

 раї pafotaér e 01.03.2001 г.

1.2 Простой и сложныпй позиционные s-операторы

 четверичнук Vh, восзмиричнук Ah п шестнаддатеричнукя Sh

 дтл двончноой едринящы п

$$
\begin{aligned}
& Z h \rightleftharpoons\{\theta, \bar{\theta}\}, \quad \text { Vh } \rightleftharpoons\{\nu, \tau, \bar{\tau}, \bar{\nu}\} \rightleftharpoons\{\theta \theta, \bar{\theta} \theta, \theta \bar{\theta}, \bar{\theta} \bar{\theta}\}, \\
& A h \rightleftharpoons\{\omega, \downarrow, \oplus, /, \bar{h}, \bar{\oplus}, \bar{\downarrow}, \bar{\omega}\} \rightleftharpoons\left\{\theta_{\nu}, \bar{\theta}_{\nu}, \theta_{\tau}, \bar{\theta}_{\tau}, \theta_{\tau}, \bar{\theta}_{\bar{\tau}}, \theta_{\nu}, \bar{\theta}_{\bar{\nu}}\right\}, \\
& S h \rightleftharpoons\{0,1,2,3,4,5,6,7, \overline{7}, \overline{6}, \overline{5}, \overline{4}, \overline{3}, \overline{2}, \overline{1}, \overline{0}\} \rightleftharpoons\left\{\theta_{\omega}, \bar{\theta} \omega, \theta \downarrow, \bar{\theta} \downarrow,\right. \\
& \theta \oplus, \bar{\theta} \oplus, \theta /, \bar{\theta} /, \theta \bar{\beta}, \bar{\theta} \bar{\gamma}, \theta \bar{\oplus}, \bar{\theta} \bar{\oplus}, \theta \bar{\psi}, \bar{\theta} \bar{\psi}, \theta \bar{\omega}, \bar{\theta} \bar{\omega}\},
\end{aligned}
$$

потагал, что во второй фнгурной скобке парой цифр опредетлется соот-
 двух -, трёх - п четьрехбитовне нули: $\theta, \quad \nu=8 \theta, \quad \omega=8 \theta \theta$, $0=\theta \theta \theta \theta ; \quad$ - едцншц : $\bar{\theta}, \quad \tau=\bar{\theta} \theta, \quad \downarrow=\bar{\theta} \theta \theta, \quad 1=\bar{\theta} \theta \theta \theta ; \quad$ двух -, трёх - п четьрехбитовне дбпцкц: $\bar{\tau}=\theta \bar{\theta}, \quad \oplus=\theta \bar{\theta} \theta, \quad 2=8 \bar{\theta} \theta \theta$;

 на чнсто битов, санылаемне чнстом.

 \mathbf{N} - бнтовое пвсто (где $\mathbf{N}=\mathbf{B q}+\mathbf{p} \quad$ п $\quad 0 \leq p \leq 7$) будет вметь

(ести $q=0$, то таквк дедр не будет). В серерине одну цпфру, принадтешащую $\mathbf{Z h}$, $\mathbf{V h}, \quad \mathbf{A h}$, $\mathbf{S h}$ дтя \mathbf{p}, равного 1, 2, 3, 4 оответствнно. В стучае $\mathbf{p}=6$ в середине будут 2 дифры,

 Ah соттетственно.

$\bar{\theta} \bar{\theta} \theta \theta \bar{\theta}, \quad \theta \bar{\theta} \bar{\theta} \bar{\theta} \theta \theta, \bar{\theta} \theta \theta \theta \bar{\theta} \theta \bar{\theta}, \quad \theta \bar{\theta} \theta \theta \bar{\theta} \bar{\theta} \theta \theta$

$$
\bar{\nu} \theta \bar{\tau}, \quad \bar{\psi} \downarrow, \quad \downarrow \theta \bar{\oplus}, \quad 23
$$

соответственно.

 НА прив的解.
 детенвя свмметрического оператора (кратко: в- оператора).
 мерности $n+1$ с двончннын коордннатами $\alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{12}$, то еств

$$
\begin{equation*}
\left\langle\alpha_{n}\right\rangle \rightleftharpoons\left\langle\alpha^{9}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{n}\right\rangle, \tag{1}
\end{equation*}
$$

которнй в реғултате его прменения к вектору - аргументу (77) даёт:

$$
\begin{equation*}
\left\langle\alpha^{+}\right\rangle \rightleftharpoons\left\langle\alpha_{n}\right\}\left(X_{n}\right\}, \quad r=\sum_{i=1}^{n} x_{i} . \tag{2}
\end{equation*}
$$

$\Pi_{р и м е н е н в е ~ о п е р а т о р а ~(1) ~ к ~ т а б ы н ц е ~ о п р е д е т е н в я ~} \quad X_{1}$, то есть
 щето вектора ратмерноетв $2^{\text {n. }}$. Напритер, стучаи $\mathbf{n}=2$ п $\mathbf{n}=\mathbf{3}$
 под векторами $\langle\omega\rangle,\langle\downarrow\rangle,\langle\oplus\rangle, \ldots$ и $\langle 0\rangle,\langle 1\rangle,\langle 2\rangle, \ldots$ аипшсаны реаутвтаты их прнленепни к $\quad X_{2}=\left(x_{1}, x_{2}\right) \quad$ п $\quad X_{3}=\left(x_{1}, x_{2}, x_{3}\right)$ соответственно. Сравннвая таблицу 2 с тиблицец 1 , потучием под-

Табтица 2

x_{1}	x_{2}	ω	\downarrow	\oplus	$/$	$\overline{1}$	$\bar{\Phi}$	$\bar{\Psi}$	$\bar{\omega}$
$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$
$\bar{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\bar{\theta}$
$\boldsymbol{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\bar{\theta}$
$\bar{\theta}$	$\bar{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\boldsymbol{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$

Таблица 3

\boldsymbol{x}_{1}	x_{2}	x 3	0	1	2	3	4	5	6	7	$\overline{7}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$	$\overline{0}$
θ	θ	θ	θ	$\bar{\theta}$														
$\bar{\theta}$	8	θ	8	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$
θ	$\bar{\theta}$	θ	8	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	8	$\bar{\theta}$	$\bar{\theta}$	8	θ	$\bar{\theta}$	$\bar{\theta}$
$\bar{\theta}$	$\bar{\theta}$	θ	8	θ	θ	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$
θ	8	$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$												
$\bar{\theta}$	8	$\bar{\theta}$	8	θ	θ	8	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	8	8	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$
θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$
$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	$\bar{\theta}$														

 армфменнадин распространена на все бинарнне операдин. То, что как
 так как $\quad x_{1} \rightarrow x_{2}=\langle\nmid\rangle\left(\bar{x}_{1}, x_{2}\right), \quad x_{1} \leftarrow x_{2}=\left\langle\bar{h}\left(x_{1}, \bar{x}_{2}\right) \quad\right.$ и дын самой унарной операдин имеем:

$$
\bar{x}=\langle\tau\rangle(x), \quad x=\langle\bar{\tau}\rangle(x),
$$

но унарные в - операторж, как простне, псполвоваться не будут, а самн
 детення, о чём пойдёт реччв ниже.

 потучакот представтенве

$$
f_{1}\left(X_{3}\right)=\langle\overline{5}\rangle\left(X_{3}\right), \quad f_{2}\left(X_{3}\right)=\langle\overline{2}\rangle\left(X_{3}\right) .
$$

$$
n=k+k_{1}+k_{2}+\ldots+k_{4}
$$

где в правой части равенства - все детые чвста, и

$$
\begin{gathered}
r^{1}=k+k_{1}, \\
r^{2}=r^{1}+k_{2}, \\
\cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \\
r^{4}=r^{j-1}+k_{;} ; r^{4}=\pi .
\end{gathered}
$$

Сложснъм повчцронным в - оператором панывается вектор

$$
\left\langle\alpha_{k}^{(0)} \cdot \alpha_{\mathrm{r}^{(1)}}^{(1)} \cdot \alpha_{\mathrm{s}_{+1}}^{(2)} \cdot \ldots \cdot \alpha_{r}^{(j)}\right\},
$$

 я - операторы размерности $k+1, r^{1}+2, r^{2}+2, r^{4}+2$ соответственно, который в рекулотате его првмепення к аргументу (1) даёт:

$$
\langle z\rangle \rightleftharpoons\left\langle\alpha_{k}^{(0)} \cdot \alpha_{\mathrm{r}^{\prime}+1}^{(1)} \cdot \alpha_{\mathrm{s}}^{(2)}{ }_{2+1}^{(2)} \ldots \alpha_{j^{2}+1}^{(j)}\right\rangle\left(X_{n}\right),
$$

где

Замечание 3. В стовном пояицронном я- операторе симмеприч-

 $k=2, k_{1}=1$ (ғдес прнняты такне же сокращения, что п в табличит 2 н 3).

$$
\begin{aligned}
& \left\langle p_{1}\right\rangle=\left\langle\alpha_{i}^{(0)}\right\rangle\left(X_{k}\right), \quad X_{k}=\left(x_{1}, x_{2}, \ldots, x_{k}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle y^{3}\right\}^{\prime}=\left\langle\alpha_{\gamma^{2}+1}^{(2)}\right\rangle\left(X_{r}^{2}\right), \quad X_{r}^{2}=\left(y_{2}, x_{r^{1}+1}, x_{r^{1}+2}, \ldots, x_{r}^{2}\right),
\end{aligned}
$$

Табпица 4

\boldsymbol{x}_{1}	x_{2}	\downarrow	\oplus	$/$	\downarrow	x_{3}	$\downarrow . \downarrow$	$\downarrow . \oplus$	$\downarrow . /$
θ	θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	$\bar{\theta}$
$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	θ	$\overline{\boldsymbol{\theta}}$
θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	θ	$\bar{\theta}$
$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	θ	θ	$\overline{\boldsymbol{\theta}}$	θ	$\overline{\boldsymbol{\theta}}$
θ	θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ
$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	$\bar{\theta}$	θ	$\overline{\boldsymbol{\theta}}$	$\bar{\theta}$
θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$	θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$
$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$

Продолжение таблицы 4

\oplus	x_{3}	$\oplus . \downarrow$	$\oplus . \oplus$	¢./	/	x_{3}	$1 . \downarrow$	$1 . \oplus$	/./
θ	θ	$\overline{\boldsymbol{\theta}}$	θ	$\overline{\boldsymbol{\theta}}$	$\overline{\boldsymbol{\theta}}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$
$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	θ	$\bar{\theta}$	$\bar{\theta}$
$\bar{\theta}$	θ	8	$\overline{\boldsymbol{\theta}}$	$\overline{\boldsymbol{\theta}}$	$\overline{\boldsymbol{\theta}}$	θ	θ	$\overline{\boldsymbol{\theta}}$	$\bar{\theta}$
θ	θ	$\bar{\theta}$	θ	$\bar{\theta}$	θ	θ	$\bar{\theta}$	θ	$\bar{\theta}$
θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ
$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ
$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ	$\bar{\theta}$	$\bar{\theta}$	θ	θ	θ
θ	$\bar{\theta}$	θ	$\bar{\theta}$	$\overline{\boldsymbol{\theta}}$	8	$\bar{\theta}$	θ	$\overline{\boldsymbol{\theta}}$	$\overline{\boldsymbol{\theta}}$

Ести теперь затвсать то, что представтепо в тиблицит 2, 3 и 4,

$$
\begin{aligned}
& \{\omega\rangle\left(X_{2}\right)=\langle 0\rangle, \quad\langle\psi\rangle\left(X_{2}\right)=\{1\rangle, \quad\langle\oplus\rangle\left(X_{2}\right)=\langle 6\rangle, \quad\langle \rangle\left(X_{2}\right)=\langle 7\rangle, \\
& \{\bar{\omega}\rangle\left(X_{2}\right)=\langle\overline{0}\rangle, \quad\{\uparrow\rangle\left(X_{2}\right)=\langle\overline{1}\rangle, \quad(\Phi)\left(X_{2}\right)=\langle\overline{6}\rangle, \quad\left\langle/\left(X_{2}\right)=\langle\overline{7}\rangle .\right. \\
& \langle 0\rangle\left(X_{3}\right)=\langle 00\rangle,\langle 1\rangle\left(X_{3}\right)=\langle 10\rangle, \quad\langle 2\rangle\left(X_{3}\right)=\langle 61\rangle, \quad\langle 3\rangle\left(X_{3}\right)=\langle 71\rangle, \\
& \langle 4\rangle\left(X_{3}\right)=\langle\overline{7} 6\rangle, \quad\langle 5\rangle\left(X_{3}\right)=\left\langle\overline{6} \overline{6}, \quad\langle 6\rangle\left(X_{3}\right)=\langle\overline{1} 7\rangle, \quad\langle 7\rangle\left(X_{3}\right)=\langle\overline{0} 7\rangle,\right. \\
& \langle\overline{4}\rangle\left(X_{3}\right)=\langle 7 \overline{6}\rangle, \quad\langle\overline{5}\rangle\left(X_{3}\right)=\langle 6 \overline{6}\rangle, \quad\langle\overline{6}\rangle\left(X_{3}\right)=\langle 1 \overline{7}\rangle, \quad\langle\overline{7}\rangle\left(X_{3}\right)=\langle 0 \overline{7}\rangle, \\
& \langle\overline{0}\rangle\left(X_{3}\right)=\langle\overline{0} \overline{0}\rangle,\langle\overline{1}\rangle\left(X_{3}\right)=\langle\overline{1} \overline{0}\rangle,\langle\overline{2}\rangle\left(X_{3}\right)=\langle\overline{6} \overline{1}\rangle, \quad\langle\overline{3}\rangle\left(X_{3}\right)=\langle\overline{\mathrm{f}}\} . \\
& \langle\psi \cdot \downarrow\rangle\left(X_{3}\right\rangle=\langle\overline{10}\rangle,\langle\downarrow . \oplus\rangle\left(X_{3}\right)=\langle 1 \overline{1}\rangle, \quad\langle\downarrow \cdot\rangle\left(X_{3}\right\}=\langle\overline{0}\rangle, \\
& \langle\oplus \cdot \downarrow\rangle\left(X_{3}\right)=\langle\overline{60}\rangle, \quad\langle\oplus \cdot \oplus\rangle\left(X_{3}\right)=\langle 6 \overline{6}\rangle, \quad\langle\oplus \cdot /\rangle\left(X_{3}\right)=\langle\overline{0} \overline{6}\rangle, \\
& \left.\langle/ \cdot \downarrow\rangle\left(X_{3}\right)=\langle\bar{\gamma}\rangle, \quad\langle/ \oplus\rangle\left(X_{3}\right)=\langle/ \overline{7}\rangle, \quad\langle/ /\rangle\left(X_{3}\right)=\langle\overline{0}\rangle\right) .
\end{aligned}
$$

Замечание 4. Таблици 4 не опватывает все операторы дпт стучая $k=2$ п $k_{1}=1$, но повже мы увщдмм, что даже этот скромнний сптсок содержнт гораядо ботвше, чем необтодвмо дтя порожқдепня потного ствска этого стучдя.

1.3 Инвертированно - сопряжённяя четвёрка векторов

 рованне п сопряженве. А пменно, есті

$$
\begin{equation*}
\left\langle R_{n}\right\rangle=\left\langle r_{1}, r_{2}, r_{3}, \ldots, r_{n}\right\rangle, \tag{3}
\end{equation*}
$$

 оператору (3) явтяютыя соответственно векторы:

$$
\begin{gather*}
\left\langle\bar{R}_{n}\right\rangle=\left\langle\bar{r}_{1}, \bar{r}_{2}, \bar{r}_{3}, \ldots, \bar{r}_{n}\right\}, \tag{4}\\
\left\langle R_{n}^{*}\right\rangle=\left\langle r_{n}, r_{n-1}, \ldots,,_{2}, r_{1}\right\rangle, \tag{5}\\
\left\langle\bar{R}_{n}^{*}\right\rangle=\left\langle\left\{\bar{r}_{n}, \bar{r}_{n-1}, \ldots, \bar{r}_{2}, \bar{r}_{1}\right\rangle .\right. \tag{6}
\end{gather*}
$$

Четвёрка векторов

$$
\begin{equation*}
\left\{\left\{R_{n+1}\right\},\left\{R_{n 2}^{*}\right\},\left\{\bar{R}_{n k}\right\},\left\{\bar{R}_{n k}^{*}\right\}\right\} \tag{7}
\end{equation*}
$$

 осталынне три вектора явлаются ето стедстввем. В самом дете:

$\left\langle R_{\text {ri }}\right\rangle$	$\left\langle R_{52}^{*}\right\}$	$\left(R_{n}\right)$	
$\left(R_{n}\right)$	$\left\langle R_{n}\right.$	(\bar{P}	$\left(R_{1}\right)$
$\left(\mu_{n}\right)$	$\left\langle\bar{R}_{\text {ci }}^{*}\right\rangle$	$\left\langle R_{n}\right\}^{\prime}$	(
$\left\langle\bar{P}_{n}^{*}\right\}$	$\left\langle\bar{R}_{52}\right\}$	$\left\langle R_{n}^{*}\right\}$	$\left\langle R_{n 2}\right\}$

 преврапается в самосопряжённук пару (CCII):

$$
\begin{equation*}
\left\{\left\{R_{n}\right\},\left\{\bar{R}_{n+1}\right\}\right\} \tag{9}
\end{equation*}
$$

 преврапается в самодвойственнук пару (С,ДІ):

$$
\begin{equation*}
\left\{\left\langle R_{\mathrm{r}}\right\},\left\{R_{n 2}^{*}\right\}\right\} \tag{10}
\end{equation*}
$$

так как кажжый ні этвк векторов - самодвофственныти.
Замечание 5. Обратим теперь ннвманве на то, что мотчалнво пред

 оввидакщции, что за коордннатамв вектора $\left\langle\alpha_{n}\right\rangle$ стедуют коорднваты вектора $\left\{\beta_{m}\right\}$.

Установим теперь структуру самосопряжённого и самодвойственного векторов.

Докавательств. \mathbf{B} самом дете, согласно опредетеннво дтя самосопряжённости вектора $\left\langle R_{2 k}\right\rangle$ необ̆оддмо п постаточво, чтобы $r_{1}=r_{2 k}$, $\tau_{2}=\tau_{2 k-1}, \quad \tau_{3}=\tau_{2 k-2}, \ldots, \tau_{k}=\tau_{k+1}$, а это Звачвт, что

$$
\left\langle R_{2 k}\right\rangle=\left\langle r_{1}, r_{2}, r_{3}, \ldots, r_{k}, \tau_{k}, \ldots, r_{3}, r_{2}, r_{1}\right\}
$$

 его самосопряжённости необходвмо н достаточвы, чтобы $r_{1}=r_{2 k+1}$, $r_{2}=r_{2 k}, \quad r_{3}=r_{2 k-1}, \ldots, r_{k}=r_{k+2}, \quad r_{k+1}=r_{k+1}$, а ято спиячнт, что

$$
\left\langle R_{2 k+1}\right\rangle=\left\langle r_{1}, r_{2}, r_{3}, \ldots, r_{k}, r_{k+1}, r_{k}, \ldots, r_{3}, r_{2}, r_{1}\right\rangle .
$$

н, стедоватетвно, τ_{k+1} мокет равняться как θ, так п $\bar{\theta}$. Јемма доказапа.
 сти вектора чётной размерности $(\mathbf{n}=2 \mathrm{k})$ явтвется вид вектора $\left\langle\alpha_{k} \bar{\alpha}_{\mathrm{k}}^{*}\right\}$.

Докаяательство. Соптасно опредетенню птя самодвоп̈ственности вектора $\left\langle R_{2 k}\right\}$ необыодмто п достаточпо, чтобы $r_{1}=\bar{r}_{2 k}, \quad \tau_{2}=\bar{r}_{2 k-1}$, $r_{3}=\bar{r}_{2 k-2}, \ldots, r_{k}=\bar{r}_{k+1}, \quad$ а это яначвт, что

$$
\left\langle R_{2 k}\right\rangle=\left\langle r_{1}, r_{2}, r_{3}, \ldots, r_{k}, \bar{r}_{k}, \ldots, \bar{r}_{3}, \bar{r}_{2}, \bar{r}_{1}\right\rangle .
$$

А поскольку пе может быть, чтобы \boldsymbol{r}_{k+1} равнялось $\overline{\boldsymbol{r}}_{k+1}$, то само-

Вннарный нетривиальнв оператор \bigcirc, то еств

$$
\begin{equation*}
\rho \in\{\downarrow, \oplus, /, \bar{\Phi} \Phi, \not,\} \tag{11}
\end{equation*}
$$

над двумя векторамп однаковой ратмерности явтяется вектор той же ралмерности, коорринаты которого явтлются ренулытатом покоордвнатного примененни оператора ρ над саданнными векторами.

Еств паряду с вектором (3) рассматривать векторн

$$
\begin{equation*}
\left\langle\hat{\theta}_{n}\right\rangle,\left\langle\bar{\theta}_{n}\right\rangle \tag{12}
\end{equation*}
$$

все коордннаты которах суть $\quad \boldsymbol{\theta}_{\mathrm{n}} \quad$ т $\quad \bar{\theta}_{n}$ соотвепственно, то можкем дашвать реуултаты прнменення оператора о к паре векторов ни (7), прн этом будем сашвсывать ретультат лвшш в стучае $\varrho \in\{\downarrow, \oplus, /\}$, так

Лемма 3. Верны равеніттв

$$
\begin{align*}
& \langle\rho\rangle\left(\left\{R_{n 2}\right\},\left\langle R_{n 2}\right\}\right)=\left\langle\bar{R}_{n 2}\right\}, \quad \rho \in\{\downarrow, /\}, \tag{14}\\
& \langle\varrho\rangle\left(\left\{R_{n}\right\},\left\{\bar{R}_{n 2}\right\}\right)=\left\langle\bar{\theta}_{n}\right\}, \quad \rho \in\{\Phi, /\} \text {. }
\end{align*}
$$

 лныв определенви операторов (11).

Леммла 4. Бннарный оператор (11) над саданным вектором $\left\langle R_{n}\right\rangle$ п соптлжённим с нвм вевтором $\left\langle R_{n 2}^{*}\right\rangle$ даёт в ревулытате самосопряжённнй вектор, то есть

$$
\begin{equation*}
\langle\rho\rangle\left(\left\langle R_{n}\right\rangle,\left\langle R_{n}^{*}\right\}\right)=\left\langle S_{n}\right\}, \quad\left\langle S_{n}^{*}\right\},=\left\langle S_{n}\right\} . \tag{16}
\end{equation*}
$$

Доказательство. Действитетво, коорднваты вектора $\left\langle S_{n}\right\rangle$ сутв $s_{i}=\left\langle\oint^{\prime}\left(r_{i}, \tau_{n-i+1}\right)\right.$, где $i=1,2, \ldots, \pi$, но тогда

$$
s_{n-\xi+1}=\langle\Theta\rangle\left(r_{n-k+1}, r_{i}\right)=s_{i} .
$$

Постедпне равенство верно в свту свмметричности оператора 9 . Jемma докадана.

Пусть теперь $\left\langle P_{k}\right\rangle \quad$ п $\left\langle Q_{k}\right\rangle \quad$ - два вектора раямерности \mathbf{k} Потоквм:

$$
\begin{equation*}
\left\langle R_{n n}\right\rangle \rightleftharpoons\left\{P_{k} Q_{k}\right\}, \tag{17}
\end{equation*}
$$

когда $\mathbf{n}=\mathbf{2 k}$, а дыт $\mathbf{n}=\mathbf{2 k}+\mathbf{1}$ примем

$$
\begin{equation*}
\left\langle R_{n}\right\} \rightleftharpoons\left\{P_{k} \in Q_{k}\right\} \tag{18}
\end{equation*}
$$

тде $\varepsilon \in Z h$. Епё примем

$$
\begin{equation*}
\left\langle S_{k}\right\rangle \rightleftharpoons\left\langle\rho^{\prime}\right\rangle\left(\left\langle P_{k}\right\rangle,\left\langle\bar{Q}_{k}^{*}\right\}\right) . \tag{19}
\end{equation*}
$$

В свяян с тем, что понятне самодвойственности для векторов нечётной ралмерности лвшено смнста, нверём понятве почти самодвофственности, наявав вектор $\left\langle\alpha_{k} \varepsilon \bar{\alpha}_{k}^{*}\right\rangle$ почти самодвофственннм, посколыку двойственнний к пемуу вектор $\left\langle\alpha_{k} \bar{\varepsilon} \bar{\alpha}_{k}^{*}\right\}$ не совпадаест с писоднем лышы в одной ($k+1$)-ой координатте.

Лемма 5. Вннарный оператор (11) над эаданннм вектором $\left\langle R_{n 2}\right\rangle$
 ный вектор, еств $\mathbf{n}=2 \mathbf{k}, ~ а$ в стучае $\mathbf{n}=2 k+1$, то - почтн самодвойственный вексор, а вменно, ести $\left\langle R_{n 1}\right\rangle$ имеет вид (17), то

$$
\begin{equation*}
\langle\Theta\rangle\left(\left\{R_{n}\right\rangle,\left\langle\bar{R}_{n k}^{*}\right\}\right)=\left\langle S_{k} \bar{S}_{k}^{*}\right\} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\langle\rho\rangle\left(\left\{R_{n 2}\right\},\left\{\bar{R}_{n 2}^{*}\right\}\right)=\left\{S_{k} \lambda \bar{S}_{k}^{*}\right\} \tag{21}
\end{equation*}
$$

где $\left\langle S_{k}\right\rangle$ опредетено равенством (19), а

Докавательств. Пуств $\quad \mathbf{n}=2 \mathbf{k}$. Тогда $\left\langle\bar{P}_{5,}^{*}\right\}=\left\{\bar{Q}_{k}^{*} \bar{P}_{k}^{*}\right\} \quad$ п \langle ○ $\rangle\left(\left\{R_{n k}\right\},\left\langle\bar{R}_{n 2}^{*}\right\}\right)=\langle\varrho\rangle\left(\left\{P_{k} Q_{k}\right\},\left\{\bar{Q}_{k}^{*} \bar{P}_{k}^{*}\right\rangle\right)=\left\{S_{k} \bar{S}_{k}^{*}\right\}$, так как шы (19) стедует, что $\left\langle\bar{S}_{k}^{*}\right\rangle=\langle\Theta\rangle\left(\left\{Q_{k}\right\rangle,\left\langle\bar{P}_{k}^{*}\right\rangle\right)$. Верность (20) докахана.
 \{ $\},\left(\left\{P_{k} \varepsilon Q_{k}\right\},\left\{\bar{Q}_{k}^{*} \bar{\epsilon} \bar{P}_{k}^{*}\right\}\right)=\left\langle S_{k} \lambda \bar{S}_{k}^{*}\right\}$, где λ опредетепа в (22). Значвт, верно п равенітво (21).

Замечание 6. Теперь обратим пнвманве па пведённное в пеедыду-

Таблица 5

4	a^{*}	$\overline{\text { a }}$	$\overline{1}^{*}$	TeiII	4	a^{*}	$\overline{\mathrm{a}}$	$\overline{\mathbf{a}}^{*}$	Teil
ν	ν	$\bar{\nu}$	$\bar{\nu}$	С®II	0	0	$\overline{0}$	$\overline{0}$	COII
T	$\bar{\tau}$	$\bar{\tau}$	T	СПII	6	6	$\overline{6}$	$\overline{6}$	COII
					3	$\overline{3}$	$\overline{3}$	3	СПI
ω	ω	$\bar{\omega}$	$\bar{\omega}$	CDI	5	$\overline{5}$	$\overline{5}$	5	CपI
\oplus	ω	¢	$\bar{¢}$	СФा	1	$\overline{7}$	$\overline{1}$	7	HOY
\downarrow	$\bar{\gamma}$	\ddagger	／	НСЧ	2	4	$\overline{2}$	$\overline{4}$	HOY

 собтевтственно．

1.6 .1 б－операторы

$\sigma-$ ошератором k－по класса：

$$
\begin{equation*}
\sigma_{k}, \quad \text { гд户⿱亠䒑 } \quad k=0,1,2, \ldots \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
N=\sum_{i=1}^{n} x_{i} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\left\{M, M+1, M+2, \ldots, M+2^{k}-1\right\} \tag{25}
\end{equation*}
$$

где $M=2^{k}(2 \pi+1)$ п $\quad \pi=0,1,2, \ldots$ ．

Отметим, что в соответствин с данннм опредрленнем, $\quad \sigma$-операто-
 а стедующие 2^{k} коордннаты равны $\bar{\theta}$ и датее всё пернодически поеторяетея:

$$
\begin{aligned}
& \sigma_{0} \rightleftharpoons\{\theta \bar{\theta} \theta \bar{\theta} \ldots\}, \\
& \sigma_{1} \rightleftharpoons\{\theta \theta \theta \bar{\theta} \bar{\theta} \theta \theta \bar{\theta} \bar{\theta} \theta \theta \bar{\theta} \bar{\theta} \theta \theta \theta \bar{\theta} \bar{\theta} \ldots\} \\
& \sigma_{2} \rightleftharpoons\{\theta \theta \theta \theta \bar{\theta} \bar{\theta} \bar{\theta} \bar{\theta} \theta \theta \theta \theta \bar{\theta} \bar{\theta} \bar{\theta} \bar{\theta} \ldots\}, \ldots
\end{aligned}
$$

Одно ны саметатетных свойств σ-оператора (23) дакпочдется в том, что дтя него верна слетуюпйя очевщдвия

Теорема В. Ести чвсто N, опредетённое в (24), запвсать в двончном предытавтынни так:

$$
\begin{equation*}
N=y_{0}+2 y_{1}+2^{2} y_{2}+\ldots+2^{4} y_{4}+\ldots \tag{26}
\end{equation*}
$$

то

$$
\begin{equation*}
p_{0}=\sigma_{0}\left(X_{n 2}\right), b_{1}=\sigma_{1}\left(X_{n 2}\right), p_{2}=\sigma_{2}\left(X_{n 2}\right), \ldots, b_{4}=\sigma_{j}\left(X_{n 2}\right), \ldots \tag{27}
\end{equation*}
$$

 функцвиі.

Ралумеепся, что нместо бесконечнни σ-операторов мокно рассматривать копечнне σ-операторы порядка r (преппотагая $r>k$): σ_{k}^{4} - это операторы, перєъе 2^{r} коордвнаты которых совпадакот с коордннатами бесконечного оператора σ_{k} (обрамаем внванве, что в σ операторе счёт коордннат начнниется с нули).
 раторов (где $k=0,1,2, \ldots, j-1$), ести

$$
\begin{equation*}
j \rightleftharpoons\left[\log _{2} N\right]+1 \tag{28}
\end{equation*}
$$

 стегка німенат свок форму, точнее, верна
 двончном представлннни так:

$$
\begin{equation*}
N=p_{0}+z_{y_{1}}+2_{y_{2}}^{2}+\ldots+2^{4-1} y_{y-1} \tag{29}
\end{equation*}
$$

TO

$$
\begin{equation*}
\xi 0=\sigma_{0}^{4}\left(X_{41}\right), \mathcal{F}_{1}=\sigma_{1}^{4}\left(X_{42}\right), \xi 2=\sigma_{2}^{4}\left(X_{41}\right), \ldots, B ;-1=\sigma_{3-1}^{4}\left(X_{+1}\right) . \tag{30}
\end{equation*}
$$

Определенве (28) покаднвает, как следует пводвть порядок, чтобы
 свойства операторов можно формулнровать, учетывая лешь класс опера-

Teopema 10. Ectr

$$
\begin{equation*}
\sigma_{0}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right]=\theta, \tag{31}
\end{equation*}
$$

TO

$$
\begin{equation*}
x_{i}=\sigma_{0}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) . \tag{32}
\end{equation*}
$$

Верно п обратное, то есть ны ставедднвости (32) следует страведлавость (31).

Теорема 11. Пусть

$$
\begin{equation*}
z=\sigma_{0}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) . \tag{33}
\end{equation*}
$$

Тогда

$$
\begin{equation*}
x_{i}=\sigma_{0}\left(x_{1}, x_{2}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{n-}\right] . \tag{34}
\end{equation*}
$$

Верно, что ня ставедднвости (34) стедует справедлнвость равенctra (39)

Teopema 12. Ectr

$$
\left.\begin{array}{l}
\sigma_{0}\left(x_{1}, \ldots, x_{i-1}, z, x_{k+1}, \ldots, x_{n n}\right)=\theta \tag{35}\\
\sigma_{0}\left(x_{n+1}, \ldots, x_{j-1}, z, x_{j+1}, \ldots, x_{n+m}\right)=\theta
\end{array}\right\}
$$

то переменная \quad, входящам в кажжде ния уравненвй свстеми (35), может быть нсклочена, то есть

$$
\begin{equation*}
\sigma_{0}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+m}\right)=\theta . \tag{36}
\end{equation*}
$$

Соотношенве (96) верно п в том стучде, ести вместо z итеть $z_{1}, z_{2}, \ldots, z_{\mathrm{a}}$ в калждое ша уравненнй спстемы (35).

Тепремъ 10 - 12 достаточно просты н не могут вннвать никакия

1.6.2 Метод заптси конетннх $\boldsymbol{2}$-операторов

 $j+k$. A mambiz α^{i} овначаел, что

$$
\begin{equation*}
\alpha^{4}=\frac{\alpha \alpha \alpha \ldots \alpha}{2^{2} \underline{p}} \tag{37}
\end{equation*}
$$

 скобкв: \{ \}, Напринер:

$$
\begin{aligned}
& \left\{\left\{T_{1}\right\}\right\rangle=\left\{\left\{T_{1} T_{1}\right\}\right\}=\{\{\bar{\theta} \bar{\theta} \theta \theta \bar{\theta} \bar{\theta} \theta \theta\}\}, \\
& \left\{\left\{T_{2}\right\}=\left\{\{\bar{\theta} \bar{\theta} \bar{\theta} \bar{\theta} \theta \theta \theta \theta\}, \quad\left\{\left\{\tau_{2}\right\}\right\}=\{\{\theta \theta \theta \theta \bar{\theta} \bar{\theta} \bar{\theta} \bar{\theta}\}\},\right.\right. \\
& \left\{\left\{\tau^{2}\right\}\right\rangle=\left\{\{\bar{\theta} \theta \bar{\theta} \theta \bar{\theta} \theta \bar{\theta} \theta\}, \quad\left\{\left\{\bar{T}^{2}\right\}\right\}=\{\{\theta \bar{\theta} \theta \bar{\theta} \theta \bar{\theta} \theta \bar{\theta}\},\right.
\end{aligned}
$$

$$
\left\langle\left\langle\tau_{1}^{2}\right\rangle\right\rangle=\left\langle\left\langle\tau_{1}^{1} \bar{\tau}_{1}^{1}\right\rangle\right\rangle, \quad\left\langle\left\langle\tau_{2}^{1}\right\rangle\right\rangle=\left\langle\left\langle\tau_{2} \tau_{2}\right\rangle\right\rangle
$$

Совершенно ясно, что дтл ковечныг \quad-операторов ктасса k п порядка j, то еств дтл σ_{k}^{4} п $\bar{\sigma}_{k}^{4}$, укаяанный способ приводвт к равенствам:

$$
\begin{equation*}
\sigma_{k}^{4}=\left\langle\left\langle\tau_{k}^{4-k-1}\right\rangle\right\rangle, \quad \bar{\sigma}_{k}^{4}=\left\langle\left\langle\tau_{k}^{4-k-1}\right\rangle\right\rangle . \tag{38}
\end{equation*}
$$

В соответствин со скаяанным, в дальнейшем мы распшряем понятве σ-оператора, пазнвая конечнны σ-оператором всякий оператор, запе-
 скобок, а вя мнокества такни σ-операторов будем выдетлть операторж, которже допускают сашвси перез σ с вервнвмп и ншннвми индексамп, натываи их боновыми σ-операторами.

Операторы

$$
\begin{equation*}
\left\langle\left\langle(\bar{\nu})^{3}\right\rangle,\left\langle\left\langle(\bar{\nu} \tau)^{3}\right\rangle,\left\langle\left\langle(\nu \tau \bar{\tau} \tau)^{2}\right\rangle\right\rangle,\left\langle\left\langle\left(N_{2}(\nu \tau)^{1}\right)^{1}\right\rangle\right\rangle\right.\right. \tag{39}
\end{equation*}
$$

 mi ry.$\Omega \%$).

Замечание 12. Всякий конечннй σ-оператор может рассматриваться п как бескопечннй σ-оператор, естн подрауумевать запвсанное
 в стучае бескопечного σ-оператора нногда зашвсь может быть маменена более простой с соданенвем смныста.

Напрвмер. Операторы (39), когда рассматривиктся как бесконечнне, то могут быть заменены на операторы

$$
\begin{equation*}
\left\langle\langle\tau \bar{\nu}\rangle,\left\langle\langle\bar{\nu} \tau\rangle,\langle\langle\nu \tau \bar{\tau} \tau\rangle\rangle,\left\langle\left\langle\nu_{2}(\nu \tau)^{1}\right\rangle\right\rangle\right.\right. \tag{40}
\end{equation*}
$$

соответственно.
Замечание 13. Оператори (39) п (40) могут быть аишсанв с вс-

$$
\left.\left.\left\langle\left(4^{3}\right\rangle\right),\left\langle\left\langle 7^{3}\right\rangle\right\rangle,\left\langle(46)^{2}\right\}\right\rangle,\left\langle\left(0_{1} 4^{1}\right)^{1}\right\rangle\right\rangle ;
$$

$\langle\langle\overline{4}\rangle\rangle,\langle\langle 7\rangle\rangle,\langle\langle 46\rangle\rangle,\left\langle\left\langle 0_{1} 4^{1}\right\rangle\right\rangle$.

Изтоженве пдей, свлианнни с σ-операторампи, будет продотжено в III елиее, точнее в $\mathbf{3 . 5}$.

3.3 Позиционные Фундаментальные симметрические операторы

 рассмотрены простые s - операторы на распнренныт таблвщах определенви, но эпо расшвренве вмето вводный ларактер, кроме тепремид 10

 трнческом операторе (кратко: $F S$ - операторе).

FS - оператор - это проетой s - оператор, который всепда применпяется к соверпеннны наборам - аргументам (см копед предыддщето параграфа). В зашвсв прамепення $F S$-оператора (77) нндекс π указы-
 $F S$ - оператора.
 оператора к области опредетенвя совпадакт, то необтодвмость в запвси обтасти определения (тем ботее, что она стапдартва) не воегда есть. А эго соначает, что почтн всетда мы ё буддм опускать.

 прнёмя.

Дыл запвст функцнй алтебры логнки $F S$ - операторами будем пс-
 жества:

$$
Q=\left\{T, \bar{T}, T^{*}, \bar{T}^{*}, M, \bar{M}, M^{*}, \bar{M}^{*}\right\}
$$

состоящето вк двух инвертированно - сопряжёпннкя четвёрок продукцай (в мпожестве Q - это перюъе в втидче четыре продукцин соответственно). Действие кажқдой пи продукдий множкества Q на ададанный вектор

$$
\begin{align*}
& \left.\begin{array}{ll}
\left\{\alpha_{j} T\right\rangle \rightleftharpoons\left\{\alpha_{j} \bar{\theta}_{j}\right\}, & \left\langle\alpha_{j} \bar{T}\right\rangle \rightleftharpoons\left\{\alpha_{j} \theta_{j}\right\}, \\
\left\langle\alpha_{j} T^{*}\right\rangle \rightleftharpoons\left\langle\bar{\theta}_{j} \alpha_{j}\right\rangle, & \left\{\alpha_{j} \bar{T}^{*}\right\} \rightleftharpoons\left\{\theta_{j} \alpha_{j}\right\rangle .
\end{array}\right\} \tag{41}\\
& \left\langle\alpha_{j} M\right\rangle \rightleftharpoons\left\{\alpha_{j} \alpha_{j}\right\}_{,} \quad\left\langle\alpha_{j} \bar{M}\right\rangle \rightleftharpoons\left\{\alpha_{j} \bar{\alpha}_{j}\right\rangle . \tag{42}\\
& \left\langle\alpha_{j} M^{*}\right\rangle \rightleftharpoons\left\{\alpha_{j} \alpha_{j}^{*}\right\rangle, \quad\left\langle\alpha_{j} \bar{M}^{*}\right\rangle \rightleftharpoons\left\{\alpha_{j} \bar{\alpha}_{j}^{*}\right\rangle . \tag{43}
\end{align*}
$$

В определеният (41) - (43) предп) аагается, что вектор α_{4} явтлется вектором с двончными координатами порядка j, то есть радмерноети $\not \partial$, а все ∂^{\prime} коордннаты векторов θ_{j} и $\bar{\theta}_{j}$ суть соответствннно нулевъе п единцчнъе Что касается векторов $\bar{\alpha}_{j}, \alpha_{j}^{*}, \bar{\alpha}_{j}^{*}$, то это векторы -

Ннже, как правнто, в качестве начатыных вётторов, к которьм прн-

$$
\begin{equation*}
\left\langle\tau_{j}\right\rangle=\left\langle\bar{\theta}_{j} \theta_{j}\right\rangle,\left\langle\bar{\tau}_{j}\right\rangle=\left\langle\theta_{j} \bar{\theta}_{j}\right\rangle,\left\langle\nu_{j}\right\rangle=\left\langle\theta_{j} \theta_{j}\right\rangle,\left\langle\bar{\nu}_{j}\right\rangle=\left\langle\bar{\theta}_{j} \bar{\theta}_{j}\right\rangle, \tag{44}
\end{equation*}
$$

Теперь обратвм вниманве, что поскотвку калждое пи внражжений

$$
\left.\begin{array}{ll}
\left\{\bar{\alpha}_{j} \bar{T}\right\rangle=\left\{\bar{\alpha}_{j} \theta_{j}\right\rangle, & \left\langle\bar{\alpha}_{j} T\right\rangle=\left\langle\bar{\alpha}_{j} \bar{\theta}_{j}\right\rangle, \\
\left\langle\bar{\alpha}_{j} \bar{T}^{*}\right\rangle=\left\{\theta_{j} \bar{\alpha}_{j}\right\rangle, & \left\langle\bar{\alpha}_{j} T^{*}\right\rangle=\left\langle\bar{\theta}_{j} \bar{\alpha}_{j}\right\rangle,
\end{array}\right\}
$$

явтлется соответственно инвертированным, сопряжённым у двод-
 дукпаяа

Теорема 11. Еств B - одвй ни продукцай первпй четвёркн множества Q, то инвертированный, сопряжённый п двойственнний вектор к сдданному вектору $\left\langle\alpha_{j} B\right\rangle$ суть соответствнно векторы $\left\langle\bar{\alpha}_{j} \bar{B}\right\rangle$, $\left\langle\alpha_{f}^{*} B^{*}\right\rangle, \quad\left\langle\bar{\alpha}_{f}^{*} \bar{B}^{*}\right\}$, при этом двойнне операдвн инвертированвя, сопря-

A tak ká éépher pabèictea:

$$
\begin{array}{ll}
\left\{\bar{\alpha}_{y} M\right\rangle=\left\{\bar{\alpha}_{y} \bar{\alpha}_{y}\right\rangle, & \left\{\bar{\alpha}_{y} \bar{M}\right\rangle=\left\{\bar{\alpha}_{y} \alpha_{y}\right\} \\
\left\{\bar{\alpha}_{y} M^{*}\right\}=\left\{\bar{\alpha}_{y} \bar{\alpha}_{j}^{*}\right\}, & \left\{\bar{\alpha}_{y} \bar{M}^{*}\right\}=\left\{\bar{\alpha}_{y} \alpha_{j}^{*}\right\}
\end{array}
$$

 жеств Q, то пи устовия $y=\left\{\alpha_{y} B\right\rangle$ следует, что $\bar{y}=\left\{\bar{\alpha}_{j} \bar{B}\right\}$.

Јегко убедвться, что верна стедукщая
Tеореми 13. Ести принем, что

$$
y_{1}=\left\{\alpha_{4} M\right\}, \quad \boldsymbol{M}_{2}=\left\{\alpha_{y} \bar{M}\right\}, \quad b=\left\{\alpha_{\xi} M^{*}\right\}, \quad \boldsymbol{H}_{1}=\left\{\alpha_{\xi} \bar{M}^{*}\right\}
$$

TO

$$
b_{1}^{*}=\left\{\alpha_{j}^{*} M\right\}, \quad b_{2}^{*}=\left\{\bar{\alpha}_{j}^{*} \bar{M}\right\}, \quad b_{3}^{*}=\left\{\alpha_{j} M^{*}\right\}, \quad b_{1}^{*}=\left\{\bar{\alpha}_{j} \bar{M}^{*}\right\}
$$

Следствие 1. Мı теорел 12 п 13 степует, что

$$
\bar{b}_{1}^{*}=\left\{\bar{\alpha}_{y}^{*} M_{\}}, \quad \bar{b}_{2}^{*}=\left\{\alpha_{y}^{*} \bar{M}_{\}}, \quad \bar{p}_{3}^{*}=\left\{\bar{\alpha}_{y} M^{*}\right\rangle, \quad \bar{b}_{1}^{*}=\left\{\alpha_{y} \bar{M}^{*}\right\}\right.\right.
$$

 जtemmy.

Semmi 1. Ecti $x_{1}=\left\{\tau_{\xi}\right\}, \quad x_{2}=\left\{\sigma_{j}\right\rangle, \quad$ то

$$
\begin{aligned}
& \bar{z}_{1}=\left\{\bar{\tau}_{3}\right\}, \quad \bar{x}_{1}^{*}=\left\{\bar{\tau}_{\xi}\right\}, \bar{z}_{1}^{*}=\left\{\tau_{\xi}\right\}, \\
& \bar{z}_{2}=\left\langle T_{j}\right\rangle, x_{2}^{*}=\left\{T_{j}\right\rangle, \bar{x}_{2}^{*}=\left\{\bar{T}_{j}\right\} .
\end{aligned}
$$

$$
\begin{equation*}
f\left(X_{y}\right) \leadsto\left\{\alpha_{y}\right\} \tag{48}
\end{equation*}
$$

 H

$$
\langle\tau\rangle \rightleftharpoons\left\{T_{0}\right\}=\{\bar{\theta} \theta\rangle, \quad\langle\bar{\tau}\rangle\left\langle\bar{T}_{0}\right\}=\langle\theta \bar{\theta}\rangle
$$

 H푿:

$$
x_{j+1} \leadsto\left\{\bar{T}_{j}\right\}, \quad \overline{x_{j}+1} \leadsto\left\{T_{j}\right\} .
$$

 рацаіи нй мноккества

$$
\begin{equation*}
\{\downarrow, \oplus, /, \bar{\gamma}, \bar{\oplus}, \bar{\psi}\} \tag{49}
\end{equation*}
$$

где $\bar{\gamma} \rightleftharpoons$ (конъюнккция), $\bar{\ddagger} \rightleftharpoons \vee$ (дизънннкрия), $\bar{\oplus} \rightleftharpoons \sim$

 опредетенвяя X_{j+1} нмепот $F S$-операторқт:

$$
\begin{align*}
& f\left(X_{j+1}\right)=f\left(X_{j}\right) \xrightarrow{\sim}\left\{\alpha_{j} M\right\}, \tag{50}\\
& f\left(X_{j}\right) \notin x_{j+1} \stackrel{\leftrightarrow}{\leftrightharpoons}\left\{\bar{\alpha}_{j} \bar{T}\right\}, \quad f\left(X_{j}\right) \notin \bar{x}_{j+1} \stackrel{\approx}{\leftrightharpoons}\left\{\bar{\alpha}_{j} \bar{T}^{*}\right\}, \tag{51}\\
& f\left(X_{j}\right) \oplus x_{j+1} \leadsto\left\{\alpha_{j} \bar{M}\right\}, \quad f\left(X_{j}\right) \oplus \bar{x}_{j+1} \leadsto\left\{\bar{\alpha}_{j} \bar{M}\right\} \tag{52}\\
& f\left(X_{j}\right) / x_{j+1} \leadsto\left\{\bar{\alpha}_{j} T^{*}\right\}, \quad f\left(X_{j}\right) / \bar{x}_{j+1} \leadsto\left\{\bar{\alpha}_{j} T\right\rangle, \tag{53}\\
& f\left(X_{j}\right) \overline{/} x_{j+1} \leadsto\left\{\alpha_{j} \bar{T}^{*}\right\}, \quad f\left(X_{j}\right) \overline{/} \bar{x}_{j+1} \leadsto\left\{\alpha_{j} \bar{T}\right\} \tag{54}\\
& f\left(X_{j}\right) \bar{\oplus} x_{j+1} \leadsto\left\{\bar{\alpha}_{j} \bar{M}\right\}, \quad f\left(X_{j}\right) \bar{\Phi}_{j+1} \leadsto\left\{\alpha_{j} \bar{M}\right\}, \tag{55}\\
& f\left(X_{j}\right) \bar{\psi}_{\xi+1} \leadsto\left\{\alpha_{j} T\right\}, \quad f\left(X_{j}\right) \not \bar{\Psi}_{\xi+1} \leadsto\left\{\alpha_{j} T^{*}\right\} . \tag{56}
\end{align*}
$$

 pa - оператора стедует цвктвчески повторить, что и аданыдо в правой дасти (50).

$$
\begin{aligned}
& f\left(X_{j}\right) \nmid x_{j+1} \stackrel{\sim}{\leftrightharpoons}\left\{\alpha_{y} \alpha_{j}\right\} \nmid\left\{\theta_{j} \bar{\theta}_{j}\right\}=\left\{\bar{\alpha}_{j} \theta_{j}\right\}=\left\{\bar{\alpha}_{j} \bar{T}\right\rangle,
\end{aligned}
$$

 ва Q естественным обраяом выдетлется подмножкество основныя продукцвй

$$
Q_{1}=\left\{T, T^{*}, \bar{T}, \bar{T}^{*}, M, \bar{M}\right\},
$$

$$
Q_{2}=\left\{T, T^{*}, \bar{T}, \bar{T}^{*}, M\right\}
$$

$$
Q_{3}=\left\{T, T^{*}, M\right\}
$$

$$
Q_{1}=\left\{\bar{T}, \bar{T}^{*}, M\right\} .
$$

 над летератами достаточно баловой свстемы

$$
Q_{5}=\{\bar{M}, M\} .
$$

 операторамв:

$$
\begin{align*}
& \left\langle\alpha_{j} M^{*}\right\rangle=\left\langle\alpha_{j} T\right\rangle \bar{T}\left\langle\alpha_{j}^{*} T^{*}\right\rangle=\left\langle\bar{\alpha}_{j} \bar{T}\right\rangle \downarrow\left\langle\bar{\alpha}_{f}^{*} \bar{T}^{*}\right\rangle= \\
& =\left\langle\alpha_{j} \bar{T}\right\rangle \bar{\downarrow}\left\langle\alpha_{j}^{*} \bar{T}^{*}\right\rangle=\left\langle\bar{\alpha}_{j} T\right\rangle /\left\langle\bar{\alpha}_{j}^{*} T^{*}\right\rangle= \\
& =\left\langle\alpha_{j} T\right\rangle \bar{\oplus}\left\{\alpha_{j}^{*} T^{*}\right\rangle=\left\{\bar{\alpha}_{j} \bar{T}\right\rangle \bar{\oplus}\left\langle\bar{\alpha}_{f}^{*} \bar{T}^{*}\right\}= \\
& =\left\langle\alpha_{f} \bar{T}\right\rangle \oplus\left\langle\alpha_{j}^{*} \bar{T}^{*}\right\rangle=\left\langle\bar{\alpha}_{f} T\right\rangle \oplus\left\{\bar{\alpha}_{j}^{*} T^{*}\right\} . \tag{57}\\
& \left\langle\alpha_{j} \bar{M}^{*}\right\rangle=\left\langle\alpha_{j} T\right\rangle \overline{/}\left\langle\bar{\alpha}_{j}^{*} T^{*}\right\rangle=\left\langle\bar{\alpha}_{j} \bar{T}\right\rangle \downarrow\left\langle\alpha_{g}^{*} \bar{T}^{*}\right\rangle= \\
& =\left\langle\alpha_{j} \bar{T}\right\rangle\left\lceil\left(\bar{\alpha}_{j}^{*} \bar{T}^{*}\right\rangle=\left\langle\bar{\alpha}_{j} T\right\rangle /\left\langle\alpha_{j}^{*} T^{*}\right\rangle=\right. \\
& =\left\langle\alpha_{j} T\right\rangle \bar{\oplus}\left\{\bar{\alpha}_{y}^{*} T^{*}\right\rangle=\left\langle\bar{\alpha}_{j} \bar{T}\right\rangle \bar{\oplus}\left\langle\alpha_{j}^{*} \bar{T}^{*}\right\rangle= \\
& =\left\{\alpha_{j} \bar{T}\right\rangle \oplus\left\{\bar{\alpha}_{j}^{*} \bar{T}^{*}\right\}=\left\{\bar{\alpha}_{j} T\right\rangle \oplus\left\{\alpha_{j}^{*} T^{*}\right\} . \tag{58}
\end{align*}
$$

В свстеме продукдий множествд Q п его пормножеетв
 пвсывается, но пудазумеваегся. Простейший способ растпрення ука-
 $i=1,2,3, \ldots$, потагая

$$
Q^{i}=\left\{T_{i}, \bar{T}_{i}, T_{i}^{*}, \bar{T}_{i}^{*} M_{i}, \bar{M}_{i}, M_{i}^{*}, \bar{M}_{i}^{*}\right\}
$$

Ecirif $i=0,1,2,3, \ldots, \quad j \geq i, \quad\left\langle\alpha_{j+1}\right\}=\left\{\alpha_{j}^{\beta} \alpha_{j}^{1}\right\}, \quad B_{i+1} \in$ Q^{+1}, \quad то

$$
\begin{equation*}
\left\langle\alpha_{j+1} B_{i+1}\right\rangle \rightleftharpoons\left\langle\alpha_{j}^{9} B_{i} \alpha_{j}^{1} B_{i}\right\rangle \tag{59}
\end{equation*}
$$

 дующей ншже тепремъ.
 ммет $F S$ - оператор

$$
\left\langle\alpha_{j+k}\right\rangle=\left\langle\alpha_{j}^{0} \alpha_{j}^{1} \alpha_{j}^{2} \alpha_{j}^{3} \ldots \alpha_{y}^{A-1} \alpha_{j}^{A}\right\rangle, \quad \text { где } \quad s=2^{k}-1,
$$

 $F S$ - операторн:

$$
\begin{align*}
& f\left(X_{j+k}\right) \downarrow x_{j+1} \stackrel{\leftrightharpoons}{\leftrightharpoons}\left\langle\bar{\alpha}_{j}^{9} \bar{\alpha}_{j}^{2} \bar{\alpha}_{j}^{4} \ldots \bar{\alpha}_{j}^{A-1} \bar{T}_{k-1}\right\}, \tag{60}\\
& f\left(X_{j+k}\right) \downarrow \bar{x}_{j+1} \xrightarrow[\leftrightharpoons]{\leftrightharpoons}\left\langle\bar{\alpha}_{j}^{1} \bar{\alpha}_{j}^{A} \bar{\alpha}_{j}^{n} \ldots \bar{\alpha}_{j}^{A} \bar{T}_{k-1}^{*}\right\rangle, \tag{61}\\
& f\left(X_{j+k}\right) / x_{j+1} \leadsto\left\{\bar{\alpha}_{j}^{1} \bar{\alpha}_{j}^{A} \bar{\alpha}_{j}^{N} \ldots \bar{\alpha}_{\xi}^{A} T_{k-1}^{*}\right\rangle, \tag{62}\\
& f\left(X_{j+k}\right) / \bar{x}_{j+1} \leadsto\left\{\begin{array}{llll}
& \bar{\alpha}_{f}^{9} \bar{\alpha}_{f}^{2} \bar{\alpha}_{f}^{1} & \ldots \bar{\alpha}_{f}^{A-1} T_{k-1}
\end{array}\right\rangle, \tag{63}\\
& f\left(X_{j+k}\right) \overline{/} x_{j+1} \leadsto\left\{\alpha_{j}^{1} \alpha_{j}^{3} \alpha_{j}^{S} \ldots \alpha_{j}^{A} \bar{T}_{k-1}^{*}\right\}, \tag{64}\\
& f\left(X_{j+k}\right) \overline{x_{j+1}} \xlongequal{\leftrightharpoons}\left\{\begin{array}{llll}
0 & \alpha_{j}^{2} \alpha_{j}^{4} & \ldots \alpha_{j}^{A-1} \bar{T}_{k-1}
\end{array}\right\} \text {, } \tag{65}\\
& f\left(X_{j+k}\right) \rrbracket_{j+1} \leftrightharpoons\left\{\begin{array}{cc}
\alpha_{j}^{0} \alpha_{j}^{2} \alpha_{j}^{4} & \ldots \alpha_{j}^{A-1} T_{k-1}
\end{array}\right\} \text {, } \tag{66}\\
& f\left(X_{j+k}\right) \bar{\downarrow} \bar{x}_{j+1} \leadsto\left\{\alpha_{j}^{1} \alpha_{\xi}^{3} \alpha_{j}^{H} \ldots \alpha_{j}^{A} T_{k-1}^{*}\right\} . \tag{67}
\end{align*}
$$

Докаяательство. B верности этой теоремв летко уббервться, вниот-

H폳 (40) ㅍ (65):

$$
\begin{aligned}
& =\left\{\bar{\alpha}_{y}^{0} \theta_{j} \bar{\alpha}_{y}^{2} \theta_{j} \ldots \bar{\alpha}_{j}^{A-1} \theta_{j}\right\}=\left\{\bar{\alpha}_{j}^{0} \bar{\alpha}_{j}^{2} \ldots \bar{\alpha}_{j}^{A} \bar{T}_{k-1}\right\}, \\
& f\left(X_{j+k}\right) \overline{/} \overline{x_{j+1}} \leadsto\left\{\alpha_{j}^{0} \alpha_{j}^{1} \alpha_{j}^{2} \alpha_{j}^{3} \ldots \alpha_{j}^{A-1} \alpha_{j}^{A}\right) \bar{\gamma}\left\{\bar{\theta}_{j} \theta_{j} \bar{\theta}_{j} \theta_{j} \ldots \bar{\theta}_{j} \theta_{j}\right\}= \\
& =\left\{\alpha_{j}^{0} \theta_{j} \alpha_{j}^{2} \theta_{j} \ldots \alpha_{j}^{A-1} \theta_{j}\right\}=\left\{\alpha_{j}^{0} \alpha_{j}^{2} \ldots \alpha_{j}^{-1} \bar{T}_{k-1}\right\} .
\end{aligned}
$$

 водат к рекулвтатам

$$
\begin{align*}
& f\left(X_{j+k}\right) \oplus x_{j+1} \leadsto\left\{\alpha_{j}^{0} \bar{\alpha}_{j}^{1} \alpha_{j}^{2} \bar{\alpha}_{j}^{2} \ldots \alpha_{j}^{A-1} \bar{\alpha}_{j}^{A}\right\}, \tag{68}\\
& f\left(X_{j+k}\right) \oplus \bar{x}_{j+1} \stackrel{\leadsto}{\leftrightarrows}\left\{\bar{\alpha}_{\mu}^{0} \alpha_{j}^{1} \bar{\alpha}_{j}^{2} \alpha_{j}^{3} \ldots \bar{\alpha}_{j}^{A-1} \alpha_{j}^{A}\right\}, \tag{69}\\
& f\left(X_{j+k}\right) \bar{\varphi}_{j+1} \leadsto\left\{\bar{\alpha}_{y}^{0} \alpha_{j}^{1} \bar{\alpha}_{y}^{2} \alpha_{j}^{3} \ldots \bar{\alpha}_{j}^{A-1} \alpha_{j}^{A}\right\}, \tag{70}\\
& f\left(X_{j+k}\right) \bar{\Phi}_{j+1} \stackrel{\sim}{\leftrightharpoons}\left\{\alpha_{j}^{0} \bar{\alpha}_{j}^{1} \alpha_{j}^{2} \bar{\alpha}_{j}^{\beta} \ldots \alpha_{j}^{A-1} \bar{\alpha}_{j}^{A}\right\}, \tag{1}
\end{align*}
$$

 бовання нй ошератор функцвв $f\left(X_{j}+k\right)$.
 рес с учётом стедукщеп лелия.

Лemma 3. Écif $\quad \boldsymbol{B}_{0}, \boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \ldots, \boldsymbol{B}_{k-1} \in Q_{1} \quad$ п

$$
\begin{equation*}
\left\langle\alpha_{y+k}\right\rangle=\left\langle\alpha_{y}^{0} \alpha_{y}^{1} \alpha_{y}^{2} \alpha_{y}^{3} \ldots \alpha_{y}^{A}-\alpha_{y}^{A}\right\rangle=\left\{\alpha_{y} B_{0} B_{1} \ldots B_{k-1}\right\} \tag{12}
\end{equation*}
$$

TO

$$
\left.\begin{array}{l}
\left\{\alpha_{j}^{0} \alpha_{y}^{2} \alpha_{y}^{1} \ldots \alpha_{y}^{A-1}\right\}=\left\{\beta_{j}^{0} B_{1} B_{2} \ldots B_{k-1}\right\} \tag{13}\\
\left\{\alpha_{y}^{1} \alpha_{y}^{3} \alpha_{y}^{5} \ldots \alpha_{y}^{A}\right\}=\left\{\beta_{y}^{1} B_{1} B_{2} \ldots B_{k-1}\right\}
\end{array}\right\}
$$

где

$$
\begin{equation*}
\left\{\alpha_{y} B_{0}\right\}=\left\{\beta_{j}^{0} \beta_{y}^{1}\right\} \tag{74}
\end{equation*}
$$

ннвертированного, когда B_{i} совпадает с M нтв \bar{M}. Продукцвя

Првтерн, питостриукщие лелиу 3.

1) $\left\langle\alpha_{j} T T^{*} \bar{T} T\right\rangle=\left\langle\bar{\theta}_{j} \bar{\theta}_{j} \alpha_{j} \bar{\theta}_{j} \theta_{j} \theta_{j} \theta_{j} \theta_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j}\right\rangle$,
$\left\langle\alpha_{j} T^{*} \bar{T} T\right\rangle \quad=\left\langle\bar{\theta}_{j} \alpha_{j} \theta_{j} \theta_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j}\right\rangle$,
$\left\langle\bar{\theta}_{j} T^{*} \bar{T} T\right\rangle \quad=\left\langle\bar{\theta}_{j} \bar{\theta}_{j} \theta_{j} \theta_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j}\right\rangle=\left\langle\tau_{j+1} T\right\rangle$.
2) $\left\langle\alpha_{j} M T T^{*} \bar{M}\right\rangle=\left\langle\bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \bar{\theta}_{j} \alpha_{j} \alpha_{j} \bar{\theta}_{j} \bar{\theta}_{j} \theta_{j} \theta_{j} \theta_{j} \theta_{j} \bar{\alpha}_{j} \bar{\alpha}_{j} \theta_{j} \theta_{j}\right\}$,
$\left\langle\alpha_{j} T T^{*} \bar{M}\right\rangle=\left\langle\bar{\theta}_{j} \bar{\theta}_{j} \alpha_{j} \bar{\theta}_{j} \theta_{j} \theta_{j} \bar{\alpha}_{j} \theta_{j}\right\rangle ;$ второй оператор такой же.
Замечание В. Точно таквин же рассужденнями можно покаяать, что лемлид 3 остаётся справедтнвой п в том стучае, когда устовне на

$$
\begin{equation*}
B_{0}, B_{1}, B_{2}, \ldots, B_{k-1} \in Q_{1} \cup Q_{2}^{U} \tag{75}
\end{equation*}
$$

н ectir

$$
\begin{equation*}
B_{i} \in Q_{2}, \quad \text { то } \quad r<i \tag{76}
\end{equation*}
$$

Идтострадвонннее примеры к этому заметанво.

$$
\begin{aligned}
& \text { 1) }\left\langle\alpha_{j} M T \bar{T}_{1} T_{2}^{*}\right\rangle=\left\langle\bar{\theta}_{j+1} \alpha_{j} \alpha_{j} \bar{\theta}_{j+1} \theta_{j+1} \bar{\theta}_{j+1} \bar{\theta}_{j+2} \theta_{j+1}\right\rangle \text {, } \\
& \left\langle\alpha_{j} T \bar{T}_{1} T_{2}^{*}\right\rangle \quad=\left\langle\bar{\theta}_{j} \alpha_{j} \bar{\theta}_{j} \theta_{j} \bar{\theta}_{j+1} \theta_{j}\right\rangle ; \text { второй оператор такой же. } \\
& \text { 2) }\left\langle\alpha_{j} T T^{*} \bar{T} T T_{2} T_{1}^{*}\right\}=\left\langle\bar{\theta}_{j+1} \bar{\theta}_{j+1} \alpha_{j} \bar{\theta}_{j} \bar{\theta}_{j+2} \theta_{j+2} \bar{\theta}_{j+2} \bar{\theta}_{j+5}\right\} \text {, } \\
& \left\langle\alpha_{j} T^{*} \bar{T} T T_{2} T_{1}^{*}\right\}=\left\langle\bar{\theta}_{j+3} \bar{\theta}_{j} \alpha_{j} \bar{\theta}_{j+1} \theta_{j+1} \bar{\theta}_{j+1} \bar{\alpha}_{j+1}\right\}, \\
& \left\{\bar{\theta}_{j} T^{*} \bar{T} T T_{2} T_{1}^{*}\right\rangle=\left\langle\bar{\theta}_{j+3} \bar{\theta}_{j+2} \theta_{j+1} \bar{\theta}_{j+1} \bar{\theta}_{j+1}\right\rangle=\left\{\tau_{j+1} T T_{2} T_{1}^{*}\right\} .
\end{aligned}
$$

3.4 Постановка и запись задач распознавания с использованием $F S$-операторов

фopma?

$$
\begin{aligned}
& f_{1}\left(X_{5}\right) \rightleftharpoons\left(\bar{x}_{1} \bar{\psi} \boldsymbol{x}_{2}\right) \overline{/}\left(\bar{x}_{1} \bar{\psi} \bar{x}_{2}\right) \overline{/}\left(x_{1} \bar{\psi} \bar{x}_{2} \bar{\psi} x_{1}\right) \overline{/}\left(x_{1} \bar{\psi} x_{2} \bar{\psi} \bar{x}_{3}\right) \overline{/} \\
& \overline{/}\left(x_{1} \bar{\psi} \bar{x}_{2} \bar{\psi} \bar{x}_{5}\right) \overline{/}\left(x_{1} \bar{\psi} \bar{x}_{2} \bar{\psi} \bar{x}_{1} \bar{\psi} x_{5}\right) \overline{/}\left(x_{2} \bar{\psi} x_{5}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \overline{/}\left(x_{1} \bar{\psi} \boldsymbol{x}_{1} \bar{\psi} \bar{x}_{5}\right) \overline{/}\left(\bar{x}_{2} \bar{\psi} \overline{\boldsymbol{w}}_{3} \bar{\psi} \boldsymbol{x}_{6} \bar{\psi} \boldsymbol{x}_{7}\right) \overline{/}\left(\bar{x}_{3} \bar{\psi} \overline{\boldsymbol{w}}_{1} \bar{\psi} \bar{x}_{7}\right) \overline{/} \\
& \overline{/}\left(\bar{x}_{5} \bar{\psi} x_{6} \bar{\psi} x_{7}\right) / \overline{/}\left(x_{5} \bar{\psi} \bar{x}_{6} \bar{\psi} x_{7}\right) .
\end{aligned}
$$

3.4.1 Операторы задачи ВБПП и её таблитное представле-

 Hre представтенвя дшнъннктов $F S$ - операторамв можно востотваоваться

$$
\begin{aligned}
& \bar{x}_{1} \bar{\downarrow} \boldsymbol{x}_{2} \underset{\sim}{\leftrightarrows}\{T \quad T \quad M M M,
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{x}_{1} \bar{\downarrow} \overline{\mathrm{x}}_{2} \bar{\psi} \boldsymbol{x}_{1} \leadsto\left\{\bar{\tau} \boldsymbol{T}^{*} \quad \boldsymbol{M} \boldsymbol{T} \quad \boldsymbol{M}\right\}, \\
& \boldsymbol{x}_{1} \bar{\downarrow} \boldsymbol{x}_{2} \bar{\downarrow} \bar{x}_{3} \leadsto\left\{\begin{array}{c}
\boldsymbol{T}
\end{array} \boldsymbol{T} \quad \boldsymbol{T}^{*} \quad \boldsymbol{M} \boldsymbol{M}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{x}_{1} \bar{\downarrow} \overline{\boldsymbol{x}}_{2} \bar{\downarrow} \overline{\mathrm{~T}}_{1} \bar{\downarrow} \boldsymbol{x}_{5} \leadsto\left\{\begin{array}{c}
\boldsymbol{T} \\
\hline
\end{array} \mathrm{M}^{*} \mathrm{~T}^{*} \quad T\right\},
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \bar{\downarrow} \bar{x}_{2} \bar{\psi} x_{3} \bar{\psi} \bar{x}_{5} \leadsto\left\{\begin{array}{c}
\boldsymbol{\tau}
\end{array} T^{*} \quad T \quad M T^{*} M M\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \bar{\psi} x_{1} \bar{\psi} \overline{x_{F}} \leftrightharpoons\left\langle\bar{\tau} M M T T^{*} M M\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}_{3} \bar{\downarrow} \bar{x}_{1} \bar{\downarrow} \bar{x}_{7} \leadsto\left\{\quad T_{2} T^{*} M M T^{*}\right\}, \\
& \bar{x}_{5} \bar{\psi} x_{6} \bar{\psi} x_{7} \leftrightharpoons\left\{\begin{array}{llll}
& T_{1} & T & T
\end{array}\right\}, \\
& x_{5} \bar{\psi} \bar{x}_{6} \bar{\psi} x_{7} \leftrightharpoons\left\{\begin{array}{lll}
& \bar{\tau}_{1} & T^{*}
\end{array} \quad T\right\} \text {. }
\end{aligned}
$$

 ет

 можно одновначно восстановить яадачу в КНФ. КНФ пия $f_{1}\left(X_{5}\right)$
 оответственно.

Табтлица 1

0	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{\tau}$	T	M	M	M
$\boldsymbol{\tau}$	T^{*}	M	M	M
$\bar{\tau}$	T^{*}	M	T	M
$\bar{\tau}$	T	T^{*}	M	M
$\bar{\tau}$	T^{*}	M	M	T^{*}
$\bar{\tau}$	T^{*}	M	T^{*}	T
	$\bar{\tau}$	T	M	M

Табпица 2

0	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{4}$	5	6
$\bar{\tau}$	M	T	T^{*}	M	T	M
$\bar{\tau}$	T^{*}	T	M	T^{*}	M	M
			$\bar{\tau}$	T	T^{*}	T^{*}
$\bar{\tau}$	M	M	T	T^{*}	M	M
	τ	T^{*}	M	M	T	T
		τ	T^{*}	M	M	T^{*}
				τ	T	T
				$\bar{\tau}$	T^{*}	T

Замечание 9. В строках таб̆твы садачш В末
 садачах вмеется коньюнкция операторов, то перестановка строк в табатв-

 перевменованне.

 ранг оператора равен $n-i-k+1$, где k-сумма продукцвй M в

Табпица 3

0	$\mathbf{1}$	2	3	4
$\bar{\tau}$	\bar{T}	M	M	M
$\bar{\tau}$	\bar{T}^{*}	M	M	M
τ	\bar{T}^{*}	M	\bar{T}	M
τ	\bar{T}	\bar{T}^{*}	M	M
τ	\bar{T}^{*}	M	M	\bar{T}^{*}
τ	\bar{T}^{*}	M	\bar{T}^{*}	\bar{T}
	τ	\bar{T}	M	M

Табтица 4

0	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{4}$	5	6
τ	M	\bar{T}	\bar{T}^{*}	M	\bar{T}	M
τ	\bar{T}^{*}	\bar{T}	M	\bar{T}^{*}	M	M
			τ	\bar{T}	\bar{T}^{*}	\bar{T}^{*}
τ	M	M	\bar{T}	\bar{T}^{*}	M	M
	$\bar{\tau}$	\bar{T}^{*}	M	M	\bar{T}	\bar{T}
		$\bar{\tau}$	\bar{T}^{*}	M	M	\bar{T}^{*}
				$\bar{\tau}$	\bar{T}	\bar{T}
				τ	\bar{T}^{*}	\bar{T}

3.4 .2 Онкты и их $F S$-операторы

 та мы можем шметь и друтве обраяованви, которже могут потучаться в ренутвтате самены $\bar{\downarrow}$ на ппббко операдво па множества (49), то есть

$$
\begin{aligned}
& \boldsymbol{x}_{1} \nleftarrow \boldsymbol{x}_{3} \psi \overline{\boldsymbol{x}}_{1} \psi \boldsymbol{x}_{6},
\end{aligned}
$$

$$
\begin{align*}
& x_{1} / \boldsymbol{x}_{3} / \overline{\boldsymbol{x}}_{1} / \boldsymbol{x}_{6}, \tag{17}\\
& x_{1} \quad \bar{\gamma} x_{3} \bar{\gamma} \quad \bar{x}_{1} \quad \bar{\gamma} \quad x_{6},
\end{align*}
$$

 дованна.

 напритер

$$
\begin{array}{lllllll}
\boldsymbol{x}_{1} & \psi & x_{3} & / & \bar{x}_{1} & \bar{\psi} & \boldsymbol{x}_{6} \\
\boldsymbol{x}_{1} & \bar{\gamma} & \boldsymbol{x}_{3} & \bar{\Psi} & \bar{x}_{1} & / & \boldsymbol{x}_{6} \tag{78}\\
\boldsymbol{x}_{1} & \oplus & \boldsymbol{x}_{3} & \bar{\gamma} & \bar{x}_{1} & \bar{\oplus} & \boldsymbol{x}_{6} .
\end{array}
$$

 ниепот $F S$-оператори соответственно:

$$
\begin{aligned}
& \left\{\begin{array}{llllll}
T & M & \bar{T} & T^{*} & M & \bar{T}
\end{array}\right\}, \\
& \{\tau M \bar{M} \bar{M} \bar{M}\rangle \text {, } \\
& \left\{T M T^{*} \bar{T} M T^{*}\right\} \text {, } \\
& \left\{\bar{\tau} M \bar{T}^{*} \quad \bar{T} M \bar{T}^{*}\right\}, \\
& \{\overline{\operatorname{T}} \boldsymbol{M} \bar{M} \bar{M} M \bar{M}\}, \\
& \left\{\begin{array}{lllll}
\tau & M & T & T & M
\end{array} T\right\}, \\
& \left\{\tau M T^{*} \overline{T^{*}} M T^{*}\right\}, \\
& \{\bar{\tau} M \quad \bar{M} \bar{T} M \quad T\} \text {. }
\end{aligned}
$$

От требованвя, чтобы нндексы переменннки в юнктах воярасталы,
 на множества

$$
\begin{equation*}
\{\downarrow, /, \bar{\gamma}, \mp\} \tag{79}
\end{equation*}
$$

так как в этом стучае, дыи зашвст $F S$-операторов, кроме лемлмя 2 н

 ни множжеств Q_{2}^{2} с устовием (76), что обустовтено м моокеством (79).

$3.5 \quad \sigma$-операторы юнктов

 необтоддмл баловые σ-операторы ны селекторные операторы.

3.5. 1 Селекторные операторы

Теорема 16. Сетекторнне операторн пли операторы переменнни (прн заданном π) имент баяовне σ-операторж:

$$
\begin{aligned}
& \boldsymbol{x}_{1} \stackrel{\leftrightarrow}{\leftrightharpoons}\left\{\left(\bar{T}^{n-1}\right\}\right\rangle, \quad \bar{x}_{1} \stackrel{\mu}{\leftrightharpoons}\left\{\left\{T^{n-1}\right\},\right. \\
& \boldsymbol{x}_{2} \leftrightharpoons\left\{\left(\bar{T}_{1}^{n-2}\right)\right\rangle, \quad \overline{\boldsymbol{x}}_{2} \leadsto\left\{\left(\left\{\tau_{1}^{n-2}\right)\right\},\right. \\
& x_{3} \stackrel{2}{\sim}\left\{\tau_{2}^{n-3}\right\}, \quad \bar{x}_{3} \stackrel{2}{\leftrightharpoons}\left\{T_{2}^{n-3}\right\}, \\
& \boldsymbol{x}_{j} \leadsto\left\{\left(\tau_{j-1}^{+1-\}}\right\}\right), \quad \bar{x}_{j} \leadsto\left\{\left\{T_{j-1}^{n-\}}\right\}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& x_{12} \leadsto\left\{\left(\tau_{12}\right\}\right\}, \quad \bar{x}_{12} \leadsto\left\{\left\{T_{12-2}\right\}\right\} .
\end{aligned}
$$

 точво очевнддные свойства спстемы конечнния σ-операторов:

$$
\begin{equation*}
\langle\rangle\rangle\rangle,\left\langle\left\{\tau_{j}\right\}\right\rangle,\left\langle\left\{\tau_{j}\right\}\right\rangle,\langle\langle\bar{\psi}\}\rangle \tag{80}
\end{equation*}
$$

 равенству

$$
\begin{equation*}
j+i=\pi-1 . \tag{81}
\end{equation*}
$$

В перечпе свойств конечнноя σ-операторов одво п то же внраженве

Сbohctao 1. Ec; $0 \leq k \leq i \quad$ п $0 \leq k \leq j$, то

в) $\left\langle\left\langle\nu_{j} \nu_{j}\right\}\right\rangle=\left\langle\left\langle\nu_{j+1}\right\rangle\right\rangle$,
г) $\left\langle\left\langle\bar{\nu}_{y} \bar{\nu}_{y}\right\rangle\right\rangle=\left\langle\left\langle\bar{\nu}_{y+1}\right\rangle\right\rangle$.

Верность свонств 1а) $\div 1 г$) стедует ия опредетеннй операторов $\langle\langle/ j\rangle) \mathbf{~}\langle\langle/ j\rangle$.

Cbotherbo 2.
a) $\left\langle\left(\left\{\bar{v}_{4} \nu_{4}\right)^{2}\right\}\right\rangle=\left\langle\left\{\tau_{j+1}^{i}\right\rangle\right\rangle$,
б) $\left\langle\left\langle\left(\nu_{j} \bar{\nu}_{j}\right)^{i}\right)^{i}\right\rangle=\left\langle\left\{\bar{\tau}_{j+1}^{k}\right\rangle\right.$.

В самом дете, в стучае а)

$$
\left\langle\left\langle\tau_{j+1}^{i}\right\rangle\right\rangle=\left\langle\left\langle\left(\bar{\theta}_{j+1} \theta_{j+1}\right)^{t}\right\rangle\right\rangle=\left\langle\left\langle\left(\bar{\nu}_{j} \nu_{j}\right)^{i}\right\rangle\right\rangle
$$

что может бытв запвсано и в обратном ваправленнн.
Анатогичное верно и дыл 2б).

 $\left.\left\langle\left(a^{2}\right)^{n-r}\right\rangle\right)$.

Доказательство. \mathbf{B} самом дете,

$$
\begin{aligned}
& x_{j} \leadsto\left\langle\left\langle\tau_{j-1}^{n-t}\right\rangle\right\rangle=\left\langle\left(\left(\bar{\tau}_{j-1}^{P-H}\right)^{n-t}\right\rangle\right\rangle=\left\langle\left\langle\left(a^{p}\right\rangle^{n-r}\right\rangle\right\rangle,
\end{aligned}
$$

