	Velocity trackers lock up on moving dust, debris during descent	8-3	
	Apollo 15	Landing radar outputs were affected by moving dust and debris.	72	
	Apollo 17	No lock-up on moving dust or debris near the lunar surface.	8-2	
	_		F	
Seals Failed	Apollo 12	Higher than normal suit pressure decay due to dust in fittings	8-21, 9-21	10-54
	Apollo 12	Environmental sample and gas sample seals failed because of dust	9-14, 9-19	
	Apollo 14	Measurable leaking of suits	10-65	
Dust Abraded	Apollo 12	Outer material worn through the outer suit layer in several spots.	9-21	10-54
	Apollo 16	Gauge dials scratched so unreadable	9-37	21-4
	Apollo 17	Sunshade on faceplate too scratched to see well	9-5	27-45
	Apollo 17	Cover gloves heavily abraded	9-5	

[«The Effects of Lunar Dust on EVA Systems During the Apollo Missions», James R. Gaier, 2005]

Эксперименты

• Микрометеоритная бомбардировка

- Построение систем калибровки научной аппаратуры
- Влияние на материалы, риск загрязнения и повреждения
- Отработка методов регистрации пылевых частиц

• Левитация частиц в электрическом поле

- Исследование и понимание динамики плазменно-пылевой экзосферы безатмосферных тел, включая динамику пылевой компоненты
- Исследование влияния плазменно-пылевых структур на материалы и приборы
- Изучение риска загрязнения пылевыми частицами
- Оптическая регистрация траекторий частиц
- Потоки частиц в аэродинамической трубе
 - Система калибровки приборов/Измерение потоков пылевых частиц

Микрометеоритная бомбардировка

Схема эксперимента:

- 1 Вакуумная камера MSH D400 H600KR;
- 2 Инжектор заряженных пылевых частиц;
- 3-6 вакуумная арматура;
- 7, 8 ПМТ-2 (термопарный датчик давления);
- 9 ПМИ-2 (ионизационный датчик давления);
- 10 вакуумметр АВ 3401;
- 11 вакуумметр ВИТ 2;
- 12 впускной клапан;
- 13 выпускной клапан;
- 14, 15 турбомолекулярный насос BALZERS THP050 с
- системой управления ТСР121;
- 16 форвакуумный насос PDV 500 GB;
- 17 фильтр

Схема инжектора:

- П емкость для инжектируемого вещества;
- И инжекционное отверстие;
- А внешняя сфера, 0 В;
- В шар под напряжением

Микрометеоритная бомбардировка

Давление, мм рт. ст.	Масса, кг	Размер частиц, мкм	Проводимост ь частиц	Скорость чатсиц, м/с	Импульс, Н∙с	Заряд, е⁻
< 10 ⁻³	>10-12	1-400	Проводящие, < 10 ⁻⁶ Ом	2 – 100	10 ⁻¹² – 10 ⁻⁸	>1000

инжектора

инжектором вакуумной установки для различных значений напряжения

Наблюдаемые значения зарядов и скоростей частиц в потоке, создаваемом

Левитация частиц в электрическом поле

3,4 – оптическая система для выведения лазерной плоскости и подсветки частиц;

5 — вакуумная камера;

6 - сетка;

7 – частицы пыли (1 мкм, Fe; 40÷100 мкм, SiO₂);

8 – проводящая подложка

Изображение взлетевших частиц SiO2 (40 – 100 мкм), 5 кВ - > 625 кВ/м

6 кВ - > 750 кВ/м

Распределение материала в течение эксперимента (1 мкм, Fe), ~1 час

до

после

Распределение частиц пыли на подложке до и после левитации, 40÷100 μm, SiO2

до

после

40÷100 мкм, Si0₂

Обработка:

Максимум корреляционной функции 0.475 Рассчитанное смещение (265, 0) пкс Длина трека 10.3548 мм Параметры параболы а=0.6867 b=-22.8277 с=187.5943 невязка 1.79774 Скорость Vy 0.6123 м/с Скорость Vx 0.0845 м/с Скорость V 0.6181 м/с Угол взлета 82.14 градусов Радиус частицы 5.00000Е-05 м Масса частицы 2.8798Е-10 кг Заряд частицы 2.7757Е-14 Кл

Распределение зарядов и скоростей частиц (40÷100 мкм, Si0₂)

Vy, m/s

Q/m, 10^-6 C/kg

Воздействие UV

Идея — воссоздать в лабораторных условиях взаимодействие частиц с УФизлучением. Предполагается, что частицы будут приобретать заряд и преодолевать таким образом силы гравитации и адгезии.

Численное моделирование в среде SPIS-Dust

Ситуация	α	θ
Полдень	0°	22°
Вечер	45°	11°
Закат	90°	1°

Условия

Плазменная обстановка				
Ионная концентрация, n _i	cm⁻³	10		
Электронная концентрация, n _e	cm⁻³	10		
Скорость ионов CB, V _i	km∙s⁻¹	430		
Скорость электронов СВ, V _е	km∙s ⁻¹	430		
Температура ионов СВ, Т _і	eV	10		
Температура электронов СВ, Т _е	eV	10		
Фотоэлектронная температура, Т _{рһ}	eV	2		

[MRAD "Modelling requirements", 2013; Feuerbacher et al., 1972]

Свойства материалов и поверхностей

Ситуация	Потенциал поверхности, В	Потенциал северной солнечной панели, V	Температура лунной поверхности, К
Полдень	0	0	288
Вечер	0	27	240
Закат	-10	5	130

- Поверхность элементов аппарата подогревается РИТами и РИТЕГами. Проведя численный тепловой расчет, можно предположить, что температура КА будет варьироваться от 200 К (опоры, платформа) до 233 К (солнечные панели, инструменты).
- Плотность лунного реголита составляет 1500 кг/м³ [D.A. Kring, 2006]; плотность же материала пылевых частиц принимается за 3000 кг/м³. Распределение частиц по размерам берется на основании исследований образцов 71501,1 Mare (Миссия Аполлон 17).
- Предполагается, что поверхность КА эквипотенциальная поверхность из оксида алюминия и позолоченой ЭВТИ (теплозащиты), за исключением солнечных панелей, собранных из легированного цезием кремниевого стекла. Изначальный потенциал СП – 0 В для южной и +20 В для северной.
- Моделируется процесс восхода Солнца в отсутствии хвоста земной магнитосферы и при условии отсутствия локальных магнитных аномалий. В этом случае можно допустить, что весь поток СВ достигает КА.

Результаты: потенциал плазмы, «полдень»

Потенциал поверхностей Луны и КА по результатам моделирования

Концентрация пылевых частиц на высоте 10 см в случае «полдня» по результатам численного моделирования (синий) и среднее значение 7.9·10² м⁻³ (черный). [Kuznetsov et al., 2018]

Результат соответствует теоретическим моделям [S.I. Popel et al., 2013], где значения концентрации находятся в пределах 4.5·10³ м⁻³ до 7.5·10¹⁰ м⁻³ вблизи поверхности Луны (от 0 до 10 см) в зависимости от широты (от 77° до 87°).

