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The equations of relativistic fluid dynamics

The equations of GRHD

The equations describing the evolution of a relativistic fluid are conservation laws:

∇ · J = 0, Conservation of the baryon number

∇ ·T = 0, Conservation of the energy-momentum

∇ ≡ covariant divergence, J ≡ current of rest mass, T ≡ energy-momentum
tensor.
For a perfect fluid (=shear or heat conduction) and using G = c = 1

Jµ = ρuµ, Tµν = ρhuµuν + pgµν

ρ ≡ rest-mass density,
p ≡ pressure,
h = 1 + ε+ p/ρ ≡ specific enthalpy,
ε ≡ specific internal energy,
uµ ≡ 4-velocity of the fluid (uµuµ = −1),
gµν ≡ metric of the spacetime M.

The systems of equations is closed with an equation of state (EoS), for instance,
p = p(ρ, ε, . . .).
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The equations of relativistic fluid dynamics

Approximations

Special Relativity gµν = ηµν - Rel. heavy-ion collisions
(RHD) gravitational field - Extragalactic jets

neglected - GRB afterglows

External field gµν 6= f(t) - Accretion onto compact objects
(GRHD) background metric - jet formation

- proto-GRBs

Dynamical M gµν = f(t) - GR stellar core collapse
(GRHD + EE) gµν from EE - NS, BH mergers
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The equations of relativistic fluid dynamics

Simple examples: (i) advection equation

Before looking at the solution of the hydrodynamical equations there are some
fundamental aspects of their nonlinear properties which can be more easily
understood considering simple examples.

The simplest linear hyperbolic equation is
the advection equation

∂tU(t, x) + ∂xU(t, x) = 0

The solution is the initial data simply
translated in space and time. The propa-
gation speeds are constant everywhere (li-
near nature of the equation)

Before looking at the solution of the hydrodynamical equations 
there are some fundamental aspects of their nonlinear properties 
which must be clarified. 

Some representative examples: advection equation

The solution is the initial data 
simply translated in space and 
time. 

The propagation speeds are 
constant everywhere (linear 
nature of the equation)

The simplest linear hyperbolic 
equation is the advection 
equation

time

space

Credit: Rezzolla (2008)
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The equations of relativistic fluid dynamics

Simple examples: (ii) Burgers’ equation

The simplest nonlinear hyperbolic equation is the Burgers’ equation

∂tU(t, x) + U(t, x)∂xU(t, x) = ε∂2xxU(t, x)

where ε→ 0 in the inviscid limit. The solution to this eq. is very different because
of the dependence of the advection velocity (U(t, x)) on t and x.

Some representative examples: Burgers’ equation

The simplest nonlinear hyperbolic equation is Burgers’ equation

where the RHS is assumed zero in the inviscid limit. Despite the 
remarkable similarity, the solution to this eq. is remarkably different

time

space

Credit: Rezzolla (2008)
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The equations of relativistic fluid dynamics

Simple examples: (ii) Burgers’ equation

This behaviour is referred to as “shock steepening” and is the consequence that
the propagation speeds are not constant as for the advection equation but are a
function of space and time (nonlinear nature of the equation).

Stated differently, the maxima of
the waves move “faster” than the
minima and tend to “catch-up”.

1 This is a property of the
equations and not of the
initial data. Even smooth
initial data will (eventually)
shock in inviscid fluids.

2 Numerical challenge: On-
ce a shock forms we cannot
simply translate the initial
data forward in time from
the (given) initial data.

Some representative examples: Burgers’ equation

The simplest nonlinear hyperbolic equation is Burgers’ equation

where the RHS is assumed zero in the inviscid limit. Despite the 
remarkable similarity, the solution to this eq. is remarkably different

time

space

Credit: Rezzolla (2008)
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The equations of relativistic fluid dynamics

Conservative form of the equations

The homogeneous partial differential equation

∂tU(t, x) + a(U(t, x))∂xU(t, x) = 0

is said to be in flux-conservative (FC) form if written as

∂tU(t, x) + ∂xF (U(t, x)) = 0

Theorems (Lax, Wendroff; Hou, LeFloch)
FC formulation converges to the weak solution of the problem (i.e.,
a solution of the integral form of the FC form).
NFC converges to the wrong weak solution of the problem.

In conservative systems (e.g., the hydrodynamic eqs) one usually deals
with a set of equations in FC form. Hence, the function U and the
flux F (U) are replaced by a state vector U and a flux vector F(U).

Why do we care at all about the FC/NFC form of the equations?...
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The equations of relativistic fluid dynamics

Conservation vs non-conservation

Burgers’ inviscid equation with continuous initial data offers a good example of
the importance of a conservative writing of the equations.

Consider ∂tU + U∂xU = 0 with

U(0, x) = 0.1 + exp

(
− (x− 3)2

2

)
The equation can then be written as
(dashed line)

∂tU + U∂xU = 0

or as (solid line):

∂tU +
1

2
∂xU

2 = 0

Mathematically equivalent but the numerical difference is obvious (dashed line
moves at a wrong propagation speed!)
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The equations of relativistic fluid dynamics

Conservation vs non-conservation: linear systems

For linear systems of eqs, the importance of a conservative formulation is clear as
it allows for analytic solutions.
Rewrite the flux conservative equations

∂tU + ∂xF(U) = 0 ⇐⇒ ∂tU + B∂xU = 0, (1)

where B(U) ≡ ∂F(U) is the Jacobian matrix of constant coefficients (because
the problem is linear).

We next diagonalize B(U) so that Λ = R−1BR is the diagonal matrix of
eigenvalues λ1, λ2, . . . , λN of the N linear equations [Λ = diag(λ1, λ2, . . . , λN )]

The columns of the matrix R, Ri are the set of right eigenvectors of B.

Let’s recall that the diagonalization and full spectral decomposition are guaranteed
to be possible IF we deal with a set of hyperbolic equations. Indeed, the set of eqs

∂tU + B∂xU = 0,

is said to be (strongly) hyperbolic iff B is diagonalizable with a set of real
(distinct) eigenvalues λi and correspondingly a set of linearly independent (right)
eigenvectors Ri.
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The equations of relativistic fluid dynamics

Characteristic curves

We can now define the characteristic variables

U ≡ R−1U

so that system (1) can be written as

∂tU + Λ∂xU = 0 (2)

Since Λ is diagonal, Eq. (2) corresponds to a system of N decoupled PDEs.

If U i is the i-component of the vector U , we have

∂tU i + λi∂xU i = 0 ⇐⇒ dU i

dt
= 0 along

∂x

∂t
= λi(U(t, x)) (3)

so that the characteristic variables are constant along those characteristic curves
in the (x, t) plane having slope λi, also known as characteristic speeds.

As they remain constant along characteristics, the value the characteristic
variables at any time is known once the initial one is determined, i.e.

U i(t, x) = U i(t = 0, x− λit) (4)
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The equations of relativistic fluid dynamics

Characteristic solution

From the solution in characteristic variables (Eq. 4) we can go back to the original
estate vector

U ≡ R−1U =⇒ U = RU

so that

U(t, x) =

N∑
i=1

U i(t, x)Ri =

N∑
i=1

U i(0, x− λit)Ri (5)

What Eq. (5) expresses is that the solution at any time can be seen as the linear
superposition of N waves, each propagating independently at the speed given by
the corresponding eigenvalue.
B Solutions are built along the time by solving initial value problems (IVP).
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The equations of relativistic fluid dynamics

Equations of Special Relativistic Hydrodynamics (I)

In Cartesian coordinates, xµ = (t, x, y, z), gµν = diag(−1, 1, 1, 1) (e.g., Font et al. 1994):

Jµ,µ = 0,

Tµν ,µ = 0 (,µ≡ ∂
∂xµ

)

From the normalization condition uµuµ = −1:

uµ = Γ(1, vx, vy, vz) (6)

Γ = (1− v2)−1/2 ; v2 = (vx)2 + (vy)2 + (vz)2.

Fundamental system of equations in FC form

U,t + F(i),i = 0 (7)

U(W) ≡ (D,S1, S2, S3, τ)→ (conserved variables)

W ≡ (ρ, vi, ε)→ (primitive variables)

F(i) = (Dvi, Sjvi + pδji, Si −Dvi) i, j = 1, 2, 3

D = ρΓ ≡ rest-mass density

Sj = ρhΓ2vj ≡ momentum density (j = 1, 2, 3)

τ = ρhΓ2 − p− ρΓ ≡ energy density

System (7) is hyperbolic for causal equations of state (Anile 1989), i.e., for those where
the local sound speed, cs, satisfies cs < 1.
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The equations of relativistic fluid dynamics

Equations of Special Relativistic Hydrodynamics (II)

B Eigenvalues for SRHD:

λ0 = vi, linearly degenerate (triple), i = x, y, z

λ± =
1

1− v2c2s

(
vi(1− c2s)± cs

√
(1− v2)[1− v2c2s − vivi(1− c2s)]

)
.

Strong coupling with the x, y, z directions through v2 = (vx)2 + (vy)2 + (vz)2.

For the 1D case:

λ± =
v ± cs
1± vcs

→
{

1 (v → 1)
v ± cs (v, cs → 0)

B Hyperbolic systems of conservation laws admit discontinuous solutions (SHOCKS)
⇒ Satisfy Rankine-Hugoniot (RH) jump conditions across the hyper-surface containing
the discontinuity of the space time, Σ, and are based on the continuity of the fluxes
across shocks. In the case of SRHD these conditions (Taub 1948) read:

[ρuµ]nµ = 0 , (8)

[Tµν ]nν = 0 , (9)

nµ being the unit normal to Σ. Notation: [F ] = Fa − Fb; Fa, Fb ≡ values of F on the
two sides of Σ.
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The equations of relativistic fluid dynamics

Jump conditions across shocks

RH conditions (8), (9) can be written in terms of the conserved quantities and the
invariant mass flux across the shock, j,

[vx] = − j

Γs

[
1

D

]
, (10)

[p] =
j

Γs

[
Sx

D

]
, (11)

j

[
Sy,z

D

]
= 0, or j [hWvy,z] = 0, (12)

[vxp] =
j

Γs

[ τ
D

]
. (13)

Γs is the Lorentz factor associated to the shock.
If j = 0 (contact discontinuity) → continuous pressure and normal velocity, and
an arbitrary jump in the tangential velocity.
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The equations of relativistic fluid dynamics

Newtonian vs Relativistic Hydrodynamics

B Classical limit of the RHD equations (c→∞; h→ 1; Γ→ 1):

U = (D,Sj , τ)→ (ρ, ρvj ,
1

2
ρv2 + ρε)

F(i) = (Dvi, Sjvi + pδji, Si −Dvi)→ (ρvi, ρvjvi + pδji, vi(
1

2
ρv2 + ρε+ p))

i, j = 1, 2, 3

What is different from classical HD?:

Equations are tightly coupled by Γ and h (larger non-linearity).

No explicit relation between W and U (except for particular EOS).

Coupling of the tangential components of v in the characteristic speeds (aberration).

v → 1 ⇒ λ0 → λ± → 1 ⇒ total eigenfield degeneration ⇒ very thin structures
(e.g., relativistic blast wave) ⇒ potential source of numerical errors.

Relativistic shocks can have larger jumps than classical ones.

Relativistic strong shock:
ρb
ρa
≤ γΓb + 1

γ − 1
→∞ if vb → 1

Newtonian strong shock:
ρb
ρa
≤ γ + 1

γ − 1
(∼ 4− 7)
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Discretization of the equations of relativistic fluid dynamics
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Discretization of the equations of relativistic fluid dynamics

Numerical integration of the RHD equations

• Late 60’s - 80’s → Artificial viscosity (AV): Application of von Neumann & Richtmyer
(1950) to RHD.

standard finite difference techniques

+

viscous terms into the equations to damp spurious oscillations near discontinuities
(non-consistent AV -AV not based on the stress-energy tensor of a viscous fluid-).

→ Basic idea: artificial dissipative mechanism that makes the shock transition
smooth -extended over several numerical zones-.

Limitations:
Very diffusive, errors in shock velocity, test-dependent parameters, non conservative, not
applicable to ultrarelativistic regime (Γ ≤ 2),...
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Discretization of the equations of relativistic fluid dynamics

High resolution shock capturing (HRSC) methods

• 90’s: The application of HRSC methods caused a revolution in numerical RHD
because

- The eqs. are written in conservation form

⇒ Convergence to the physically correct solution.

- Exploit the hyperbolic character of the RHD equations (upwind).

⇒ automatically satisfies RH condition (shock capturing).

- High resolution.

⇒ High order of accuracy in smooth regions of the flow.
⇒ Stable and sharp description of discontinuities.
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods:

1. Time evolution of zone averaged state vectors governed by the numerical fluxes eva-
luated at zone interfaces.

∂tU + ∂xF(U) = 0 ⇐⇒
dUn

j

dt
= − 1

∆x

(
F̂j+1/2 − F̂j−1/2

)
︸ ︷︷ ︸

spatial discretization

where ∆x = xj+1/2 − xj−1/2 and Un
j is an approximation to U(xj , t

n) (finite difference
methods) or to the zone average (finite volume methods):

Ūn
j =

1

∆x

∫ xj+1/2

xj−1/2

U(tn, x)dx , (14)

F̂j±1/2 are approximations to the time–averaged fluxes across the interfaces xj±1/2:

F̂j±1/2 ≈
1

∆t

∫ tn+1

tn
F(

sol. at the interface︷ ︸︸ ︷
U(xj±1/2, t))dt . (15)

One always tries to represent as accurately as possible the numerical fluxes. Different
ways of calculating F̂j±1/2 yield different evolution schemes (Lax, Runge-Kutta, etc.).

B In the evaluation of F̂j±1/2 we need to face the fact that discontinuities may develop
or be present already in the initial data.
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (ii):

To handle the discontinuities in the flow one can consider the
following possibilities:

1st order accurate schemes
generally fine, but very inaccurate (e.g., excessive diffusion, with
Lax method) or across discontinuities (e.g., upwind).

2nd order accurate schemes
generally introduce oscillations across discontinuities (not “mono-
tonic” or TVD).

2nd order accurate schemes with artificial viscosity
mimic nature but not good in relativistic regimes (see previous
slides).

Godunov Methods
good compromise between accuracy (2nd order with smooth da-
ta, 1st-order at discontinuities) but monotonic. Most importantly:
discontinuities are a keystone of the algorithm.
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (iii): Finite Volumes

Godunov methods are tightly related with finite-volume methods. For simplicity,
assume a scalar equation discretized in a 1D uniform grid.

Finite-Volume Methods are based on subdividing the spatial domain into intervals
(“finite volumes” or grid cells) and on keeping track of an approximation to the
zone average

Ūnj =
1

∆x

∫ xj+1/2

xj−1/2

U(tn, x)dx (16)

over each of these volumes.

If U(t, x) is smooth,

Ūnj '
1

∆x
U(tn, xi)∆x+O(∆x2) = U(tn, xi) +O(∆x2)

where xi = (xj+1/2 + xj−1/2)/2. In other words, Ūnj agrees with U(t, x) at the

midpoint of the interval to O(∆x2).

At each time step, we update these values using approximations to the flux
through the endpoints of the intervals.
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (iv): Finite Volumes

In terms of finite-volumes, it is easier to use important properties of
the conservation laws in deriving numerical methods.

In particular, we can ensure that the numerical method is conservative
in a way that mimics the true solution and this is important for
correctly calculating shock waves.

The quantity

N∑
i=1

Ūn
i ∆x

approximates the integral of U(t, x) over the entire interval [a, b].

Using a method in conservative form, the discrete sum will change
only due to the fluxes at the boundaries x = a and x = b. In this way
conservation (e.g. of mass) is guaranteed provided that the boundary
conditions are properly imposed.
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (v):

2. Numerical fluxes are obtained by means of exact or approximate
RIEMANN SOLVERS.

Based on a simple, yet brilliant idea by Godunov (1959).

Basic idea: a piecewise constant description of hydrodynamical
quantities produce a collection of local Riemann problems whose
solution can be found exactly.

The solution at time tn+1 can be constructed by piecing together the
Riemann solutions, provided that the time step is short enough that
the waves from two adjacent Riemann problems have not started to
interact yet.
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (vi):

Riemann problem (RP):
IVP with piecewise constant initial data:

u0(x) =

{
uL x < 0
uR x > 0

(17)

B Solution:
Set of CONSTANT states separated by
centered rarefactions (selfsimilar expan-
sions) or shocks.

Riemann solver:
Algorithm to evaluate the solution of a
RP.
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Discretization of the equations of relativistic fluid dynamics

Exact Solution of the Riemann Problem in RHD. I.
(Thompson 1986; Mart́ı & Müller, 1994; Pons, Mart́ı & Müller, 2000)

Riemann problem:

IVP with initial discontinuous data L, R.

Self-similar solution:

LR→ LW← L∗ C R∗ W→ R

W denotes a shock (discontinuos solution)
or a rarefaction (selfsimilar expansion),

and C, a contact discontinuity

The compressive character of shock waves
allows us to discriminate between shocks (S)
and rarefaction waves (R):

W← (→) =

{
R← (→) , pb ≤ pa
S← (→) , pb > pa

where p is the pressure and subscripts a and
b denote quantities ahead and behind the
wave.
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Discretization of the equations of relativistic fluid dynamics

Exact Solution of the Riemann Problem in RHD. II.

Intrinsic relativistic effects
m

Coupling of tangential speeds

In RHD, all the components of the flow
velocity are coupled, through the Lo-
rentz factor, in the solution of the Rie-
mann problem.

In addition, the specific enthalpy also
couples with the tangential velocities,
which becomes important in the ther-
modynamically ultrarelativistic regime

Analytical pressure, density and flow
velocity profiles at t = 0.4 for the re-
lativistic Riemann problem with initial
data pL = 103, ρL = 1.0, vxL = 0.0;
pR = 10−2, ρR = 1.0 and vxR = 0.0,
varying the values of the tangential
velocities. From left to right, vtR =
0, 0.9, 0.99 and from top to bottom
vtL = 0, 0.9, 0.99. γ = 5/3.

Pons, Mart́ı & Müller, 2000
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Discretization of the equations of relativistic fluid dynamics

In HRSC Godunov methods the numerical
flux is given by

F̂j±1/2 ≈
1

∆t

∫ tn+1

tn
F(Ũ(t, xj±1/2))dt ,

⇒ Ũ(xj±1/2, t) is calculated solving RPs
at every zone interface with initial data

Ũ(tn, xj±1/2) =

{
UL(tn, x) x < xj±1/2

UR(tn, x) x > xj±1/2

cell boundaries where fluxes are required

shock frontrarefaction wave

Solution at the time n+1 of the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2

Initial data at the time n for the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2

Spacetime evolution of the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2. 
Each problem leads to a shock 
wave and a rarefaction wave  
moving in opposite directions

Solution at the time n + 1 of the two
Riemann problems at the cell boundaries
xj+1/2 and xj−1/2.

Spacetime evolution of the two Riemann
problems at the cell boundaries xj+1/2 and
xj−1/2. Each problem leads to a shock wave
and a rarefaction wave moving in opposite
directions.

Initial data at the time n for the two
Riemann problems at the cell boundaries
xj+1/2 and xj−1/2.

Credit: Rezzolla (2008)
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (vii):

3. High–order of accuracy⇐ conservative monotonic∗ polynomial functions to interpolate
the approximate solution within zones.
∗ monotonic functions lead to the decrease of the total variation (total–variation–diminishing schemes, TVD; Harten 1984), ensuring stability.

j+2j+1jj-1  xx xx

x

continuous solution
discrete solution

j−1/2
U

n (R)

n (L)

j−1/2
U

- 1st order → piecewise constant functions (RP: UL
j−1/2 = Un

j−1, UR
j−1/2 = Un

j )

- 2nd order → piecewise linear functions (MUSCL, van Leer 1979)

- ≥ 3rd order → piecewise quadratic functions (PPM, Colella & Woodward 1984;
PHM, Marquina 1994), WENO (Liu et al. 1994), MP (Suresh & Huynh 1997), etc..
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Discretization of the equations of relativistic fluid dynamics

Basics of HRSC methods (viii):

4. Transformation from primitive to conserved variables

Once the solution in terms of the conserved variables U = (D,Sj, τ)T

has been obtained, it is necessary to return to the primitive variables
after inverting numerically the set of equations

D = ρΓ , ρ ,

Sj = ρhΓ2vj , (j = 1, 2, 3) =⇒ vj ,

τ = ρhΓ2 − p− ρΓ , ε .

Note: this conversion cannot be done analytically and requires the
solution of a set of coupled eqs. Note that this numerical procedure is
specific of RHD (GRHD, RMHD, GRMHD). This root-finding
operation is very expensive computationally.

This series of operations is repeated at each grid point and for each
time level...

Miguel Ángel Aloy Torás (UV-DAA) Numerical Simulation of Relativistic Astroph. Flows Tarusa, September 11th, 2015 31 / 47



Figures/valencia-crest.pn

Discretization of the equations of relativistic fluid dynamics

HRSC ( 6= Riemann solver based)

Flux Corrected Transport (FCT)
Higher accuracy is obtained by adding an anti–diffusive flux term to the 1st–order
numerical flux (Boris & Book 1973). The interpolation algorithms have to preserve the
TV–stability of the scheme.

Symmetric Total Variation Diminishing (TVD) schemes + nonlinear numerical
dissipation

As TVD schemes verify: TV(un+1) ≤ TV(un), ∀n
written in conservation form,

local conservative dissipation terms ⇒ NOT based on RS.

GRMHD: Koide et al. (1996, 1997); Nishikawa et al. (1998).

Relativistic beam scheme
B RHD eqs. are solved as the limit of the Boltzmann equation (Yang et al. 1997).

The Jüttner distribution function is approximated by Dirac delta functions (beams of
particles), which reproduce the appropriate moments of the distribution function.

The integration scheme can be cast in the form of an upwind conservation scheme -
and extended to higher–order (TVD2, ENO2, ENO3)-.
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Discretization of the equations of relativistic fluid dynamics

Other Methods

Van Putten’s approach
Van Putten (1993) solves the eqs. of (ideal) SRMHD formulating Maxwell’s equations as
a hyperbolic system in divergence form. U and F are decomposed into a spatially
constant mean and a spatially dependent variational parts. Then,

B The SRMHD eqs. become a system of evolution equations for integrated (continuous)
quantities ⇒ standard methods can be used to integrate the eqs.
Applications: SRMHD jets (Γ < 4.25) -van Putten 1993b, 1996-.

Relativistic Smoothed Particle Hydrodynamics (RSPH)
SPH (Lucy 1977) represents a fluid by a Monte Carlo sampling of its mass elements. The
motion and thermodynamics of these mass elements is governed by the HD eqs.
⇒ Free-Lagrange method (no computational grid basis).

Extension to SRHD: Monaghan (1985). Other codes: Lahy (1989, SRHD); Kheyfets,
Miller & Zurek (1990, GRHD); Mann (1991, 1993, SRHD); Laguna, Miller & Zurek
(1993, GRHD); Chow & Monaghan (1997, SRHD); Siegler, & Riffert (1999, GRHD).

B Monaghan (1997) and Chow & Monaghan (1997) incorporate concepts from RSs into
SPH. Siegler, & Riffert (1999) include consistent AV.
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Code/method validation
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Code/method validation

Validation: Relativistic shock reflection

Shock heating of a cold fluid in planar, cylindrical, or spherical geometry has been used
as a test case for hydrodynamic codes, because:

Has an analytical solution ([26] planar sym., [183]
cylindrical and spherical sym.)

Involves the propagation of a strong relativistic
shock.

Is a simplified model of a common situation
in physics: implosion, collapse, collision of two
streams of plasma,...

Initial values

Left Right

p 0.00 0.00
ρ 1.00 1.00
v −v1 v1

σshock
γ + 1

γ − 1
+
γ(Γ1 − 1)

γ − 1

γ = 4/3 σNewton
shock = 7

Numerical Hydrodynamics in Special Relativity 35

Figure 5: Schematic solution of the shock heating problem in spherical geometry. The initial state
consists of a spherically symmetric flow of cold (p = 0) gas of unit rest mass density having a
highly relativistic inflow velocity everywhere. A shock is generated at the center of the sphere,
which propagates upstream with constant speed. The post-shock state is constant and at rest. The
pre-shock state, where the flow is self-similar, has a density which varies as ⇢ = (1 + t/r)2 with
time t and radius r.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-7/

Mart́ı & Müller (2003) Liv. Revs. Rel.
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Code/method validation

Validation: Relativistic shock reflection

Mart́ı & Müller (2003) Liv. Revs. Rel.

Specific energy of the shocked mat-
ter:

ε2 = Γ1 − 1

Shock velocity:

Vs =
(γ − 1)Γ1|v1|

Γ1 + 1

Self-similar density distribution in the
(pressure-less) upstream state:

ρ(t, r) =

(
1 +
|v1|t
r

)α
ρ0

α = 0, 1, 2 for planar, cylindrical or
spherical geometry.
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Code/method validation

Validation: Relativistic shock reflection

References α Method Γmax σerror( %)

Centrella and Wilson (1984) 0 AV-mono 2.29 ' 10
Hawley et al. (1984) 0 AV-mono 4.12 ' 10
Norman and Winkler (1986) 0 cAV-implicit 10.0 0.01
McAbee et al. (1989) 0 AV-mono 10.0 2.6
Mart́ı et al. (1991) 0 Roe type-l 23 0.2
Marquina et al. (1992) 0 LCA-phm 70 0.1
Eulderink (1993) 0 Roe–Eulderink 625 ≤ 0.1
Schneider et al. (1993) 0 RHLLE 106 0.2

0 SHASTA-c 106 0.5
Dolezal and Wong (1995) 0 LCA-eno 7.05 ≤ 0.1
Mart́ı and Müller (1996) 0 rPPM 224 0.03
Falle and Komissarov (1996) 0 Falle–Komissarov 224 ≤ 0.1
Romero et al. (1996) 2 Roe type-l 2236 2.2
Mart́ı et al. (1997) 1 MFF-ppm 70 1.0
Chow and Monaghan (1997) 0 SPH-RS-c 70 0.2
Wen et al. (1997) 2 rGlimm 224 10–9

Donat et al. (1998) 0 MFF-eno 224 ≤ 0.1
Aloy et al. (1999) 0 MFF-ppm 2.4× 105 3.57
Sieglert and Riffert (1999) 0 SPH-cAV-c 1000 ≤ 0.1
Del Zanna and Bucciantini (2002) 0 sCENO 224 2.3
Anninos and Fragile (2002) 0 cAV-mono 4.12 13.3

0 NOCD 2.4× 105 0.1
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Code/method validation

Validation: Relativistic shock reflection

Γ = 22360

Shibata et al. (1999) PRD 60, 104052 Aloy et al. (1999), ApJS, 122, 151
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Code/method validation

Validation: Relativistic Blast Waves

RPs with large initial pressure jumps produce blast waves with dense shells of material
propagating at relativistic speeds. For appropriate initial conditions, both vshock and
vshell approach c producing very narrow structures. The accurate description of these
thin, relativistic shells involving large density contrasts is a challenge for any numerical
code. Some particular blast wave problems have become standard numerical tests.

Numerical Hydrodynamics in Special Relativity 39

piece-wise linear method described in [249] gives an undershoot of 14% in case of ultra-relativistic
flows (e.g., Table 1 and Figure 1 in [249]).

6.2 Propagation of relativistic blast waves

Riemann problems with large initial pressure jumps produce blast waves with dense shells of
material propagating at relativistic speeds (see Figure 7). For appropriate initial conditions, both
the speed of the leading shock front and the velocity of the shell material approach the speed of
light producing very narrow structures. The accurate description of these thin, relativistic shells
involving large density contrasts is a challenge for any numerical code. Some particular blast wave
problems have become standard numerical tests. Here we consider the two most common of these
tests. The initial conditions are given in Table 7.

Figure 7: Generation and propagation of a relativistic blast wave (schematic). The large pressure
jump at a discontinuity initially located at r = 0.5 gives rise to a blast wave and a dense shell of
material propagating at relativistic speeds. For appropriate initial conditions both the speed of the
leading shock front and the velocity of the shell approach the speed of light, producing very narrow
structures.

Problem 1 was a demanding problem for relativistic hydrodynamic codes in the mid-eighties [50,
123], while Problem 2 is a challenge even for today’s state-of-the-art codes. The analytical solution
of both problems can be obtained with program RIEMANN (see Section 9.4).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-7/

Mart́ı & Müller (2003) Liv. Revs. Rel.

Weak blast wave
Initial values

Left Right

p 13.33 0.00
ρ 10.00 1.00
v 0.00 0.00

vshell 0.72
wshell 0.11t
vshock 0.83
σshock 5.07

γ = 5/3 σNewton
shock = 4
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Code/method validation

Validation: Relativistic Blast Waves

Density distribution for the weak relativistic
blast wave (t=0.314) using 5500 SPH

particles (Muir 2002; PhD Thesis).

Credit: Mart́ı & Müller (2003) Liv. Revs. Rel.

main diagonal

Relativistic Shock Tube

Marquina Solver [nx, ny, nz] = [100, 100, 100], t=0.5

Aloy et al. (1999), ApJS, 122, 151

3D version of the weak blast wave
using 1283 uniform zones.
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Code/method validation

Validation: Relativistic Blast Waves

Mart́ı & Müller (2003) Liv. Revs. Rel.

main diagonal

Relativistic Shock Tube

Marquina Solver [nx, ny, nz] = [100, 100, 100], t=0.5

Aloy et al. (1999), ApJS, 122, 151

3D version of the weak blast wave
using 1283 uniform zones.
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Code/method validation

Validation: Relativistic Blast Waves

Mart́ı & Müller (2003) Liv. Revs. Rel.

Strong blast wave
Initial values

Left Right

p 1000.00 0.01
ρ 1.00 1.00
v 0.00 0.00

vshell 0.960
wshell 0.026t
vshock 0.986
σshock 10.75

γ = 5/3 σNewton
shock = 4
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Code/method validation

Validation: Relativistic Blast Waves

Shock compression ratios for runs with 400 zones at t ' 0.4

References Method σ/σex

Norman and Winkler (1986) cAV-implicit 1.00(a)

Dubal (1991) FCT-lw 0.80
Mart́ı et al. (1991) Roe type-l 0.53
Marquina et al. (1992) LCA-phm 0.64
Mart́ı and Müller (1996) rPPM 0.68
Falle and Komissarov (1996) FK 0.47
Wen et al. (1997) rGlimm 1.00

Chow and Monaghan (1997) SPH-RS-c 1.16(b)

Donat et al. (1998) MFF-phm 0.60
Del Zanna and Bucciantini (2002) sCENO 0.69

Anninos and Fragile (2002) cAV-mono 1.40(c)

NOCD 0.67(c)

(a) Adaptative grid

(b) At t = 0.15

(c) With 800 zones

Mart́ı & Müller (2003) Liv. Revs. Rel.

Strong blast wave
Initial values

Left Right

p 1000.00 0.01
ρ 1.00 1.00
v 0.00 0.00

vshell 0.960
wshell 0.026t
vshock 0.986
σshock 10.75

γ = 5/3 σNewton
shock = 4
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Code/method validation

Convergence under grid refinement:

How do we know that the method/code works well if there is no analytic solution
to confront with?

||E∆x||︸ ︷︷ ︸
global error

= ∆x
∑
j

|Ūn
j −Un

j | → 0 if ∆x→ 0

To guarantee convergence, stability is required (Lax equivalence theorem) →
total–variation stability (powerful theoretical results only for scalar conservation laws).
The total variation of a solution at t = tn, TV(Un), is defined as

TV(Un) =

+∞∑
j=0

|Un
j+1 −Un

j | . (18)

A numerical scheme is said to be TV–stable, if TV(Un) is bounded for all ∆t at any
time for each initial data.
Modern research has focussed on the development of high–order, accurate methods in
conservation form (usually by using the integral version of the eqs.) + consistent
numerical fluxes + TV–stability.
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Applications

Applications (a partisan view)

Extragalactic jets

Scheck, Aloy, Mart́ı, Gómez & Müller (2002)
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Applications

Applications (a partisan view)

GRB progenitors

Obergaulinger & Aloy (2015),

in prep.
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Summary

Summary

The solution of the hydrodynamics equations requires special care
because of their nonlinear

Even smooth initial data tends to steepen and shock; in addition
any discretization leads to small discontinuities

Using a flux-conservative formulation is essential if modelling dis-
continuities

HRSC methods are particularly suited to study discontinuities since
they are based on them via Riemann problems
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