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Суперкомпьютер «Жорес» для машинного обучения и 
моделирования основанного на данных 

Суперкомпьютер «Жорес» с 
энергоэффективной гибридной архитектурой: 
 
•  74 вычислительных узла; 
•  24 узла с мощными графическими 
ускорителями  
(4xNVidia Tesla V100, NVLink + RDMA); 

•  тензорные ядра для машинного обучения 
(глубокое обучение); 

•  потребление энергии: 90 кВатт; 
•  производительность 0.5 Пфлоп/с; 
•  система хранения данных 0.5 Пбайт 
•  7-й	суперкомпьютер	по	мощности	в	России	

«Жорес» - уникальный в России 
энергоэффективный суперкомпьютер, 
позволяющий решать широкий круг 
междисциплинарных задач на стыке 
машинного обучения, наук о данных и 
математического моделирования в таких 
областях, как: биомедицина, обработка 
изображений, разработка и поиск новых 
лекарств, фотоника, предсказательное тех. 
обслуживание, разработка новых источников 
рентгеновского и гамма излучения и т.д. 
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(~0.5	GeV	e-)	

!ωL =1.55eV (~1	um	laser)	

Max.	photon	energy:		
4	MeV	
χ ≈ 0.5%

e-	

γ = 40 (~20	MeV	e-)	

!ωL =1.55eV (~1	um	laser)	

Max.	photon	energy:		
10	keV	
χ ≈ 0.02%

I <<1018W cm2



Inverse	Compton	Sca0ering	is	a	source	of	X-	and	gamma-rays	

Collision	of	an	intense	laser	pulse	with	an	ultra-relaMvisMc	(γ>>1)	electron	beam			

•  Doppler	upshiQ	of	laser	frequency	
•  Tunable	source	
•  Extremely	short	bursts	of	hard	radiaMon	
•  Quasi-monochromaMc	
•  ApplicaMons:	medicine,	nuclear	physics,	materials	
	

ωX = 4γ
2ωL

Main	quality:	Spectral	brightness	=	γ-ray	yield	per	bandwidth			

S.G.	Rykovanov,	et	al,	JPHYSB	47,	234013	(2014)	
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Maximize photon yield

I
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•  Laser	pulses	ramp	on	and	off	smoothly	-->	
Mme-dependent	laser	pressure	

•  Lorentz	gamma	factor	becomes	a	funcMon	
of	Mme	γ(t)	

•  Generated	frequency:	 ωX (t) = 4γ
2 (t)ωL

!ωX =
4γ 2!ωL

1+γ 2θ 2 + a2 (t)



Brief	recap	on	electron	moMon	in	a	plane	EM	wave	

Case	2.	Strong	electromagneGc	wave	 a0	=	1	



Brief	recap	on	electron	moMon	in	a	plane	EM	wave	

Case	2.	Strong	electromagneGc	wave	 a0	=	1	
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Laser	pulse	longitudinal	shape	leads	to	spectrum	broadening	
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Nonlinear	CS:	pulse	shape	leads	to	broadening	
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electromagnetic wave in the direction of its propagation by
the v ×B force, and thus moves away from the laser pulse
redshifting the reflected light.
Movement of the electron through the focus of the laser

and/or pulsing of the laser beam means that the electron
does not always experience the peak value of the laser pulse
a0. Hence, in Eq. (1), a0 must be multiplied by a function of
running time gðηÞ describing the laser pulse envelope.
Here, η ¼ ~ωLð~t − ~z=~cÞ and z ¼ ~ωL

~c ~z with ~t and ~z being time
and longitudinal coordinate, respectively, and it is assumed
that the laser pulse impinges the electron from the left side.
The laser pulse vector potential envelope is then described
by a function of time aðηÞ ¼ a0gðηÞ. This leads to the
following equation for the reflected radiation central
frequency:

ωcðηÞ ¼
1

1þ aðηÞ2
: ð2Þ

Therefore, during the laser pulse interaction with an
electron, different frequencies are generated at different
times and different electron positions within the envelope.
As a result, the reflected radiation spectrum is considerably
broadened in the case of a strong laser pulse with a varying
laser envelope. Additionally, a bandlike structure appears in
the reflected spectrum as shown in Fig. 1 (left) for a0 ¼ 0.4,
as compared with the linear case a0 ≪ 1 (in this case
a0 ¼ 0.05). For this calculation, we have used a laser pulse
with an envelope described by Eq. (12). Qualitatively,
broadening and band-structure appearance for strong laser
pulses is illustrated in Fig. 1 (right), where the laser pulse
envelope aðηÞ, generated frequency ωcðηÞ and electron
longitudinal electron coordinate zðηÞ are schematically
shown as functions of running time η. One can see that
certain frequencies are generated twice during the inter-
action. For example, the frequency ω1 is generated at two
different longitudinal positions of the electron z1 and z2 as
shown with black color in Fig. 1 (right). Depending on the

value of ω1 and the separation between the emission points
this leads to either constructive or destructive interference
in the generated spectrum. These interference patterns lead
to the appearance of bands in the spectrum.
The number of oscillations in the spectrum can be

approximately established as a ratio of maximum frequency
broadening due to laser intensity derived from Eq. (2) and
given by Δ ~ω ¼ ~ωL − ~ωL

1þa20
and the bandwidth of the laser

pulse. Thus, the number of oscillations is roughly given by

Nosc ¼ ~ωL
a20

1þ a20

1

Δ ~ωL
; ð3Þ

whereΔ ~ωL is the FWHM bandwidth of the laser pulse. One
can see that the number of interference fringes in the
spectrum grows with increasing laser amplitude and laser
pulse duration (as laser pulse bandwidth is inversely
proportional to laser duration).
The exact shape of the spectrum depends on the laser

pulse duration and on its envelope shape and intensity, and
can be calculated from the well-known motion of a free
electron in a plane electromagnetic wave [17,50,51]. Here,
we neglect the radiation friction so that the electron
dynamics is governed by the standard Lorentz force. For
an electron initially at rest and for an electromagnetic wave
impinging the electron from the z → −∞, one can immedi-
ately write two integrals of motion:

u⊥ ¼ a⊥ ð4Þ

γ − uz ¼ 1: ð5Þ

The latter equation can be also be written in the following
form:

uz ¼
a2⊥
2
: ð6Þ

FIG. 1. Left: An example of the normalized on-axis spectra of reflected radiation calculated for low a0 ¼ 0.05 (blue line) and high
a0 ¼ 0.4 (red color) scattering lasers, demonstrating the appearance of bandlike structure in the spectrum. Right: Qualitative illustration
of the broadening and band formation mechanism in the nonlinear response of an electron to a strong electromagnetic wave. A laser
pulse impinges the electron from the left side (from z → −∞). As functions of time, the blue line and shaded area represent the laser
pulse envelope, the green line shows the frequency of the reflected wave in accordance with Eq. (2), and the red dashed line shows the
longitudinal coordinate of the electron.

CONTROLLING THE SPECTRAL SHAPE … PHYS. REV. ACCEL. BEAMS 19, 030701 (2016)
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Proper	nonlinear	chirping	

/4	gamma^2	
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If	laser	frequency	is	constant,	
the	generated	frequency	is	given	by:	

/4	gamma^2	

Why	don‘t	we	chirp	the	pulse	to	exactly		
compensate	the	ponderomoMve	broadening:	



−ϕðηÞ þ ηþ
Z

η

−∞
a2⊥ðη0Þdη0 ¼ C: ð20Þ

For the phase of the properly chirped laser pulse one can
thus write

ϕðηÞ ¼ ηþ
Z

η

−∞
a2⊥ðη0Þdη0 − C; ð21Þ

and for the instantaneous laser pulse frequency one obtains
the following expression:

ωiðηÞ ¼
dϕðηÞ
dη

¼ 1þ a2⊥ðηÞ: ð22Þ

Note that in the case of the circularly polarized laser pulse,
Eq. (22) coincides with Eq. (18). The case of linear
polarization has been considered in [52] and the results
are similar. For the laser pulse with envelope given by
Eq. (12) and instantaneous frequency given by Eq. (22) one
can derive an analytical solution. Note that the longitudinal
coordinate of the electron is still given by Eq. (13) as the
laser pulse is chosen to be circular. The result of the
spectrum calculation using Eq. (9) yields the same formula
as in Eq. (16), but with n and χ given by

n ¼ ðω − 1ÞN0

!
1þ a20

2

"
þ 1

2
ð23Þ

χ ¼ 1 − ω
2

N0: ð24Þ

The analytical solutions for the nonlinear spectral band-
width using a laser pulse with the envelope given by
Eq. (12) and instantaneous frequency given by Eq. (18) are
shown in Fig. 3 (left), where normalized spectra are
presented for different values of a0. Markers of different
colors show the analytical solutions using Eqs. (16), (23)
and (24), while solid lines of corresponding colors show the
numerical integration results. Analytical solutions fit with

numerical integration well and predict spectrum narrowing
for properly chirped laser pulses with high values of a0.
The generated frequency stays centered at ω ¼ 1 and the
broadening disappears. In the case of a0 ¼ 0.1 (blue color)
the spectrum width is approximately given by the
unchirped (i.e., with constant frequency, shown on the
figure with black dash-dotted line) laser pulse width, which
is inversely proportional to laser pulse duration τL. One can
see that the spectrum is getting narrower with the increase
of a0. For arbitrary values of a0, the spectrum width scales
approximately as Δω

ω ∝ 1
τLð1þa20Þ

, i.e., in the case of a0 ¼ 10
(black color) the spectrum width is approximately a20 ¼
100 times narrower. This is due to the choice of the laser
pulse function. Indeed, changing (increasing compared to
ω ¼ 1) the frequency while keeping the duration τL
constant leads to more periods. This can be seen from
Fig. 5 (left) where normalized laser pulse vector potential is
plotted for the case when the laser pulse is unchirped (blue
color) and for the case of chirped laser pulse with a0 ¼ 0.5
(green color). In this figure the duration of the laser pulse
was set to τL ¼ 60 for illustrative reasons. Because at each
period an electron is forced (by appropriate chirp) to radiate
the same frequency, it effectively radiates pulses with the
same frequency ω ¼ 1 but with longer duration for higher
a0 leading to a narrower emitted spectrum. Numerical
integration of the generated spectra using Eq. (9) is
presented in Fig. 3 (right). The color-coded image is the
normalized on-axis spectrum (in logarithmic scale) as a
function of both the frequency (longitudinal axis) and
normalized laser amplitude a0 (vertical axis) similar to
Fig. 2 (left). Results are normalized to the peak value of
the spectrum for a0 ¼ 10, demonstrating the scaling of the
peak value of the spectrum with a0. Though throughout the
paper classical description has been used, it is interesting to
analyze the scaling of the peak value of the photon on-axis
spectrum, which is given by

d2Nph

dωdΩ

####
θ¼0

¼ α
ω
ω2
0

a20
8
N2

0jJnðχÞ − Jn−1ðχÞj2; ð25Þ

FIG. 3. Left: Normalized on-axis intensity spectra for different values of a0 for the case of a laser pulse with duration τL ¼ 600. Laser
pulse is properly chirped according to Eq. (18). Results obtained with the help of numerical integration are shown with solid lines.
Markers of corresponding color present the analytical solution using Eqs. (16), (23) and (24). Right: Numerically obtained on-axis
radiation spectra for a properly chirped laser pulse for different values of a0 (vertical axis) in the logarithmic scale.
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with the values of n and χ, corresponding to the chirped or
unchirped case. Here, Nph is the number of photons and
α ≈ 1=137 is the fine-structure constant. The peak value of
the on-axis photon spectrum as a function of a0 for the laser
pulse with duration τL ¼ 600 and obtained numerically, is
presented in Fig. 4 for the cases of unchirped pulse (green
line) and properly chirped pulse (blue solid and black
dashed lines). One can see that, in the case of the unchirped
pulse, the peak value of the on-axis photon spectrum
saturates and is independent of a0 for a0 ≫ 1. Contrary,
in the case of the chirped pulse, the peak value of the on-
axis photon spectrum grows proportionally to a20 as shown
by the blue solid line. Black dashed line represents a fit to
the numerically obtained peak value of the on-axis spec-
trum for the case of the chirped pulse, which is given by

!
d2Nph

αdωdΩ

""""
θ¼0

#

peak
¼ α

a20τ
2
L

4π4
: ð26Þ

Exact fit coefficients will depend on the pulse shape, but the
a20 scaling will stay the same. In the paper by Seipt et al.

[52], the off-axis spectrum was also analyzed. Even though
for different observation angles the ponderomotive broad-
ening is not exactly compensated, the total number of
photons in the natural bandwidth, which is equal to the
laser pulse bandwidth Δ ~ωL

~ωL
, was estimated to be

Nph;nat ≈ παa20: ð27Þ

This justifies one more time the benefits of using properly
chirped pulses for obtaining narrow bandwidth photon
sources.
It is worth noting that the spectrum of the incident

chirped pulse extends approximately up to the frequency
ωmax ¼ ð1þ a20Þ, quadratic with a0. Figure 5 (right) shows
the normalized spectra of laser pulses properly chirped
according to Eq. (18) (red color corresponds to a0 ¼ 0.2
and green color corresponds to a0 ¼ 0.5) compared to the
case of the unchirped laser pulse. For low values of a0 < 1
the introduced chirp can be on the order of 10–20 percent
and is achievable with current technology. This already
allows production of narrow bandwidth sources using
significantly higher laser intensity than is conventionally
possible, which in turn reduces the required laser energy.
As noted above, even operation at a0 ¼ 0.3 compared to
a0 ¼ 0.15 can save a factor of 4 in scattering laser energy.
While in principle the technique can be used up to even
higher intensities, practical implementation is limited by
the obtainable bandwidth in the scattering laser. For
example, at a0 ¼ 10 the laser pulse contains the range
of wavelengths from x rays to the laser wavelength, which
is beyond currently foreseeable laser technology.

IV. CONCLUSIONS

In this paper we have presented analytical solutions for
the on-axis spectrum of radiation generated by a free
electron interacting with a plane circularly polarized laser
pulse of nonlinear intensity. Discussion of effects of laser
pulse spatial structure, off-axis spectrum calculations and
simulations using realistic electron beams can be found in

FIG. 4. Peakvalueof theon-axisphotonspectrumasa functionof
a0 for the cases of unchirped (green solid line) andproperly chirped
(blue solid and black dashed lines) pulses. The black dashed line
represents the fit to the numerical data given by Eq. (26).

FIG. 5. Left: Normalized vector potential as a function of time in periods for the case of the unchirped laser pulse (blue color) and
chirped laser pulse with a0 ¼ 0.5 for laser pulse with duration τL ¼ 60. Right: Laser pulse spectra (normalized to the peak value of the
unchirped pulse spectrum) for the case of unchirped laser pulse (blue color) and chirped laser pulses with a0 ¼ 0.2 (red color) and
a0 ¼ 0.5 (green color) for laser pulse with duration τL ¼ 600.
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Proper	nonlinear	chirping	totally	compensates	broadening	

Great?	
But	how	do	we	generate	such	a	pulse	with	nonlinear	chirping:	
Frequency	has	to	change	nonlinearly	on	the	femtosecond	scale	
Currently	not	possible.	
	

Mme	

frequency	 This	is	the	frequency	profile	(chirp)	
that	we	need	
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Mme	

frequency	 This	is	the	frequency	profile	(chirp)	
that	we	need	

•  Why	don‘t	we	try	to	use	common	technology	-	„linear“	chirp?	
•  We	approximately	add	linearly	chirped	laser	pulse	to	mimic	the	
nonlinear	profile	

•  But	the	profile	should	also	have	a	„downslope“	part	-	frequency	
has	to	go	back	down	

•  Any	ideas?	
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Mme	

frequency	 This	is	the	frequency	profile	(chirp)	
that	we	need	

•  Why	don‘t	we	try	to	use	common	technology	-	„linear“	chirp?	
•  We	approximately	add	linearly	chirped	laser	pulse	to	mimic	the	
nonlinear	profile	

•  But	the	profile	should	also	have	a	„downslope“	part	-	frequency	
has	to	go	back	down	

•  We	just	add	a	second	laser	pulse	oppositely	chirped	



Two	oppositely	chirped	laser	pulses	

Seipt,	Kharin,	Rykovanov,	
Phys.	Rev.	Le0.	122,	204802	(2019)	
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CausMcs	and	catastrophes	



CausMcs	and	catastrophes	
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does not always experience the peak value of the laser pulse
a0. Hence, in Eq. (1), a0 must be multiplied by a function of
running time gðηÞ describing the laser pulse envelope.
Here, η ¼ ~ωLð~t − ~z=~cÞ and z ¼ ~ωL

~c ~z with ~t and ~z being time
and longitudinal coordinate, respectively, and it is assumed
that the laser pulse impinges the electron from the left side.
The laser pulse vector potential envelope is then described
by a function of time aðηÞ ¼ a0gðηÞ. This leads to the
following equation for the reflected radiation central
frequency:

ωcðηÞ ¼
1

1þ aðηÞ2
: ð2Þ

Therefore, during the laser pulse interaction with an
electron, different frequencies are generated at different
times and different electron positions within the envelope.
As a result, the reflected radiation spectrum is considerably
broadened in the case of a strong laser pulse with a varying
laser envelope. Additionally, a bandlike structure appears in
the reflected spectrum as shown in Fig. 1 (left) for a0 ¼ 0.4,
as compared with the linear case a0 ≪ 1 (in this case
a0 ¼ 0.05). For this calculation, we have used a laser pulse
with an envelope described by Eq. (12). Qualitatively,
broadening and band-structure appearance for strong laser
pulses is illustrated in Fig. 1 (right), where the laser pulse
envelope aðηÞ, generated frequency ωcðηÞ and electron
longitudinal electron coordinate zðηÞ are schematically
shown as functions of running time η. One can see that
certain frequencies are generated twice during the inter-
action. For example, the frequency ω1 is generated at two
different longitudinal positions of the electron z1 and z2 as
shown with black color in Fig. 1 (right). Depending on the

value of ω1 and the separation between the emission points
this leads to either constructive or destructive interference
in the generated spectrum. These interference patterns lead
to the appearance of bands in the spectrum.
The number of oscillations in the spectrum can be

approximately established as a ratio of maximum frequency
broadening due to laser intensity derived from Eq. (2) and
given by Δ ~ω ¼ ~ωL − ~ωL

1þa20
and the bandwidth of the laser

pulse. Thus, the number of oscillations is roughly given by

Nosc ¼ ~ωL
a20

1þ a20

1

Δ ~ωL
; ð3Þ

whereΔ ~ωL is the FWHM bandwidth of the laser pulse. One
can see that the number of interference fringes in the
spectrum grows with increasing laser amplitude and laser
pulse duration (as laser pulse bandwidth is inversely
proportional to laser duration).
The exact shape of the spectrum depends on the laser

pulse duration and on its envelope shape and intensity, and
can be calculated from the well-known motion of a free
electron in a plane electromagnetic wave [17,50,51]. Here,
we neglect the radiation friction so that the electron
dynamics is governed by the standard Lorentz force. For
an electron initially at rest and for an electromagnetic wave
impinging the electron from the z → −∞, one can immedi-
ately write two integrals of motion:

u⊥ ¼ a⊥ ð4Þ

γ − uz ¼ 1: ð5Þ

The latter equation can be also be written in the following
form:

uz ¼
a2⊥
2
: ð6Þ

FIG. 1. Left: An example of the normalized on-axis spectra of reflected radiation calculated for low a0 ¼ 0.05 (blue line) and high
a0 ¼ 0.4 (red color) scattering lasers, demonstrating the appearance of bandlike structure in the spectrum. Right: Qualitative illustration
of the broadening and band formation mechanism in the nonlinear response of an electron to a strong electromagnetic wave. A laser
pulse impinges the electron from the left side (from z → −∞). As functions of time, the blue line and shaded area represent the laser
pulse envelope, the green line shows the frequency of the reflected wave in accordance with Eq. (2), and the red dashed line shows the
longitudinal coordinate of the electron.
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CausMcs	and	catastrophes	
3
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FIG. 1. The ray surfaces [stationary phase condition (4)] (a),
their projections on the (

x

, 

z

) plane (b), and correspond-
ing numerically calculated spectra (c) in the electron frame:
radial coordinate is frequency, angle is ✓, color is the emis-
sion probability. The laser pulse is circularly polarized with
envelope |a| = a0 cos2(⇡�/⌧), a0 = 2.1 and ⌧ = 100⇡/!

L,0,
propagating to the right. Left column: unchirped pulse, right
column: chirped pulse with � = 0.75.

ray surface
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map

cusp
folds

FIG. 2. Artistic image of a generic cusp as singularity of
a two-dimensional map. The projection of the surface to the
(x, y)-plane yields two folds (projected on red lines) coinciding
and terminating in the cusp point.

larity on the ray surface is da2
/d� = [a2]0 = 0. That

is, the fold corresponds to an extremum in the pulse en-
velope, and to the peak in the scattered spectrum [26].
For a simple laser pulse with a single maximum in the
envelope [37], is a function of the scattering angle ✓ given
by

!f(✓) =
n!

L

1 + (1� cos ✓)
⇣

a

2
0
4 + n!L

m

⌘
, (5)

where a

2
0 = max

�

a2. In the vicinity of !f(✓), the spec-
trum has form of Airy functions and we see agreement
with the well-known theoretical predictions on the inter-
ference structure of the scattered radiation caused by two
stationary points [14, 26, 38].
Let us now turn to the case of a linearly chirped pulse

where we find not only folds to contribute to the spec-
trum, but also higher-dimensional cusps. For a linearly
chirped laser pulse the instantaneous frequency varies
with time according to !

L

(�) = !

L,0 + ��/⌧ with the
linear chirp parameter � determining the rate of change
of the frequency over the pulse duration ⌧ . In this case,
the locations of the singularities of the ray surface (4) are
given by the conditions



� [a2(�)]0

4
= n

�

⌧

✓
1� 

�

m

◆
, (6)

[a2(�)]00 = 0 , (7)

where (6) defines the loci of the folds for the chirped pulse
and (7) determines their coincidence, defining the cusp
singularity.
The typical situation with cusp-type singularities is il-

lustrated in Fig. 1 (right column). For small values of
chirp � there are two cusps for opposite values of 

x

,
connected by two folds. For large values of � there are
neither cusps nor folds. It can serve as the evidence of
a higher-dimensional caustic taking place in between. In
this situation we consider the chirp � as an additional

control parameter, and the caustic consists in the coinci-
dence of two cusps and their disappearance for increasing
�. The space of control parameters is three-dimensional
now, and the described process is referred to as “lips
event” in the catastrophe theory [23, 39], or as the cel-
ebrated “Zel’dovich pancake” [40] in astrophysics. The
coincidence of the cusps happens at backscattering direc-
tion ✓ = ⇡ due to the axial symmetry of the exponential
in Eq. (3), making the lips event interesting for Compton
sources.
From the physical point of view the cusps will result in

a relatively bright narrow spot in the scattered spectrum
at the cusp angle ✓c (Fig. 1, right column),

cos ✓c = 1� 4�

(a2)0!
L

⌧ � a2
�

, (8)

where a and !

L

are evaluated at the point defined by
Eq. (7). For ✓c < ✓  ⇡ one sees the interference between
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FIG. 3. Frequency-angle di↵erential emission probability in
the lab frame. Initial Lorentz factor of the electron is � =
1000; the pulse shape is |a| = a0/ cosh(�/⌧); ⌧ = 40⇡/!

L,0,
a0 = 1, chirp parameter � = 0.15; ✓̄lab := ⇡ � ✓lab. The on-
axis radiation is Doppler up-shifted from !

L,0 = 1.55 eV to
⇡ 4 MeV, and strongly enhanced. The emitted radiation is
e↵ectively confined to the region bounded by the two folds and
the cusp. Pushing the cusp closer to the axis by increasing �

will constrain the radiation to a narrow bandwidth and well
collimated beam of gamma rays.

the three parts of the pulse, i.e. three stationary points,
constrained by two folds. For ✓ ' ✓c one observes a
narrow peak in the scattered spectrum on top of a weaker
pedestal. Beyond ✓

c

, closer to forward scattering, the
width of the peak increases while only a single stationary
point contributes. Eq. (8) shows that the locations of the
cusps can be controlled by the chirp parameter �, and,
for a Compton source the cusp angle should be close to
the backscattering direction ✓c ! ⇡ for narrowband and
collimated emission. To see that, let us now go back to
the lab frame.

When going to the lab frame the components of
the photon momentum transform as ?,lab = ? and


�
lab = 2��, causing the ellipses in Fig. 1 to expand

(contract) in the �z (+z)-direction and the scatter-
ing angles ✓ to narrow towards the backscattering di-
rection. The Jacobian of the Lorentz transformation
J = 1/[�(1 + � cos ✓lab)] strongly enhances the on-axis
backscattered radiation close to ✓lab = ⇡ (and suppresses
forward scattering), causing the strongest emission to be
not exactly at the cusp position where emission is very
narrowband (star marker), but for angles ✓lab > ✓c,lab.
As one can clearly see in Fig. 3 this forces the emitted
radiation to be strongly confined to the caustic region
bounded by the two folds and the cusp. With increas-
ing chirp �, the cusp is pushed towards the beam axis,
pinching the folds and turning the emitted radiation into
a collimated beam with enhanced spectral intensity and
narrow bandwidth.

Figure 4 shows the on-axis emission probability as a
function of di↵erent values of the chirp � (vertical axis),

FIG. 4. The on-axis photon emission probability in the lab
frame as a function of photon frequency and chirp parame-
ter � shows the two folds (dashed curves) terminating in a
cusp (star). In the vicinity of the cusp we see the typical
Pearcey-integral pattern [23]. The spectrum (horizontal line-
out) turns into a single narrow-band peak for a relatively large
range of � values in the vicinity of the cusp (see inset). The
pulse shape is |a| = a0/ cosh(�/⌧) with ⌧ = 40⇡/!

L,0 and
a0 = 1.

with the lips event, i.e. the coincidence of the cusp singu-
larities on-axis is depicted with a star at �c = 0.24 [33].
The pinching of the two folds with increasing � < �c

evokes a bright on-axis emission peak with a minimal
bandwidth of 2.5 % (FWHM) and the peak height more
than doubled as compared to the unchirped case. The
optimal chirp for this is �peak = 0.18 for a0 = 1, which
can be determined by analysing the Pearcey di↵raction
pattern in the vicinity of the cups [33]. The required val-
ues of � can be realized with a relative laser bandwidth
of 0.18 and a second order spectral phase (group delay
dispersion) of '00 ⇡ 40 fs2, which can be achieved with
today’s laser technology [41].
In conclusion, in this Letter we applied the theory

of the singularities of di↵erentiable projection maps and
caustics to analyse nonlinear Compton scattering spectra
for short pulses with variable pulse shape and chirp. The
caustics are related to patterns in the nonlinear Compton
spectra, which greatly simplifies the qualitative analysis
of the spectra, and the inverse problem of tailoring laser
pulses for the optimized narrowband spectra.
We predict higher-dimensional cusp-singularities in the

scattered spectrum for a linearly chirped laser pulses and
show that the location of the cusps can be tuned by the
value of the linear chirp. The emitted radiation is e↵ec-
tively confined to the region formed by the cusp and fold
caustics. When the cusps are pushed close to the beam
axis by tuning the chirp, the emitted radiation is pinched
between two folds evoking bright narrowband and colli-
mated emission of gamma rays. The spectral caustics
investigated in this Letter provides a di↵erent view on
the optimal chirping schemes for spectral bandwidth re-
duction [13–15, 33].
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Summary	

•  Nonlinear	Compton	Sca0ering	leads	to	broadening	due	to	the	
laser	pressure.	Laser	pressure	is	non-uniform	due	to	the	laser	
pulse	temporal	envelope	--	no	pressure	on	the	wings,	high	
pressure	in	the	middle.	

•  Nonlinear	chirping	completely	removes	the	broadening	
•  Two	linearly	and	oppositely	chirped	pulses	can	approximately	

remove	the	broadening	and	can	lead	to	significant	
improvement	of	exisMng	Compton	sources	

•  CausMcs	and	catastrophes	in	Compton	spectrum	lead	to	bright	
spots	and	can	be	used	for	photon	yield	enhancement	
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