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Introduction

Theory of dynamical systems studies processes which are evolving in time. The
description of these processes is given in terms of difference or differential
equations, or iterations of maps.

Example (Fibonacci sequence, 1202)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

I.Newton (1676): “ 6 aeccdae 13eff 7i 3l 9n 4o 4qrr 4s 9t 12vx” (fundamental
anagram of calculus, in a modern terminology, “It is useful to solve differential
equations”).

H.Poincaré is a founder of the modern theory of dynamical systems.

The name of the subject, ”DYNAMICAL SYSTEMS”, came from the title of
classical book: G.D.Birkhoff, Dynamical Systems. Amer. Math. Soc. Colloq.
Publ. 9. American Mathematical Society, New York (1927), 295 pp.
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H.Poincaré is a founder of the modern theory of dynamical systems.

The name of the subject, ”DYNAMICAL SYSTEMS”, came from the title of
classical book: G.D.Birkhoff, Dynamical Systems. Amer. Math. Soc. Colloq.
Publ. 9. American Mathematical Society, New York (1927), 295 pp.



Introduction

Theory of dynamical systems studies processes which are evolving in time. The
description of these processes is given in terms of difference or differential
equations, or iterations of maps.

Example (Fibonacci sequence, 1202)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

I.Newton (1676): “ 6 aeccdae 13eff 7i 3l 9n 4o 4qrr 4s 9t 12vx” (fundamental
anagram of calculus, in a modern terminology, “It is useful to solve differential
equations”).

H.Poincaré is a founder of the modern theory of dynamical systems.

The name of the subject, ”DYNAMICAL SYSTEMS”, came from the title of
classical book: G.D.Birkhoff, Dynamical Systems. Amer. Math. Soc. Colloq.
Publ. 9. American Mathematical Society, New York (1927), 295 pp.



Introduction

Theory of dynamical systems studies processes which are evolving in time. The
description of these processes is given in terms of difference or differential
equations, or iterations of maps.

Example (Fibonacci sequence, 1202)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

I.Newton (1676): “ 6 aeccdae 13eff 7i 3l 9n 4o 4qrr 4s 9t 12vx” (fundamental
anagram of calculus, in a modern terminology, “It is useful to solve differential
equations”).
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H.Poincaré is a founder of the modern theory of dynamical systems.

The name of the subject, ”DYNAMICAL SYSTEMS”, came from the title of
classical book: G.D.Birkhoff, Dynamical Systems. Amer. Math. Soc. Colloq.
Publ. 9. American Mathematical Society, New York (1927), 295 pp.



Definition of dynamical system

Definition of dynamical system includes three components:

I phase space (also called state space),

I time,

I law of evolution.

Rather general (but not the most general) definition for these components is as
follows.

I. Phase space is a set whose elements (called “points”) present possible states
of the system at any moment of time. (In our course phase space will usually
be a smooth finite-dimensional manifold.)
II. Time can be either discrete, whose set of values is the set of integer
numbers Z, or continuous, whose set of values is the set of real numbers R.
III. Law of evolution is the rule which allows us, if we know the state of the
system at some moment of time, to determine the state of the system at any
other moment of time. (The existence of this law is equivalent to the
assumption that our process is deterministic in the past and in the future.)

It is assumed that the law of evolution itself does not depend on time, i.e for
any values t, t0 the result of the evolution during the time t starting from the
moment of time t0 does not depend on t0.
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Definition of dynamical system, continued

Denote X the phase space of our system. Let us introduce the evolution
operator g t for the time t by means of the following relation: for any state
x ∈ X of the system at the moment of time 0 the state of the system at the
moment of time t is g tx .
So, g t : X → X .

The assumption, that the law of evolution itself does not depend on time and,
thus, there exists the evolution operator, implies the following fundamental
identity:

g s(g tx) = g t+s(x).

Therefore, the set {g t} is commutative group with respect to the composition
operation: g sg t = g s(g t).
Unity of this group is g 0 which is the identity transformation.
The inverse element to g t is g−t .

This group is isomorphic to Z or R for the cases of discrete or continuous time
respectively.

In the case of discrete time, such groups are called one-parametric groups of
transformations with discrete time, or phase cascades.

In the case of continuous time, such groups are just called one-parametric
groups of transformations, or phase flows.
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Definition of dynamical system, continued

Now we can give a formal definition.

Definition
Dynamical system is a triple (X , Ξ, G), where X is a set (phase space), Ξ is
either Z or R, and G is a one-parametric group of transformation of X (with
discrete time if Ξ = Z).

The set {g tx , t ∈ Ξ} is called a trajectory, or an orbit, of the point x ∈ X .

Remark
For the case of discrete time gn = (g 1)n. So, the orbit of the point x is
. . . , x , g 1x , (g 1)2x , (g 1)3x , . . .

In our course we almost always will have a finite-dimensional smooth manifold
as X and will assume that g tx is smooth with respect to x if Ξ = Z and with
respect to (x , t) if Ξ = R. So, we consider smooth dynamical systems.
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Simple examples

Example (Circle rotation)

X = S1 = R/(2πZ), Ξ = Z, g 1 : S1 → S1, g 1x = x + α mod 2π, α ∈ R.

Example ( Torus winding)

X = T2 = S1 × S1, Ξ = R, g t : T2 → T2,

g t

„
x1

x2

«
=

„
x1 + tω1 mod 2π
x2 + tω2 mod 2π

«

Example (Exponent)

X = R, Ξ = R, g t : R → R, g tx = etx .
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More examples

Example (Fibonacci sequence)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

Denote xk =

„
bk−1

bk

«
, A =

„
0 1
1 1

«
.

Then xk+1 = Axk . Therefore xk+1 = Akx1.

In this example X = R2, Ξ = Z.

Characteristic equation is det

„
−λ 1
1 1− λ

«
= 0, or λ2 − λ− 1 = 0.

Eigenvalues are λ1,2 = 1
2
(1±

√
5). Eigenvectors are ξ1,2 =

„
1

λ1,2

«
.

If x1 = c1ξ1 + c2ξ2, then xk+1 = c1λ
k
1ξ1 + c2λ

k
2ξ2.

From initial data c1 = −c2 = 1/(λ1 − λ2) = 1/
√

5.

In particular, bk = (λk
1 − λk

2)/
√

5.

Example (Two body problem)

X = R12, Ξ = R



More examples

Example (Fibonacci sequence)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

Denote xk =

„
bk−1

bk

«
, A =

„
0 1
1 1

«
.

Then xk+1 = Axk . Therefore xk+1 = Akx1.

In this example X = R2, Ξ = Z.

Characteristic equation is det

„
−λ 1
1 1− λ

«
= 0, or λ2 − λ− 1 = 0.

Eigenvalues are λ1,2 = 1
2
(1±

√
5). Eigenvectors are ξ1,2 =

„
1

λ1,2

«
.

If x1 = c1ξ1 + c2ξ2, then xk+1 = c1λ
k
1ξ1 + c2λ

k
2ξ2.

From initial data c1 = −c2 = 1/(λ1 − λ2) = 1/
√

5.

In particular, bk = (λk
1 − λk

2)/
√

5.

Example (Two body problem)

X = R12, Ξ = R



More examples

Example (Fibonacci sequence)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

Denote xk =

„
bk−1

bk

«
, A =

„
0 1
1 1

«
.

Then xk+1 = Axk . Therefore xk+1 = Akx1.

In this example X = R2, Ξ = Z.

Characteristic equation is det

„
−λ 1
1 1− λ

«
= 0, or λ2 − λ− 1 = 0.

Eigenvalues are λ1,2 = 1
2
(1±

√
5). Eigenvectors are ξ1,2 =

„
1

λ1,2

«
.

If x1 = c1ξ1 + c2ξ2, then xk+1 = c1λ
k
1ξ1 + c2λ

k
2ξ2.

From initial data c1 = −c2 = 1/(λ1 − λ2) = 1/
√

5.

In particular, bk = (λk
1 − λk

2)/
√

5.

Example (Two body problem)

X = R12, Ξ = R



More examples

Example (Fibonacci sequence)

bk+1 = bk + bk−1, k = 1, 2, . . . ; b0 = 0, b1 = 1

Denote xk =

„
bk−1

bk

«
, A =

„
0 1
1 1

«
.

Then xk+1 = Axk . Therefore xk+1 = Akx1.

In this example X = R2, Ξ = Z.

Characteristic equation is det

„
−λ 1
1 1− λ

«
= 0, or λ2 − λ− 1 = 0.

Eigenvalues are λ1,2 = 1
2
(1±

√
5). Eigenvectors are ξ1,2 =

„
1

λ1,2

«
.

If x1 = c1ξ1 + c2ξ2, then xk+1 = c1λ
k
1ξ1 + c2λ

k
2ξ2.

From initial data c1 = −c2 = 1/(λ1 − λ2) = 1/
√

5.

In particular, bk = (λk
1 − λk

2)/
√

5.

Example (Two body problem)

X = R12, Ξ = R



Dynamical systems, vector fields and autonomous ODEs

Let (X , R, G) be a smooth dynamical system, G = {g t , t ∈ R}. It defines a
vector field v on X :

v(x) = (
d

dt
g tx)t=0

This vector field defines an autonomous ODE

dx

dt
= v(x)

Then g tx , t ∈ R is the solution to this ODE with the initial condition x at
t = 0. Indeed,

d

dt
g tx = (

d

dε
g t+εx)ε=0 = (

d

dε
gεg tx)ε=0 = v(g tx)

The other way around, any autonomous ODE whose solutions for all initial
conditions are defined for all values of time generates a dynamical system: a
shift along trajectories of the ODE is the evolution operator of this dynamical
system.

Dynamical systems with continuous time are usually described via
corresponding autonomous ODEs.
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Poincaré section

P : Σ → Σ

Σ is called a Poincaré surface of section.

P is called a Poincaré first return map. It generates a new dynamical system
with discrete time.



Poincaré section, continued

Example

Section of torus

For this surface of section the Poincaré first return map for a torus winding is a
rotation of the circle.



Non-autonomous ODE’s

A non-autonomous ODE
dx

dt
= v(x , t)

can be reduced to an autonomous one by introducing a new dependent variable
y: dy/dt = 1. However, this is often an inappropriate approach because the
recurrence properties of the time dependence are thus hidden.

Example (Quasi-periodic time dependence)

dx

dt
= v(x , tω), x ∈ Rn, ω ∈ Rm,

function v is 2π-periodic in each of the last m arguments. It is useful to study
the autonomous ODE

dx

dt
= v(x , ϕ),

dϕ

dt
= ω

whose phase space is Rn × Tm. For m = 1 the Poincaré return map for the
section ϕ = 0mod 2π reduces the problem to a dynamical system with discrete
time.
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Blow-up

For ODEs some solutions may be defined only locally in time, for t− < t < t+,
where t−, t+ depend on initial condition. An important example of such a
behavior is a “blow-up”, when a solution of a continuous-time system in
X = Rn approaches infinity within a finite time.

Example

For equation
ẋ = x2, x ∈ R

each solution with a positive (respectively, a negative) initial condition at t = 0
tends to +∞ (respectively, −∞) when time approaches some finite moment in
the future (respectively, in the past). The only solution defined for all times is
x ≡ 0.

Such equations define only local phase flows.



Some generalisations

1. One can modify the definition of dynamical system taking Ξ = Z+ or
Ξ = R+ , and G being semigroup of transformations.

2. There are theories in which phase space is an infinite-dimensional functional
space. (However, even in these theories very often essential events occur in a
finite-dimensional submanifold, and so the finite-dimensional case is at the core
of the problem. Moreover, analysis of infinite-dimensional problems often
follows the schemes developed for finite-dimensional problems.)



Topics in the course

1. Linear dynamical systems.

2. Normal forms of nonlinear systems.

3. Bifurcations.

4. Perturbations of integrable systems, in particular, KAM-theory.



Exercises

Exercises

1. Consider the sequence
1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2 ,4, 8,. . .

of first digits of consecutive powers of 2. Does a 7 ever appears in this
sequence? More generally, does 2n begin with an arbitrary combination of
digits?

2. Prove that sup
0<t<∞

(cos t + sin
√

2t) = 2.



LECTURE 2



LINEAR DYNAMICAL SYSTEMS



Example: variation equation

Consider ODE

ẋ = v(t, x), t ∈ R, x ∈ D ⊂ Rn, v(·, ·) ∈ C 2(R× D)

Let x∗(t), t ∈ R be a solution to this equation.
Introduce ξ = x − x∗(t). Then

ξ̇ = v(t, x∗(t) + ξ)− v(t, x∗(t)) =
∂v(t, x∗(t))

∂x
ξ + O(|ξ|2)

Denote A(t) = ∂v(t,x∗(t))
∂x

Definition
Linear non-autonomous ODE

ξ̇ = A(t)ξ

is called the variation equation near solution x∗(t).



Linear non-autonomous ODEs

Consider a linear (homogeneous) non-autonomous ODE

ẋ = A(t)x , x ∈ Rn

where A(t) is a linear operator, A(t) : Rn → Rn, A(·) ∈ C 0(R).

In a fixed basis in Rn one can identify the vector x with the column of its
coordinates in this basis and the operator A(t) with its matrix in this basis:

x =

0BBB@
x1

x2

...
xn

1CCCA , A(t) =

0BBB@
a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
...

. . .
...

an1(t) an2(t) . . . ann(t)

1CCCA
Then the equation takes the form:

ẋ1 = a11(t)x1 + a12(t)x2 + . . . + a1n(t)xn

ẋ2 = a21(t)x1 + a22(t)x2 + . . . + a2n(t)xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ẋn = an1(t)x1 + an2(t)x2 + . . . + ann(t)xn

In this form the equation is called “a system of n homogeneous linear
non-autonomous differential equations of the first order”.



Linear non-autonomous ODEs

Consider a linear (homogeneous) non-autonomous ODE
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Linear non-autonomous ODEs, continued

Theorem
Every solution of a linear non-autonomous ODE can be extended onto the
whole time axis R.

So, there is no blow-up for linear ODEs.

Theorem
The set of all solutions of a linear non-autonomous ODE in Rn is a linear
n-dimensional space.

Proof.
The set of solutions is isomorphic to the phase space, i.e. to Rn. An
isomorphism maps a solution to its initial (say, at t = 0) datum.

Definition
Any basis in the space of solutions is called a fundamental system of solutions.
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Definition
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Linear constant-coefficient ODEs

Consider an ODE
ẋ = Ax , x ∈ Rn,

where A is a linear operator, A : Rn → Rn.
Denote {g t} the phase flow associated with this equation.

Definition
The exponent of the operator tA is the linear operator etA : Rn → Rn :

etA = E + tA + 1
2
(tA)2 +

1

3!
(tA)3 + . . . ,

where E is the identity operator.

Theorem
g t = etA

Proof.
d
dt

etAx = AetAx , e0·Ax = x

The eigenvalues of A are roots of the characteristic equation: det(A− λE) = 0.
If there are complex eigenvalues, then it is useful to complexify the problem.

Complexified equation:
ż = Az , z ∈ Cn,

and now A : Cn → Cn, A(x + iy) = Ax + iAy .
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ż = Az , z ∈ Cn,

and now A : Cn → Cn, A(x + iy) = Ax + iAy .



Linear constant-coefficient ODEs

Consider an ODE
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Linear constant-coefficient ODEs, continued

Let V be an l-dimensional linear vector space over C, B be a linear operator,
B : V → V .

Definition
Operator B is called a Jordan block with eigenvalue λ, if its matrix in a certain
basis (called the Jordan basis) is the Jordan block:0BBBBB@

λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

. . .
...

0 0 . . . λ 1
0 0 . . . 0 λ

1CCCCCA

If B is a Jordan block with eigenvalue λ, then the matrix of the exponent of tB
in this basis is

eλt

0BBBBB@
1 t t2/2 . . . t l−1/(l − 1)!
0 1 t . . . t l−2/(l − 2)!
...

...
...

. . .
...

0 0 . . . 1 t
0 0 . . . 0 1

1CCCCCA



Linear constant-coefficient ODEs, continued
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Linear constant-coefficient ODEs, continued

Theorem (The Jordan normal form)

Space Cn decomposes into a direct sum of invariant with respect to A and etA

subspaces, Cn = V1 ⊕V2 ⊕ . . .⊕Vm, such that in each of this subspaces A acts
as a Jordan block. For Vj such that the eigenvalue of the corresponding Jordan
block is not real, both Vj and its complex conjugate V̄j are presented in this
decomposition.

De-complexification

Note that Vj ⊕ V̄j = ReVj ⊕ ImVj over C.
Thus, Cn = V1 ⊕ . . .⊕Vr ⊕ (Re Vr+1 ⊕ ImVr+1)⊕ . . .⊕ (ReVk ⊕ ImVk) if the
field of the coefficients is C. In this decompositions subspaces V1, . . . , Vr

correspond to real eigenvalues, and subspaces Vr+1, . . . , Vk correspond to
complex eigenvalues, r + 2k = m.

Now

Rn = ReV1 ⊕ . . .⊕ ReVr ⊕ (Re Vr+1 ⊕ ImVr+1)⊕ . . .⊕ (ReVk ⊕ ImVk)

over the field of the coefficients R.

Thus we can calculate etAx for any x ∈ Rn.



Linear constant-coefficient ODEs, continued
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Linear constant-coefficient ODEs, stability

Definition
A linear ODE is stable if all its solutions are bounded.
A linear ODE is asymptotically stable if all its solutions tend to 0 as t → +∞.

Theorem
A linear constant-coefficient ODE is
a) stable iff there are no eigenvalues in the right complex half-plane, and to all
eigenvalues on the imaginary axis correspond Jordan blocks of size 1.
b) asymptotically stable iff all eigenvalues are in the left complex half-plane.



Exercises

Exercises

1. Draw all possible phase portraits of linear ODEs in R2.

2. Prove that det(eA) = etr A.

3. May linear operators A and B not commute (i.e. AB 6= BA) if

eA = eB = eA+B = E ?

4. Prove that there is no “blow-up” for a linear non-autonomous ODE.



LECTURE 3



LINEAR DYNAMICAL SYSTEMS



Linear periodic-coefficient ODEs

Consider an ODE

ẋ = A(t)x , x ∈ Rn, A(t + T ) = A(t)

where A(t) is a linear operator, A(t) : Rn → Rn, A(·) ∈ C 0(R),T = const > 0.
Denote Π the Poincaré return map for the plane {t = 0 mod T}.

Proposition.

Π is a linear operator, Π: Rn → Rn, Π is non-degenerate and preserves
orientation of Rn: det Π > 0.

Π is called the monodromy operator, its matrix is called the monodromy
matrix, its eigenvalues are called the Floquet multilpliers. The Floquet
multilpliers are roots of the characteristic equation det(Π− ρE) = 0.
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Linear periodic-coefficient ODEs, a logarithm

One can complexify both A(t) and Π:
A(t) : Cn → Cn, A(t)(x + iy) = A(t)x + iA(t)y ,
Π: Cn → Cn, Π(x + iy) = Πx + iΠy .

Let B be a linear operator, B : Cn → Cn.

Definition
A linear operator K : Cn → Cn is called a logarithm of B if B = eK .

Theorem (Existence of a logarithm)

Any non-degenerate operator has a logarithm.

Remark
Logarithm is not unique; logarithm of a real operator may be complex (example:
e iπ+2πk = −1, k ∈ Z). Logarithm is a multi-valued function. Notation: Ln .

Corollary

Take Λ = 1
T

Ln Π. Then Π coincides with the evolution operator for the time T
of the constant-coefficient linear ODE ż = Λz.

Eigenvalues of K are called Floquet exponents. The relation between Floquet
multipliers ρj and Floquet exponents λj is ρj = eTλj . Real parts of Floquet
exponents are Lyapunov exponents.
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Linear periodic-coefficient ODEs, a logarithm, continued

Proof.
Because of the theorem about the Jordan normal form it is enough to consider
the case when original operator B is a Jordan block. Let ρ be the eigenvalue of
this block, ρ 6= 0 because of non-degeneracy of B. Then B = ρ(E + 1

ρ
I ) ,

where I is the Jordan block with the eigenvalue 0. Take

K = (Ln ρ)E + Y , Y =
∞X

m=1

(−1)m−1

m
(
1

ρ
I )m

where Ln ρ = ln |ρ|+ iArg ρ. The series for Y actually contains only a finite
number of terms because I n = 0. For z ∈ C we have e ln(1+z) = 1 + z and

ln(1 + z) = z − 1
2
z2 +

1

3
z3 + . . . , ey = 1 + 1

2
y 2 +

1

3!
y 3 + . . .

provided that the series for the logarithm converges. Thus, plugging the series
for y = ln(1 + z) to the series for ey after rearranging of terms gives 1 + z .
Thus,

eK = e(Ln ρ)E+Y = e(Ln ρ)EeY = ρ(E +
1

ρ
I ) = B

(we use that if HL = LH, then eH+L = eHeL, and that all the series here are
absolutely convergent).



Linear periodic-coefficient ODEs, real logarithm

Theorem (Existence of real logarithm)

Any non-degenerate real operator which does not have real negative
eigenvalues has a real logarithm.

Proof.
Let Π be our real operator. There is a decomposition of Cn into a direct sum of
invariant subspaces such that in each of subspaces Π acts as a Jordan block:

Cn = V1 ⊕ . . .⊕ Vr ⊕ (Vr+1 ⊕ V̄r+1)⊕ . . .⊕ (Vk ⊕ V̄k)

In this decompositions subspaces V1, . . . , Vr correspond to real positive
eigenvalues of Π and have real Jordan bases.
Subspaces Vr+1, . . . , Vk correspond to complex eigenvalues, Jordan bases in Vj

and V̄j are chosen to be complex conjugated.
In ReVj , j = 1, . . . , r previous formulas allow to define the real logarithm.
In Vj , V̄j , j = r + 1, . . . , k previous formulas allow to define logarithms K and
K̄ respectively such that if w ∈ Vj and w̄ ∈ V̄j , then Kw = K̄ w̄ . Then we
define real logarithm K acting on (Re Vj ⊕ ImVj) by formulas
KRew = K 1

2
(w+w̄) = 1

2
(Kw+K̄ w̄), K Imw = K 1

2
1
i
(w−w̄) = 1

2
1
i
(Kw−K̄ w̄).

Thus, the real logarithm is defined on
Rn = ReV1 ⊕ . . .⊕ ReVr ⊕ (Re Vr+1 ⊕ Im V̄r+1)⊕ . . .⊕ (ReVk ⊕ ImVk).
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Linear periodic-coefficient ODEs, real logarithm, continued

Corollary

Square of any non-degenerate real operator has real logarithm.

Corollary

Take Λ̃ such that T Λ̃ is a real logarithm of Π2. Then Π2 coincides with the
evolution operator for the time 2T of the constant-coefficient linear ODE
ż = Λ̃z.



Linear periodic-coefficient ODEs, Floquet-Lyapunov theory

Fix a basis in Rn. It serves also as the basis in Cn which is complexification of
Rn. Identify linear operators with their matrices in this basis. So, now Π is the
matrix of monodromy operator, E is the unit matrix.

Let X (t) be the Cauchy fundamental matrix for our T -periodic equation (i.e.
the columns of X (t) are n linearly independent solutions to this equation,
X (0) = E).

Lemma
a) X (T ) = Π, b) X (t + T ) = X (t)Π

Proof.
a) x(t) = X (t)x(0) ⇒ x(T ) = X (T )x(0). b) X (t + T ) = X (t)R for a certain
R = const. Plugging t = 0 gives R = X (T ) = Π

Theorem (The Floquet theorem)

X (t) = Φ(t)etΛ, where Φ(·) ∈ C 1, Φ(t + T ) = Φ(t), Λ = 1
T

Ln Π

Proof.
Take Φ(t) = X (t)e−tΛ. Then
Φ(t + T ) = X (t + T )e−(t+T )Λ = X (t)Πe−TΛe−tΛ = X (t)e−tΛ = Φ(t)

Remark
The Floquet theorem plays a fundamental role in the solid state physics under
the name the Bloch theorem.
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Let X (t) be the Cauchy fundamental matrix for our T -periodic equation (i.e.
the columns of X (t) are n linearly independent solutions to this equation,
X (0) = E).

Lemma
a) X (T ) = Π, b) X (t + T ) = X (t)Π

Proof.
a) x(t) = X (t)x(0) ⇒ x(T ) = X (T )x(0). b) X (t + T ) = X (t)R for a certain
R = const. Plugging t = 0 gives R = X (T ) = Π

Theorem (The Floquet theorem)

X (t) = Φ(t)etΛ, where Φ(·) ∈ C 1, Φ(t + T ) = Φ(t), Λ = 1
T

Ln Π

Proof.
Take Φ(t) = X (t)e−tΛ. Then
Φ(t + T ) = X (t + T )e−(t+T )Λ = X (t)Πe−TΛe−tΛ = X (t)e−tΛ = Φ(t)

Remark
The Floquet theorem plays a fundamental role in the solid state physics under
the name the Bloch theorem.
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Linear periodic-coefficient ODEs, Floquet-Lyapunov theory, continued

Theorem (The Lyapunov theorem)

Any linear T-periodic ODE is reducible to a linear constant-coefficient ODE by
means of a smooth linear T-periodic transformation of variables.

Proof.
Let matrices Φ(t) and Λ be as in the Floquet theorem. The required
transformation of variables x 7→ y is given by the formula x = Φ(t)y . The
equation in the new variables has the form ẏ = Λy .

Remark
Any linear real T -periodic ODE is reducible to a linear real constant-coefficient
ODE by means of a smooth linear real 2T -periodic transformation of variables
(because Π2 has a real logarithm).

Remark
If a T -periodic ODE depends smoothly on a parameter, then the transformation
of variables in the Lyapunov theorem can also be chosen to be smooth in this
parameter. (Note that this assertion does not follow from the presented proof
of the Lyapunov theorem. This property is needed for analysis of bifurcations.)
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Linear periodic-coefficient ODEs, stability

Theorem
A linear periodic-coefficient ODE is
a)stable iff there are no Floquet multipliers outside the unit circle in the
complex plane, and to all multipliers on the unit circle correspond Jordan
blocks of size 1.
b) asymptotically stable iff all Floquet multipliers are within the unit circle.

Proof.
The Floquet-Lyapunov theory reduces problem of stability for a linear
periodic-coefficient ODE to the already solved problem of stability for a linear
constant-coefficient ODE. One should note relation ρj = eTλj between Floquet
multipliers and Floquet exponents and the fact that the Jordan block structure
is the same for operators Λ and eTΛ.



Linear maps

Consider a map
x 7→ Πx , x ∈ Rn,

where Π is a non-degenerate linear operator, Π: Rn → Rn, detΠ 6= 0.

The eigenvalues of Π are called the multipliers.

According to the theorem about existence of a logarithm there exists a linear
operator Λ: Cn → Cn such that Π = eΛ. Then Πk = ekΛ, k ∈ Z.
This allows to study iterations of linear maps.

One can use also the representation Π2 = e Λ̃ , where Λ̃ is a real linear operator,
Λ̃ : Rn → Rn.



Exercises

Exercises

1. Prove that square of any non-degenerate linear real operator has a real
logarithm.

2. Give an example of a real linear ODE with T -periodic coefficients which
cannot be transformed into constant-coefficient ODE by any real T -periodic
linear transformation of variables.

3. Find Ln

„
cos α − sin α
sin α cos α

«
.
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LECTURE 4



LINEAR DYNAMICAL SYSTEMS



Lyapunov exponents

Definition
For a function f , f : [a, +∞) → Rn, a = const, the characteristic Lyapunov
exponent is

χ[f ] = lim sup
t→+∞

ln |f (t)|
t

This is either a number or one of the symbols +∞,−∞.

Example

χ[eαt ] = α, χ[tβeαt ] = α, χ[sin(γt)eαt ] = α, χ[et2 ] = +∞ (γ 6= 0)

Proposition.

If functions f1, f2, . . . , fn have different finite characteristic Lyapunov exponents,
then these functions are linearly independent.

Definition
The set of the characteristic Lyapunov exponents of all solutions of an ODE is
called the Lyapunov spectrum of this ODE

Example

Consider equation ẋ = (x/t) ln x , t > 0, x > 0. Its general solution is x = ect

with an arbitrary constant c. So, the Lyapunov spectrum is R.



Lyapunov exponents

Definition
For a function f , f : [a, +∞) → Rn, a = const, the characteristic Lyapunov
exponent is

χ[f ] = lim sup
t→+∞

ln |f (t)|
t

This is either a number or one of the symbols +∞,−∞.

Example

χ[eαt ] = α, χ[tβeαt ] = α, χ[sin(γt)eαt ] = α, χ[et2 ] = +∞ (γ 6= 0)

Proposition.

If functions f1, f2, . . . , fn have different finite characteristic Lyapunov exponents,
then these functions are linearly independent.

Definition
The set of the characteristic Lyapunov exponents of all solutions of an ODE is
called the Lyapunov spectrum of this ODE

Example
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Linear non-autonomous ODEs, Lyapunov exponents

Consider a linear non-autonomous ODE

ẋ = A(t)x , x ∈ Rn

where A(t) is a linear operator, A(t) : Rn → Rn, A(·) ∈ C 0(R).
Recall that ‖A‖ = sup

x 6=0
‖Ax‖/‖x‖.

Theorem (Lyapunov)

If ‖A(·)‖ is bounded on [0, +∞), then each nontrivial solution has a finite
characteristic Lyapunov exponent.

Corollary

Lyapunov spectrum of a linear non-autonomous ODE in Rn with a bounded
matrix of coefficients contains no more than n elements.



Exercises

Exercises

1. Prove that the equation

ẋ =

„
0 1

2/t2 0

«
x

can not be transformed into a constant-coefficient linear equation by means of
transformation of variables of the form y = L(t)x , where
L(·) ∈ C 1(R), |L| < const, |L̇| < const, |L−1| < const.

2. Let X (t) be a fundamental matrix for the equation ẋ = A(t)x . Prove the
Liouville - Ostrogradski formula:

det(X (t)) = det(X (0))e
R t
0 tr A(τ)dτ

.



Linear Hamiltonian systems

A Hamiltonian system with a Hamilton function H is ODE system of the form

ṗ = −
„

∂H

∂q

«T

, q̇ =

„
∂H

∂p

«T

Here p ∈ Rn, q ∈ Rn, p and q are considered as vector-columns, H is a
function of p, q, t, the superscript “T” denotes the matrix transposition.
Components of p are called “impulses”, components of q are called
“coordinates”.

Let x be the vector-column combined of p and q. Then

ẋ = J

„
∂H

∂x

«T

, where J =

„
0 −En

En 0

«
Here En is the n × n unit matrix. The matrix J is called the symplectic unity.
J2 = −E2n. If H is a quadratic form, H = 1

2
xTA(t)x , where A(t) is a

symmetric 2n × 2n matrix, A(·) ∈ C 0, then we get a linear Hamiltonian system

ẋ = JA(t)x

Theorem (The Liouville theorem)

Shift along solutions of a Hamiltonian system preserves the standard phase
volume in R2n.

Corollary

A linear Hamiltonian system can not be asymptotically stable.
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Linear Hamiltonian systems, skew-scalar product

Definition
The skew-symmetric bilinear form [η, ξ] = ξTJη in R2n is called the skew-scalar
product or the standard linear symplectic structure. (Note: [η, ξ] = (Jη, ξ).)

Theorem
A shift along solutions of a linear Hamiltonian system preserves the skew-scalar
product: if x(t) and y(t) are solutions of the system, then [x(t), y(t)] ≡ const.

Proof.
d
dt

[y(t), x(t)] = d
dt

x(t)TJy(t) = (JAx)T Jy + xTJJAy = xTATJTJy − xTAy =

xTAy − xTAy = 0

Corollary

Let X (t) be the Cauchy fundamental matrix for our Hamiltonian system (i.e.
the columns of X (t) are n linearly independent solutions to this system,
X (0) = E2n). Then XT (t)JX (t) = J for all t ∈ R.

Proof.
Elements of matrix XT (t)JX (t) are skew-scalar products of solutions, and so
this is a constant matrix.
From the condition at t = 0 we get XT (t)JX (t) = J.
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Linear symplectic transformations

Definition
A 2n × 2n matrix M which satisfies the relation MTJM = J is called a
symplectic matrix. A linear transformation of variables with a symplectic matrix
is called a linear symplectic transformation of variables.

Corollary

The Cauchy fundamental matrix for linear Hamiltonian system at any moment
of time is a symplectic matrix. A shift along solutions of a linear Hamiltonian
system is a linear symplectic transformation.

Theorem
A linear transformations of variables is a symplectic transformations if and only
if it preserves the skew-scalar product: [Mη, Mξ] = [η, ξ] for any
ξ ∈ R2n, η ∈ R2n; here M is the matrix of the transformation.

Proof.
[Mη, Mξ] = ξTMTJMη

Theorem
Symplectic matrices form a group.

The group of symplectic 2n × 2n matrices is called the symplectic group of
degree 2n and is denoted as Sp(2n). (The same name is used for the group of
linear symplectic transformations of R2n.)
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Symplectic transformations in linear Hamiltonian systems

Make in a Hamiltonian system ẋ = JA(t)x with a Hamilton function
H = 1

2
xTA(t)x a symplectic transformation of variables y = M(t)x . We have

ẏ = Mẋ+Ṁx = MJAx+Ṁx = (MJAM−1+ṀM−1)y = J(−JMJAM−1−JṀM−1)y

Let us show that the obtained equation for y is a Hamiltonian one. Because M
is a symplectic matrix, we have

MTJM = J, ṀTJM + MTJṀ = 0, M = −J(M−1)TJ, ṀT = MTJṀM−1J

Thus
−JMJAM−1 = JJ(M−1)TJJAM−1 = (M−1)TAM−1,

and this is a symmetric matrix. And

(JṀM−1)T = −(M−1)T ṀTJ = −(M−1)TMTJṀM−1JJ = JṀM−1

and this also is a symmetric matrix. So, equation for y is a Hamiltonian one.

Note, that if M = const, then the Hamilton function for the new system

H = 1
2
yT (M−1)TA(t)M−1y

is just the old Hamilton function expressed through the new variables.



Symplectic transformations in linear Hamiltonian systems
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Constant-coefficient linear Hamiltonian system

Consider an autonomous linear Hamiltonian system;

ẋ = JAx

where A is a constant symmetric 2n × 2n matrix.

Proposition.

The matrix JA is similar to the matrix (−JA)T .

Proof.
J−1(−JA)TJ = −J−1ATJTJ = JA

Corollary

If λ is an eigenvalue, then −λ is an eigenvalue.
Eigenvalues λ and −λ have equal multiplicities and the corresponding Jordan
structures are the same.
If λ = 0 is an eigenvalue, then it necessarily has even multiplicity.

Corollary

Characteristic polynomial det(JA− λE2n) of a matrix JA is a polynomial in λ2.



Constant-coefficient linear Hamiltonian system, location of eigenvalues

Theorem
The eigenvalues of autonomous linear Hamiltonian system are situated on the
plane of complex variable symmetrically with respect to the coordinate cross: if
λ is an eigenvalue, then −λ, λ̄, −λ̄ are also eigenvalues. The eigenvalues λ,
−λ, λ̄, −λ̄ have equal multiplicities and the corresponding Jordan structures
are the same.

So, eigenvalues may be of four types: real pairs (a,−a), purely imaginary pairs
(ib,−ib), quadruplets (±a± ib) and zero eigenvalues.

Corollary

If there is a purely imaginary simple eigenvalue, then it remains on the
imaginary axis under a small perturbation of the Hamiltonian. Similarly, a real
simple eigenvalue remains real under a small perturbation of the Hamiltonian.

So, the system may loss stability under a small perturbation of the Hamiltonian
only if there is 1 : 1 resonance.
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LECTURE 5



LINEAR HAMILTONIAN SYSTEMS



List of formulas

A Hamiltonian system with a Hamilton function H is an ODE system of the
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ṗ = −
„

∂H

∂q

«T

, q̇ =

„
∂H

∂p

«T

Here p ∈ Rn, q ∈ Rn, p and q are considered as vector-columns, H is a function
of p, q, t, the superscript “T” denotes the matrix transposition. Components of
p are called “impulses”, components of q are called “coordinates”.

Let x be the vector-column combined of p and q. Then
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List of formulas, continued

The skew-symmetric bilinear form [η, ξ] = ξTJη in R2n is called the skew-scalar
product or the standard linear symplectic structure.

A 2n × 2n matrix M which satisfies the relation MTJM = J is called a
symplectic matrix. A linear transformation of variables with a symplectic matrix
is called a linear symplectic transformation of variables.

A linear transformations of variables is a symplectic transformations if and only
if it preserves the skew-scalar product: [Mη, Mξ] = [η, ξ] for any
ξ ∈ R2n, η ∈ R2n; here M is the matrix of the transformation.

The eigenvalues of autonomous linear Hamiltonian system are situated on the
plane of complex variable symmetrically with respect to the coordinate cross.



Normal form of quadratic Hamiltonian in the case of pairwise different
eigen-frequencies

Let matrix JA has purely imaginary pairwise different eigenvalues
±iω1,±iω2, . . . ,±iωn. Let ξk , ξ̄k be eigenvectors of JA corresponding to
eigenvalues ±iωk .

Theorem
By a certain linear symplectic transformation of variables the Hamilton function
H = 1

2
xTAx can be transformed to the form

H = 1
2
Ω1(p

2
1 + q2

1) + 1
2
Ω2(p

2
2 + q2

2) + . . . + 1
2
Ωn(p

2
n + q2

n)

where pk are “impulses”, and qk are “coordinates”, Ωk = ±ωk .

Lemma
Let η1, η2 be eigenvectors of a matrix JA, and λ1, λ2 be the corresponding
eigenvalues. If λ1 6= −λ2, then η1 and η2 are scew-orthogonal: [η2, η1] = 0.

Proof.
JAηk = λkηk . Thus, Aηk = −λkJηj , and ηT

1 Aη2 = −λ2η
T
1 Jη2 = λ1η

T
1 Jη2

Lemma
[ξk , ξ̄k ] is purely imaginary number, [ξk , ξ̄k ] 6= 0 .

Proof.
The complex conjugation change sign of [ξk , ξ̄k ].

Without loss of generality we may assume that [ξk , ξ̄k ] is equal either i or −i .
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Proof of the theorem about normal form of quadratic Hamiltonian

Proof of the theorem.
Without loss of generality we may assume that [ξk , ξ̄k ] is equal to either i or
−i . Introduce ak = (ξk + ξ̄k)/

√
2, bk = (ξk − ξ̄k)/(

√
2i).

Then
[ak , bk ] = (−[ξk , ξ̄k ] + [ξ̄k , ξk ])/(2i) = [ξ̄k , ξk ]/i
is equal to either 1 or −1. Introduce new vectors uk , vk as follows.
If [ak , bk ] = 1, then uk = ak , vk = bk .
If [ak , bk ] = −1, then uk = bk , vk = ak .
Thus, [uk , vk ] = 1, [uk , vj ] = 0, j 6= k.
Choose as the new basis in R2n vectors u1, u2, . . . , un, v1, v2, . . . , vn (in this
order). The matrix of transformation of vector’s coordinates for this change of
basis is a symplectic one. In the new coordinates the Hamilton function has
the required form.

The form of the Hamiltonian shows that the phase space is a direct product of
of invariant two-dimensional mutually skew-orthogonal planes. Dynamics in kth
plane is decribed by the Hamilton function Hk = 1

2
Ωk(p

2
k + q2

k); it is called a
partial Hamilton function, or just a partial Hamiltonian. This is the Hamilton
function of a linear oscillator with the frequency Ωk . In the plane qk , pk phase
curves are circles. Rotation on this circles is clockwise, if Ωk > 0, and
counterclockwise, if Ωk < 0. Values |Ωk | are called eigen-frequencies of the
system. Phase space R2n is foliated (with singularities) by n-dimensional
invariant tori.
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On normal forms of quadratic Hamiltonians

Theorem (Williamson)

There exists a real symplectic linear change of variables reducing the
Hamiltonian to a sum of partial Hamiltonians (functions of disjoint subsets of
conjugate variables), and the matrix of the system, correspondingly, to a
block-diagonal form. Each partial Hamiltonian corresponds either to a real pair,
or to an imaginary pair, or to a quadruplet of eigenvalues, or to a zero
eigenvalue. The partial Hamiltonians are determined, up to a sign, by the
Jordan blocks of the operator JA.

The list of partial Hamiltonians is contained in the paper by J.Williamson
(1936).



On stability loss in constant-coefficient linear Hamiltonian systems

When parameters of a stable constant-coefficient linear Hamiltonian system are
changing, the eigenvalues move on the imaginary axis. When eigenvalues
collide they may leave the imaginary axis. However, collision of not each pair of
eigenvalues is dangerous, some eigenvalues necessarily pass through each other
without leaving the imaginary axis.

While all eigenvalues are simple the Hamilton function can be reduced to the
normal form

H = 1
2
Ω1(p

2
1 + q2

1) + 1
2
Ω2(p

2
2 + q2

2) + . . . + 1
2
Ωn(p

2
n + q2

n)

We say that a partial Hamilton function Hk = 1
2
Ωk(p

2
k + q2

k) is positive
(negative), if Ωk is positive (respectively, negative).

Theorem
If imaginary eigenvalues corresponding to partial Hamilton functions having the
same sign collide not at the point 0, the system does not loss its stability. In
particular, when these eigenvalues collide, the matrix of the Hamiltonian
system does not have Jordan blocks of sizes bigger than 1.
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On linear natural Hamiltonian systems

For a natural Hamiltonian system its Hamilton function H is the sum of a
kinetic energy T = T (p, q) = 1

2
pTK−1(q)p and a potential energy V (q) :

H = T + V .
Here K(q) is a positive definite matrix.

For a linear natural Hamiltonian
system K = const and V is a quadratic form: V = 1

2
qTDq.

Theorem
In any linear natural Hamiltonian system all non-zero eigenvalues are either real
or pure imaginary. To each non-zero eigenvalue correspond only Jordan blocks
of size 1. To zero eigenvalue correspond Jordan blocks of size 2.

Corollary

For linear natural Hamiltonian system collision of non-zero eigenvalues on the
imaginary axis does not lead to a stability loss. Collision of eigenvalues at 0
leads to the stability loss.
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On linear natural Hamiltonian systems, continued

Proof of the theorem.
There exists a matrix C which simultaneously transforms the quadratic form
yTKy to sum of squares, and the quadratic form yTDy to a diagonal form, i.e.

CTKC = En, CTDC = diag(µ1, µ2, . . . , µn)

The transformation of variables p, q 7→ P, Q, p = (C−1)TP, q = CQ is a
symplectic one. Indeed, if p̃ = (C−1)T P̃, q̃ = CQ̃, then

P̃TQ − Q̃TP ≡ p̃Tq − q̃Tp

The Hamilton function in the new variables is

H = 1
2
(P2

1 + P2
2 + . . . + P2

n ) + 1
2
(µ1Q

2
1 + µ2Q

2
2 + . . . + µnQ

2
n)

It is the sum of the partial Hamilton functions of the form Hk = 1
2
(P2

k + µkQ
2
k ).

The equation of the motion for a Hamilton function Hk has the form

Q̈k + µkQk = 0

Eigenvalues are ±i
√

µ
k
, if µk > 0, and ±

√
−µk , if µk < 0. Only for µk = 0 the

solution contains multiplier t, and so only to eigenvalue 0 there correspond the
Jordan block of the size 2.



Exercises

Exercises

1. Consider an equation ẋ = v(t, x), x ∈ Rk . Prove that if divv ≡ 0, then the
shift along trajectories of this equation preserves the standard phase volume in
Rk . (Hint: divv = tr(∂v/∂x).)

2. Give a geometric interpretation for skew-scalar product in the case of one
degree of freedom (n=1) and in the case of several degrees of freedom.

3. Obtain formulas for partial Hamilton functions corresponding to the pair of
a simple real eigenvalues (±a), to the quadruplet of a simple complex
eigenvalues (±a± ib) and to the eigenvalue 0 of multiplicity 2 (a 6= 0, b 6= 0).



Periodic-coefficient linear Hamiltonian system.

Consider a periodic linear Hamiltonian system;

ẋ = JA(t)x

where A(t) is a symmetric 2n × 2n matrix, A(t + T ) = A(t), A(·) ∈ C 0.

Let X (t) be the Cauchy fundamental matrix for this system (i.e. the columns
of X (t) are n linearly independent solutions to this system, X (0) = E2n).

We know that XT (t)JX (t) ≡ J. This implies that detX (t) ≡ 1.

Let Π be the monodromy matrix for this system. We know that Π = X (T ).
Thus ΠTJΠ = J (so, Π is a symplectic matrix) and detΠ = 1
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Periodic-coefficient linear Hamiltonian system, properties of multipliers

Recall the definition: Multipliers a eigenvalues of the monodromy matrix.

Proposition.

The matrix Π is similar to the matrix
`
Π−1

´T
.

Proof.
ΠTJΠ = J implies that

`
Π−1

´T
= JΠJ−1

Corollary

If ρ is a multiplier , then 1/ρ is a multiplier.
Multipliers ρ and 1/ρ have equal multiplicities and the corresponding Jordan
structures in Π are the same.
If ρ = −1 is a multiplier, then it necessarily has even multiplicity.
If ρ = 1 is a multiplier, then it necessarily has even multiplicity.

Corollary

Characteristic polynomial d(ρ) = det(Π− ρE2n) of the matrix Π is a
self-reciprocal (or, palindromic) one: d(1/ρ) = d(ρ)/ρ2n. So, the characteristic
equation d(ρ) = 0 can be reduced to the form f (ρ + 1/ρ) = 0, where f (·) is a
polynomial of degree n.
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Periodic-coefficient linear Hamiltonian system, location of multipliers

Theorem
Multipliers of a periodic-coefficient linear Hamiltonian system are situated on
the plane of complex variable symmetrically with respect to the unit circle (in
the sense of the inversion) and with respect to the real axis: if ρ is a multiplier,
then 1/ρ, ρ̄, 1/ρ̄ are also multipliers. The multipliers ρ, 1/ρ, ρ̄, 1/ρ̄ have equal
multiplicities and the corresponding Jordan structures are the same.

So, multipliers may be of five types: real pairs (a, 1/a), pairs on the unit circle
e iφ, e−iφ, quadruplets (a±1e±iφ), −1, and 1.

Corollary

If there is a simple eigenvalue on the unit circle, then it remains on the unit
circle under a small perturbation of the Hamiltonian. Similarly, a real simple
eigenvalue remains real under a small perturbation of the Hamiltonian.

So, the system may loss stability under a small perturbation of the Hamiltonian
only if there is a resonance.

When parameters of a stable periodic-coefficient linear Hamiltonian system are
changing, the multipliers move on the unit circle. When multipliers collide they
may leave the unit circle; this result in loss of stability. However, collision of
not each pair of multipliers is dangerous, some multipliers necessarily pass
through each other without leaving the unit circle (M.G.Krein’s theory).
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LECTURE 6



LINEAR HAMILTONIAN SYSTEMS



List of formulas

A Hamiltonian system with a Hamilton function H is an ODE system of the
form

ṗ = −
„

∂H

∂q

«T

, q̇ =

„
∂H

∂p

«T

Here p ∈ Rn, q ∈ Rn, p and q are considered as vector-columns, H is a function
of p, q, t, the superscript “T” denotes the matrix transposition. Components of
p are called “impulses”, components of q are called “coordinates”.

Let x be the vector-column combined of p and q. Then

ẋ = J

„
∂H

∂x

«T

, where J =

„
0 −En

En 0

«
The matrix J is called the symplectic unity. J2 = −E2n.

If H is a quadratic form, H = 1
2
xTA(t)x , where A(t) is a symmetric 2n × 2n

matrix, A(·) ∈ C 0, then we get a linear Hamiltonian system

ẋ = JA(t)x
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List of formulas, continued

The skew-symmetric bilinear form [η, ξ] = ξTJη in R2n is called the skew-scalar
product or the standard linear symplectic structure.

A 2n × 2n matrix M which satisfies the relation MTJM = J is called a
symplectic matrix. A linear transformation of variables with a symplectic matrix
is called a linear symplectic transformation of variables.

A linear transformations of variables is a symplectic transformations if and only
if it preserves the skew-scalar product: [Mη, Mξ] = [η, ξ] for any
ξ ∈ R2n, η ∈ R2n; here M is the matrix of the transformation.

The Cauchy fundamental matrix X (t) for a linear Hamiltonian system (i.e. the
matrix X (t) such that its columns are n linearly independent solutions to this
system, X (0) = E2n) is a symplectic matrix , i. e. XT (t)JX (t) = J for all
t ∈ R.

For any linear T periodic ODE the matrix of the monodromy map is equal to
the value of Cauchy fundamental matrix X (t) at the moment of time T :
Π = X (T ).



Periodic-coefficient linear Hamiltonian system.

Consider a periodic linear Hamiltonian system;

ẋ = JA(t)x

where A(t) is a symmetric 2n × 2n matrix, A(t + T ) = A(t), A(·) ∈ C 0.

Let X (t) be the Cauchy fundamental matrix for this system (i.e. the columns
of X (t) are n linearly independent solutions to this system, X (0) = E2n).

We know that XT (t)JX (t) ≡ J. This implies that detX (t) ≡ 1.

Let Π be the monodromy matrix for this system. We know that Π = X (T ).
Thus ΠTJΠ = J (so, Π is a symplectic matrix) and detΠ = 1
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Periodic-coefficient linear Hamiltonian system, properties of multipliers

Recall the definition: Multipliers a eigenvalues of the monodromy matrix.

Proposition.

The matrix Π is similar to the matrix
`
Π−1

´T
.

Proof.
ΠTJΠ = J implies that

`
Π−1

´T
= JΠJ−1

Corollary

If ρ is a multiplier , then 1/ρ is a multiplier.
Multipliers ρ and 1/ρ have equal multiplicities and the corresponding Jordan
structures in Π are the same.
If ρ = −1 is a multiplier, then it necessarily has even multiplicity.
If ρ = 1 is a multiplier, then it necessarily has even multiplicity.

Corollary

Characteristic polynomial d(ρ) = det(Π− ρE2n) of the matrix Π is a
self-reciprocal (or, palindromic) one: d(1/ρ) = d(ρ)/ρ2n. So, the characteristic
equation d(ρ) = 0 can be reduced to the form f (ρ + 1/ρ) = 0, where f (·) is a
polynomial of degree n.
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Periodic-coefficient linear Hamiltonian system, location of multipliers

Theorem
Multipliers of a periodic-coefficient linear Hamiltonian system are situated on
the plane of complex variable symmetrically with respect to the unit circle (in
the sense of the inversion) and with respect to the real axis: if ρ is a multiplier,
then 1/ρ, ρ̄, 1/ρ̄ are also multipliers. The multipliers ρ, 1/ρ, ρ̄, 1/ρ̄ have equal
multiplicities and the corresponding Jordan structures are the same.

So, multipliers may be of five types: real pairs (a, 1/a), pairs on the unit circle
e iφ, e−iφ, quadruplets (a±1e±iφ), −1, and 1.

Corollary

If there is a simple eigenvalue on the unit circle, then it remains on the unit
circle under a small perturbation of the Hamiltonian. Similarly, a real simple
eigenvalue remains real under a small perturbation of the Hamiltonian.

So, the system may loss stability under a small perturbation of the Hamiltonian
only if there is a resonance.

When parameters of a stable periodic-coefficient linear Hamiltonian system are
changing, the multipliers move on the unit circle. When multipliers collide they
may leave the unit circle; this result in loss of stability. However, collision of
not each pair of multipliers is dangerous, some multipliers necessarily pass
through each other without leaving the unit circle (M.G.Krein’s theory).
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Periodic-coefficient linear Hamiltonian system, Krein’s theory

In the Krein’s theory each simple multiplier on the unit circle has a property
which is called the Krein signature.
The Krein signature may be either positive or negative.
If two multipliers on the unit circle with the same Krein signature collide, they
pass through each other. If two multipliers on the unit circle with different
Krein signatures collide, they typically leave the unit circle; the multiplier with
the positive Krein signature is moving inside the unit circle, and the multiplier
with the negative Krein signature is moving outside the unit circle.

One can distinguish multipliers with different Krein signatures on the basis of
the following test:
Consider perturbed system

ẋ = J(A(t) + δB(t))x

B(t) is a symmetric positive-definite 2n × 2n matrix, B(t + T ) = B(t),
0 < δ � 1.

Theorem (Krein’s test)

For small enough δ, when δ groves, on the unit circle multipliers with the
positive signature move counterclockwise, and multipliers with the negative
signature move clockwise.
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Parametric resonance

Consider a periodic-coefficient linear Hamiltonian system which is a small
time-periodic perturbation of a stable constant-coefficient Hamiltonian system:

ẋ = J(A + εB(t))x

where A and B(t) are a symmetric 2n × 2n matrices, B(t + T ) = B(t),
B(·) ∈ C 0, 0 < ε � 1.

We assume that the eigenvalues of JA are different purely imaginary numbers
±iω1,±iω2, . . . ,±iωn. This guarantees stability of the unperturbed system.
Values |ω1|, |ω2|, . . . , |ωn| are the eigen-frequencies of the unperturbed system.

If B were constant, then the system would be stable provided that ε is small
enough. It turns out that the system can be made unstable by an arbitrary
small periodic perturbation of an appropriate period T . This phenomenon is
called the parametric resonance. The necessary condition for the parametric
resonance is that the unperturbed system considered as T -periodic system
has non-simple multipliers.

The multipliers are e±iω1T , e±iω2T , . . . , e±iωnT . So, in the case of a parametric
resonance e±iωjT = e±iωmT for some j , m. This implies that
±ωjT = ±ωmT + 2πk for a certain integer k. For j = m we get ωm = k

2
2π
T

.



Parametric resonance

Consider a periodic-coefficient linear Hamiltonian system which is a small
time-periodic perturbation of a stable constant-coefficient Hamiltonian system:
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Parametric resonance, application of the Krein theory

Let the normal form of the Hamiltonian function for the Hamiltonian system
ẋ = JAx be

H = 1
2
Ω1(p

2
1 + q2

1) + 1
2
Ω2(p

2
2 + q2

2) + . . . + 1
2
Ωn(p

2
n + q2

n)

Then eigenvalues of the matrix JA are ±iΩ1, ±iΩ2, . . . , ±iΩn.
Consider Hamiltonian system whose Hamiltonian in the variables p, q is

F = H + 1
2
δ(p2

1 + q2
1 + p2

2 + q2
2 + . . . + p2

n + q2
n)

The eigenvalues of the matrix of this Hamiltonian system are
± i(Ω1 + δ), ±i(Ω2 + δ), . . . , ±i(Ωn + δ).

The eigenvalues of the monodromy matrix for the time T are
e±i(Ω1+δ)T , e±i(Ω2+δ)T , . . . , e±i(Ωn+δ)T .

According to the Krein test, when δ grows, the multipliers with the positive
Krein signature should move counterclockwise, and multipliers with the
negative signature should move clockwise. Therefore, here multipliers with the
sign “+” in the exponent have positive Krein signature, and those with the
sign “-” have negative Krein signature.
Thus, if a relation e iΩjT = e iΩmT for some j , m is satisfied, then a T -periodic
perturbation can not destroy stability (there is no parametric resonance). In
opposite, if a relation e iΩjT = e−iΩmT for some j , m is satisfied, then there
exists a T -periodic perturbation that destroy stability, i.e. leads to a parametric
resonance.



Symplectic version of Floquet-Lyapunov theory

Theorem
A linear Hamiltonian system that is T -periodic in time can be reduced to an
autonomous form by a linear symplectic transformation of variables. If the
system has no negative real multipliers, then the reducing transformation of
variables can be chosen to be T-periodic in time, and if the system has
negative real multipliers, then 2T-periodic. If the system depends smoothly on
a parameter, then the transformation of variables can also be chosen to be
smooth in this parameter.

Remark
Let a periodic-coefficient linear Hamiltonian system has the form

ẋ = J(A + εB(t, ε))x
with a smooth dependence of B on ε. Then, according to the previous theorem
it can be reduced to an autonomous system

ẏ = J(A0 + εA1(ε))y
However, it can happens that the reducing transformation is not close to the
autonomous one and A0 6= A. The reason is similar to that for a parametric
resonance. It can happens that the matrix A has simple eigenvalues λ1 and λ2

such that λ2 − λ1 = 2πi
T

m with an integer m. Then for ε = 0 the monodromy

matrix Π = eTA has the eigenvalue (the multiplier) eTλ1 of multiplicity 2.
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Exercises

Exercises

1. Consider an equation ÿ + p(t)y = 0, y ∈ R, p(t + T ) = p(t). Let Π be a
monodromy matrix for this equation (what is the definition of a monodromy
matrix for this equation?). Prove that if |tr Π| < 2, then this equation is stable,
and if |tr Π| > 2, it is unstable.

2. Let in the previous exercise p(t + 2π) = p(t), ε � 1 and

p(t) =

(
(ω + ε)2, if 0 ≤ t < π;

(ω − ε)2, if π ≤ t < 2π.

Find domains of stability in the plane ω, ε.



LINEARISATION



Variation equation

Consider an ODE

ẋ = v(x), x ∈ D ⊂ Rn, v ∈ C 2(D)

Denote {g t} the phase flow associated with this equation. For an arbitrary
x∗ ∈ D consider the solution g tx∗, t ∈ R to this ODE.
Introduce ξ = x − g tx∗. Then

ξ̇ = v(g tx∗ + ξ)− v(g tx∗) =
∂v(g tx∗)

∂x
ξ + O(|ξ|2)

Denote A(t) = ∂v(g tx∗)
∂x

Definition
The linear non-autonomous ODE

ξ̇ = A(t)ξ

is called the variation equation near the solution g tx∗.

Denote ϕ(t) = dg tx∗
dt

.

Proposition.

ϕ(t) is a solution to the variation equation.

Proof.
ϕ̇ = d

dt
( dg tx∗

dt
) = d

dt
v(g tx∗) = ∂v(g tx∗)

∂x
dg tx∗

dt
= A(t)ϕ
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Linearisation of ODE near equilibrium position

Definition
A point x∗ ∈ D is called an equilibrium position for the equation ẋ = v(x) if
v(x∗) = 0, or, equivalently, g tx∗ = x∗ ∀t ∈ R.

The variation equation near the solution x ≡ x∗ is the linear
constant-coefficient ODE

ξ̇ = Aξ, A =
∂v(x∗)

∂x

This equation is called the linearisation of the original ODE near the
equilibrium position x∗.



Linearisation of ODE near periodic solution

Definition
A solution g tx∗, t ∈ R to the equation ẋ = v(x) is called a T-periodic
solution, if g tx∗ is a periodic function of the time t with the minimal period T .
The trajectory of this solution is the closed curve which is called a T -periodic
trajectory (or an orbit, or a cycle).

The variation equation near such periodic solution is the linear
periodic-coefficient ODE

ξ̇ = Aξ, A =
∂v(g tx∗)

∂x

This equation is called the linearisation of the original ODE near the periodic
solution g tx∗, t ∈ R.

Note that ϕ(t) = dg tx∗
dt

is a T -periodic solution to the variation equation.



Normal coordinates in a neighborhood of periodic trajectory

Theorem
In a small neighborhood of any periodic trajectory there exists a transformation
of variables x 7→ (y , θ), y ∈ Rn−1, θ ∈ S1 such that the system takes the form

ẏ = u(y , θ), u(0, θ) ≡ 0

θ̇ = ω + w(y , θ), ω = const > 0, w(0, θ) ≡ 0

The variables y in such representation are called normal variables. The periodic
trajectory has the equation y = 0 and is parametrized by the angle θ.



Variation equation near periodic trajectory in normal coordinates

Using normal coordinates in a neighborhood of a periodic trajectory with θ as
the new time leads to the equation

dy

dθ
=

1

ω
u(y , θ) + O(|y |2)

Denote B(θ) = 1
ω

∂u(0,θ)
∂y

.

Definition
The linear 2π-periodic ODE

dy

dθ
= B(θ)y

is called the linearisation, or the variation equation, of the original ODE near
the periodic trajectory in the normal coordinates.

According to Floquet-Lyapunov theory this ODE can be transformed into an
autonomous ODE by a linear 2π- or 4π-periodic in θ transformation of
variables.
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Linearisation of ODE near equilibrium position

Definition
A point x∗ ∈ D is called an equilibrium position, or just an equilibrium, for the
equation ẋ = v(x) if v(x∗) = 0, or, equivalently, g tx∗ = x∗ ∀t ∈ R.

The variation equation near the solution x ≡ x∗ is the linear
constant-coefficient ODE

ξ̇ = Aξ, A =
∂v(x∗)

∂x

This equation is called the linearisation of the original ODE near the
equilibrium x∗.

Eigenvalues of the linear operator A are called eigenvalues of the equilibrium x∗.



Linearisation of ODE near periodic solution

Definition
A solution g tx∗, t ∈ R to the equation ẋ = v(x) is called a T-periodic
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periodic solution g tx∗, t ∈ R.

Note that ϕ(t) = dg tx∗
dt

is a T -periodic solution to the variation equation.

Thus, periodic solution always have 1 as a multiplier.
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Normal coordinates in a neighborhood of periodic trajectory

Theorem
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of variables x 7→ (y , θ), y ∈ Rn−1, θ ∈ S1 such that the system takes the form
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Variation equation near periodic trajectory in normal coordinates

Using normal coordinates in a neighborhood of a periodic trajectory with θ as
the new time leads to the equation
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Definition
The linear 2π-periodic ODE

dy
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= B(θ)y

is called the linearisation, or the variation equation, of the original ODE near
the periodic trajectory in the normal coordinates.

According to Floquet-Lyapunov theory this ODE can be transformed into an
autonomous ODE by a linear 2π- or 4π-periodic in θ transformation of
variables.

Multipliers of the variation equation near the periodic trajectory in the normal
coordinates are called multipliers of the periodic trajectory. (Note: this
multipliers are also multipliers of corresponding periodic solution, which have
also 1 as the multiplier.)
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Poincaré return map near periodic trajectory

Use normal coordinates in a neighborhood of the periodic trajectory. Take
θ = 0 as the surface of the Poincaré section. Consider the Poincaré first return
map. (In this case it is called also the monodromy map.)

The Poincaré map has the form

y 7→ Ky + O(|y |2)
where K is a linear operator, K : Rn−1 → Rn−1.

The operator K is the shift operator during the “time” θ = 2π for the variation
equation in the normal coordinates. It is non-degenerate and homotopic to the
identity. So, it preserves the orientation of Rn−1: det K > 0.



Linearisation of map near fixed point

Consider a map
P : D → D, D ⊂ Rn, P ∈ C 2(D)

This map sends a point x to a point P(x).

Definition
The point x∗ ∈ D is called a fixed point of the map P if P(x∗) = x∗.

Introduce ξ = x − x∗. Then

x∗ + ξ 7→ P(x∗ + ξ) = x∗ +
∂P(x∗)

∂x
ξ + O(|ξ|2)

Denote A = ∂P(x∗)
∂x

Definition
The linear map

ξ 7→ Aξ

is called the linearisation of the original map P near the fixed point x∗.

The eigenvalues of the operator A are called the multipliers of the fixed point
x∗.

Multipliers of the fixed point of Poincare return map near a periodic trajectory
coincide with the defined earlier mutipliers of this periodic trajectory.
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Linearisation of Hamiltonian system near equilibrium position

Consider a Hamiltonian system with a Hamilton function H :

ṗ = −
„

∂H

∂q

«T

, q̇ =

„
∂H

∂p

«T

Let a point p = p∗, q = q∗ be an equilibrium position of this system. Then at
this point partial derivatives of the Hamilton function vanish, and so this point
is a critical point of the Hamilton function. Linearised near the equilibrium
position system is again a Hamiltonian system. Its Hamilton function is the
quadratic part of the original Hamilton function near the equilibrium position.



Linearisation of Hamiltonian system near periodic trajectory

Suppose that an autonomous Hamiltonian system in R2n has a periodic
trajectory which is not an equilibrium position. Such trajectories are not
isolated but, as a rule, form families.

Proposition.
In a neighbourhood of a periodic trajectory there exist new symplectic
coordinates θ mod 2π, I ∈ R1 and z ∈ R2(n−1), such that I = 0 and z = 0 on
the trajectory under consideration, and going around this trajectory changes θ
by 2π; on the trajectory itself θ̇ = Ω = const > 0. In the new coordinates the
Hamiltonian function takes the form H = ΩI +H(z , θ, I ) , where the expansion
of H in z , I begins with terms of the second order of smallness.

Perform the isoenergetic reduction (also called Whittaker transformation)
choosing, on each energy level H = h close to the original one, the phase θ for
the new time. The Hamiltonian of the problem takes the form F = F (z , θ, h).
For h = 0 the origin is an equilibrium position of the system. Suppose that
this equilibrium position is non-degenerate. Then for small h the system has a
non-degenerate periodic solution. By a change of variables smooth in the
parameter one can shift origin of coordinates to this periodic solution. The
Hamiltonian takes the form

F = 1
2
zTA(θ, h)z + G(z , θ, h)

where the expansion of G in z begins with terms of the third order of
smallness; the Hamiltonian has period 2π in θ.
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Linearisation of Hamiltonian system near periodic trajectory, continued

Symplectic version of the Floquet-Lyapunov theory allows to reduce the
problem to the case when the quadratic part of the Hamiltonian does not
depend on θ:

F̃ = 1
2
zT Ã(h)z + G(z , θ, h) .



Exercises

Exercises

1. Prove that multipliers of a periodic trajectory coincide with multipliers of
the fixed point of the corresponding Poincaré return map.

2. Let for isoenergetic reduction procedure some coordinate is introduced as
the new time. Proof that the new Hamilton function is the impulse conjugated
to this coordinate, expressed through value of energy and remaining phase
variables and taken with the sign ”-”.



LOCAL TOPOLOGICAL EQUIVALENCE

TO LINEAR SYSTEM



Definition of topological equivalence

Definition
Two dynamical systems with phase spaces X1 ⊆ Rn and X2 ⊆ Rn are
topologically equivalent in the domains U1 ⊆ X1, U2 ⊆ X2 if there exists a
homeomorphism η : U1 → U2 which maps trajectories, half-trajectories,
segments of trajectories of the first system to trajectories, half-trajectories,
segments of trajectories of the second system preserving the direction of time.

For dynamical systems with discrete time the topological equivalency is
equivalent to the topological conjugacy of evolutionary operators for time 1.

Definition
Two diffeomorphisms, g1 and g2, which are defined in the domains X1 ⊆ Rn

and X2 ⊆ Rn respectively, are topologically conjugate in the domains
U1 ⊆ X1, U2 ⊆ X2 if there exists a homeomorphism η : U1 → U2 such that
η(g1(x)) = g2(η(x)) for any x ∈ U1.

If g1 and g2 are topologically conjugate then we have the commutative diagram:

−−−−−→ U1
g1−−−−−→ U1

g1−−−−−→ U1 −−−−−→??yη

??yη

??yη

−−−−−→ U2
g2−−−−−→ U2

g2−−−−−→ U2 −−−−−→
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Local topological equivalence to linearisation

A question about local topological equivalence to linearisation make sense only
for neighborhoods of equilibria without eigenvalues on imaginary axis, for
periodic trajectories (fixed points of maps) without multipliers on the unit
circle.

Definition
An equilibrium position of an ODE is called hyperbolic if it does not have
eigenvalues on the imaginary axis.
A periodic trajectory of an ODE is called hyperbolic if it does not have
multipliers on the unit circle.
A fixed point of a map is called hyperbolic if it does not have multipliers on the
unit circle.
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LOCAL TOPOLOGICAL EQUIVALENCE

TO LINEAR SYSTEM



Definition of topological equivalence

Definition
Two dynamical systems with phase spaces X1 ⊆ Rn and X2 ⊆ Rn are
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homeomorphism η : U1 → U2 which maps trajectories, half-trajectories,
segments of trajectories of the first system to trajectories, half-trajectories,
segments of trajectories of the second system preserving the direction of time.

For dynamical systems with discrete time the topological equivalency is
equivalent to the topological conjugacy of evolutionary operators for time 1.

Definition
Two diffeomorphisms, g1 and g2, which are defined in the domains X1 ⊆ Rn

and X2 ⊆ Rn respectively, are topologically conjugate in the domains
U1 ⊆ X1, U2 ⊆ X2 if there exists a homeomorphism η : U1 → U2 such that
η(g1(x)) = g2(η(x)) for any x ∈ U1.

If g1 and g2 are topologically conjugate then we have the commutative diagram:

−−−−−→ U1
g1−−−−−→ U1

g1−−−−−→ U1 −−−−−→??yη

??yη

??yη

−−−−−→ U2
g2−−−−−→ U2

g2−−−−−→ U2 −−−−−→
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Local topological equivalence to linearisation

A question about local topological equivalence to linearisation make sense only
for neighborhoods of equilibria without eigenvalues on imaginary axis, for
periodic trajectories (fixed points of maps) without multipliers on the unit
circle.

Definition
An equilibrium position of an ODE is called hyperbolic if it does not have
eigenvalues on the imaginary axis.
A periodic trajectory of an ODE is called hyperbolic if it does not have
multipliers on the unit circle.
A fixed point of a map is called hyperbolic if it does not have multipliers on the
unit circle.
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Local topological equivalence to linearisation, Grobman-Hartman theorem

Theorem (The Grobman-Hartman theorem)

Any autonomous ODE with a C 1-smooth right hand side in a neighborhood of
a hyperbolic equilibrium position (or a hyperbolic periodic trajectory) is
topologically equivalent to its linearisation near this equilibrium position
(respectively, near this periodic trajectory).
Any C 1-smooth map in a neighborhood of a hyperbolic fixed point is
topologically conjugate to its linearisation near this fixed point.



Topological classification of autonomous ODEs near hyperbolic equilibria

Definition
A topological type of a hyperbolic equilibrium is a pair (ns , nu), were ns and nu

are the numbers of the eigenvalues of this equilibrium in the left and right
complex half-plane respectively (note: “s” is for “stable”, “u” is for
“unstable”).

Theorem
Linear (hyperbolic) autonomous ODEs in Rn of the same topological type are
topologically equivalent.

Corollary

Any autonomous ODE in Rn with a C 1-smooth right hand side in a
neighborhood of a hyperbolic equilibrium position of a topological type (ns , nu)
is topologically equivalent to the system of linear ODEs

ξ̇ = −ξ, ξ ∈ Rns , η̇ = η, η ∈ Rnu

A hyperbolic equilibrium position of a topological type (ns , nu) is called a
topological saddle if both ns and nu are different from 0. It is called a stable
(respectively, unstable) topological node if nu = 0 (respectively, ns = 0).
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Topological classification of maps near hyperbolic fixed points

Definition
A topological type of a hyperbolic fixed point of a map is a quadruple
(ns , δs , nu, δu), were ns and nu are the numbers of the multipliers of this fixed
point inside and outside of the unit circle respectively, δs and δu are signs of
products of these multipliers.

Theorem
Linear (hyperbolic) maps in Rn of the same topological type are topologically
conjugate.

Corollary

Any C 1-smooth hyperbolic map in Rn in a neighborhood of a hyperbolic fixed
point of a topological type (ns , δs , nu, δu) is topologically conjugate to the
linear map

ξ 7→ Asξ, ξ ∈ Rns , η 7→ Auη, η ∈ Rnu ,
where As is the diagonal matrix with all diagonal elements equal to 1/2 but the
last one which is equal to δs/2, and Au is the diagonal matrix with all diagonal
elements equal to 2 but the last one which is equal to 2δu.

For the linear maps above the plane {η = 0} is called the stable plane, and the
plane {ξ = 0} is called the unstable plane. The maps with δs = −1,
(respectively, with δu = −1) change the orientation of the stable (respectively,
unstable) plane.
The maps with different topological types are topologically not equivalent.



Topological classification of maps near hyperbolic fixed points

Definition
A topological type of a hyperbolic fixed point of a map is a quadruple
(ns , δs , nu, δu), were ns and nu are the numbers of the multipliers of this fixed
point inside and outside of the unit circle respectively, δs and δu are signs of
products of these multipliers.

Theorem
Linear (hyperbolic) maps in Rn of the same topological type are topologically
conjugate.

Corollary

Any C 1-smooth hyperbolic map in Rn in a neighborhood of a hyperbolic fixed
point of a topological type (ns , δs , nu, δu) is topologically conjugate to the
linear map

ξ 7→ Asξ, ξ ∈ Rns , η 7→ Auη, η ∈ Rnu ,
where As is the diagonal matrix with all diagonal elements equal to 1/2 but the
last one which is equal to δs/2, and Au is the diagonal matrix with all diagonal
elements equal to 2 but the last one which is equal to 2δu.

For the linear maps above the plane {η = 0} is called the stable plane, and the
plane {ξ = 0} is called the unstable plane. The maps with δs = −1,
(respectively, with δu = −1) change the orientation of the stable (respectively,
unstable) plane.
The maps with different topological types are topologically not equivalent.



Topological classification of maps near hyperbolic fixed points

Definition
A topological type of a hyperbolic fixed point of a map is a quadruple
(ns , δs , nu, δu), were ns and nu are the numbers of the multipliers of this fixed
point inside and outside of the unit circle respectively, δs and δu are signs of
products of these multipliers.

Theorem
Linear (hyperbolic) maps in Rn of the same topological type are topologically
conjugate.

Corollary

Any C 1-smooth hyperbolic map in Rn in a neighborhood of a hyperbolic fixed
point of a topological type (ns , δs , nu, δu) is topologically conjugate to the
linear map

ξ 7→ Asξ, ξ ∈ Rns , η 7→ Auη, η ∈ Rnu ,
where As is the diagonal matrix with all diagonal elements equal to 1/2 but the
last one which is equal to δs/2, and Au is the diagonal matrix with all diagonal
elements equal to 2 but the last one which is equal to 2δu.

For the linear maps above the plane {η = 0} is called the stable plane, and the
plane {ξ = 0} is called the unstable plane. The maps with δs = −1,
(respectively, with δu = −1) change the orientation of the stable (respectively,
unstable) plane.
The maps with different topological types are topologically not equivalent.



Topological classification of maps near hyperbolic fixed points

Definition
A topological type of a hyperbolic fixed point of a map is a quadruple
(ns , δs , nu, δu), were ns and nu are the numbers of the multipliers of this fixed
point inside and outside of the unit circle respectively, δs and δu are signs of
products of these multipliers.

Theorem
Linear (hyperbolic) maps in Rn of the same topological type are topologically
conjugate.

Corollary

Any C 1-smooth hyperbolic map in Rn in a neighborhood of a hyperbolic fixed
point of a topological type (ns , δs , nu, δu) is topologically conjugate to the
linear map

ξ 7→ Asξ, ξ ∈ Rns , η 7→ Auη, η ∈ Rnu ,
where As is the diagonal matrix with all diagonal elements equal to 1/2 but the
last one which is equal to δs/2, and Au is the diagonal matrix with all diagonal
elements equal to 2 but the last one which is equal to 2δu.

For the linear maps above the plane {η = 0} is called the stable plane, and the
plane {ξ = 0} is called the unstable plane. The maps with δs = −1,
(respectively, with δu = −1) change the orientation of the stable (respectively,
unstable) plane.
The maps with different topological types are topologically not equivalent.



Topological classification of ODEs near hyperbolic periodic trajectories

ODEs near hyperbolic periodic trajectories are topologically equivalent if and
only if the corresponding monodromy maps are topologically equivalent.

Because any monodromy map in Rn preserves the orientation of Rn, for such
map necessarily δsδu = 1. So, for given (ns , nu) there are two topologically
non-equivalent classes of ODEs near hyperbolic periodic trajectories.
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Exercises

Exercises

1. Provide explicit formulas for homeomorphism of phase portraits of systems

ẋ1 = −x1, ẋ2 = −x2/3

and
ẋ1 = −x1 + x2, ẋ2 = −x1 − x2

2. Prove that eigenvalues of equilibria and multipliers of periodic trajectories
are invariant under smooth transformations of variables.



LOCAL INVARIANT MANIFOLDS



Stable and unstable invariant manifolds

Definition
A manifold is called an invariant manifold for a dynamical system if this
manifold together with each its point contains the whole trajectory of this
dynamical system.

Example

Consider the linear system

ξ̇ = −ξ, ξ ∈ Rns , η̇ = η, η ∈ Rnu

It has two invariant planes: plane {η = 0} is called the stable plane, and the
plane {ξ = 0} is called the unstable plane; trajectories in these planes
exponentially fast tend to the origin of the coordinates as t → +∞ and
t → −∞ respectively. Similarly, one can define the stable and the unstable
planes T s and T u for any hyperbolic linear system.



Stable and unstable manifolds of hyperbolic equilibria, periodic trajectories
and fixed points

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C r (here one can consider also r = ∞
and r = ω; the last notation is for the class of analytic functions). Assume that
the matrix A has ns and nu eigenvalues in the left and right complex half-plane
respectively, ns + nu = n. Denote T s and T u the corresponding invariant
planes of A.

Theorem (The Hadamard-Perron theorem)

In some neighborhood of the origin this ODE has two C r -smooth invariant
manifolds W s and W u, which are tangent at the origin to the planes T s and
T u respectively. Trajectories in these manifolds exponentially fast tend to the
origin of the coordinates as t → +∞ and t → −∞ respectively. W s and W u

are called stable and unstable manifolds of the equilibrium 0 respectively.

Remark
For analytic systems this result was obtained by A.M.Lyapunov and A.Poincaré.

Similar theorem is valid for maps in neighborhoods of hyperbolic fixed points
and for ODEs in neighborhoods of hyperbolic periodic trajectories.
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LOCAL INVARIANT MANIFOLDS



Stable and unstable invariant manifolds

Definition
A manifold is called an invariant manifold for a dynamical system if this
manifold together with each its point contains the whole trajectory of this
dynamical system.
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ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C r (here one can consider also r = ∞
and r = ω; the last notation is for the class of analytic functions). Assume that
the matrix A has ns and nu eigenvalues in the left and right complex half-plane
respectively, ns + nu = n. Denote T s and T u the corresponding invariant
planes of A.

Theorem (The Hadamard-Perron theorem)

In some neighborhood of the origin this ODE has two C r -smooth invariant
manifolds W s and W u, which are tangent at the origin to the planes T s and
T u respectively. Trajectories in these manifolds exponentially fast tend to the
origin of the coordinates as t → +∞ and t → −∞ respectively. W s and W u

are called stable and unstable manifolds of the equilibrium 0 respectively.

Similar theorem is valid for maps in neighborhoods of hyperbolic fixed points
and for ODEs in neighborhoods of hyperbolic periodic trajectories.



Stable and unstable manifolds, continued



The center manifold theorem

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C r , r < ∞. Assume that the matrix A
has ns , nu and nc eigenvalues in the left complex half-plane, right complex
half-plane and on imaginary axis respectively, ns + nu + nc = n. Denote T s , T u

and T c the corresponding invariant planes of A . (Note: “s” is for “stable”,
“u” is for “unstable”, “c” is for “center ”).

Theorem (The center manifold theorem: Pliss-Kelley-Hirsch-Pugh-Shub)

In some neighborhood U of the origin this ODE has C r -smooth invariant
manifolds W s , W u and C r−1-smooth invariant manifold W c , which are
tangent at the origin to the planes T s , T u and T c respectively. Trajectories in
the manifolds W s and W u exponentially fast tend to the origin as t → +∞
and t → −∞ respectively. Trajectories which remain in U for all t ≥ 0 (t ≤ 0)
tend to W c as t → +∞ (t → −∞). W s , W u and W c are called the stable,
the unstable and a center manifolds of the equilibrium 0 respectively.

Remark
Behavior of trajectories on W c is determined by nonlinear terms.
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The center manifold theorem, continued



The center manifold theorem, continued

Remark
If the original equation has smoothness C∞ or Cω, then W s and W u also have
smoothness C∞ or Cω. However W c in general has only a finite smoothness.

Remark
If ns = 0 or nu = 0 and the original equation has smoothness C r , r < ∞ , then
W c has smoothness C r .



The center manifold theorem, continued
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W c has smoothness C r .



The center manifold theorem, examples

Example (A center manifold need not be unique)

ẋ = x2, ẏ = −y

Example (A center manifold in general has only finite smoothness)

ẋ = xz − x3, ẏ = y + x4, ż = 0
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Center manifold reduction

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C 2. Assume that the matrix A has
ns , nu and nc eigenvalues in the left complex half-plane, right complex
half-plane and on imaginary axis respectively, ns + nu + nc = n.

Theorem ( Center manifold reduction: Pliss-Kelley-Hirsch-Pugh-Shub)

In a neighborhood of the coordinate origin this ODE is topologically equivalent
to the direct product of restriction of this equation to the center manifold and
the “standard saddle”:

κ̇ = w(κ), κ ∈ W c , ξ̇ = −ξ, ξ ∈ Rns , η̇ = η, η ∈ Rnu

The Tailor expansion for a center manifold can be computed by the method of
undetermined coefficients.
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Example

Consider the system

ẋ = ax2 + xbT y + cx3 + . . . , x ∈ R1, ẏ = By + dx2 + . . . , y ∈ Rm.

where B is a matrix without imaginary eigenvalues.

The Taylor expansion for
a center manifold should have form

y = σx2 + O(x3)

with yet unknown vector coefficient σ.
Plugging this y into the second equation of the system, we get

2σx(ax2 + xbT y + cx3 + . . .) + . . . = B(σx2 + O(x3)) + dx2 + . . .

Equating terms of order x2 we get Bσ + d = 0. Thus σ = −B−1d .
Reduced onto the center manifold equation is

ẋ = ax2 + (c − bTBd)x3 + O(x4).
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ẋ = ax2 + xbT y + cx3 + . . . , x ∈ R1, ẏ = By + dx2 + . . . , y ∈ Rm.
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Center manifold reduction for systems with parameters

Consider an ODE (actually, k-parametric family of ODE’s)

ẋ = v(x , α), v = A(α)x + O(|x |2), x ∈ Rn, α ∈ Rk

with the right hand side of smoothness C 2. Assume that the matrix A(0) has
ns , nu and nc eigenvalues in the left complex half-plane, right complex
half-plane and on imaginary axis respectively, ns + nu + nc = n.

Consider the extended system

ẋ = v(x , α), α̇ = 0

This system has in a neighborhood of the origin of the coordinates (x , α) a
center manifold of dimension nc + k.

Theorem ( Shoshitaishvili reduction principle)

In a neighborhood of the coordinates’ origin this ODE is topologically
equivalent to the direct product of restriction of this equation to the center
manifold and the “standard saddle”:

κ̇ = w(κ, α), κ ∈ Rnc , α̇ = 0, α ∈ Rk , ξ̇ = −ξ, ξ ∈ Rns , η̇ = η, η ∈ Rnu

The homeomorphism which realizes equivalence does not change α.

The restriction of the original family ODE’s to the central manifold of the
extended system is called the reduced family. According to the reduction
principle in the problem of the topological classification without loss of
generality one may consider only reduced families.
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Some definitions in bifurcation theory

The phase portrait of a dynamical system is a partitioning of the state space
into orbits.

Consider a dynamical system that depends on parameters (actually, family of
dynamical systems).

The appearance of a topologically nonequivalent phase portraits under variation
of parameters is called a bifurcation.

A bifurcation diagram of the dynamical system is a stratification of its
parameter space induced by the topological equivalence, together with
representative phase portraits for each stratum.

A bifurcation boundary is a surface in the parameter space on which a
bifurcation occurs.

If family of dynamical systems is generic, then the codimension of a bifurcation
is the difference between the dimension of the parameter space and the
dimension of the corresponding bifurcation boundary. The codimension of
the bifurcation of a given type is the minimal number of parameters of families
in which that bifurcation type occurs. Equivalently, the codimension is the
number of equality conditions that characterize a bifurcation.
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Exercises

Exercises

1. Consider the system

ẋ = xz − x3, ẏ = y + x4, ż = 0

Show that this system has a center manifold given by y = V (x , z) , where V is
a C 6 function in x if |z | < 1/6, but only a C 4 function in x for |z | < 1/4.

2. Consider the system

ẋ = ax2 +xbT y +cx3 + . . . , x ∈ R1, ẏ = By +dx2 +px3 +xqT y + . . . , y ∈ Rm.

where B is a matrix without imaginary eigenvalues. Find center manifold of 0
with accuracy O(x4).
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